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1 Introduction

Scattered data interpolation is a problem of interest in numerous areas such as
electronic imaging, smooth surface modeling, and computational geometry [1,
2]. Our motivation arises from applications in geology and mining, which often
involve large scattered data sets and a demand for high accuracy. The method
of choice is ordinary kriging [3]. This is because it is a best unbiased estima-
tor [4,3, 5]. Unfortunately, this interpolant is computationally very expensive to
compute exactly. For n scattered data points, computing the value of a single
interpolant involves solving a dense linear system of size roughly n X n. This is
infeasible for large n. In practice, kriging is solved approximately by local ap-
proaches that are based on considering only a relatively small number of points
that lie close to the query point [3, 5]. There are many problems with this local
approach, however. The first is that determining the proper neighborhood size
is tricky, and is usually solved by ad hoc methods such as selecting a fixed num-
ber of nearest neighbors or all the points lying within a fixed radius. Such fixed
neighborhood sizes may not work well for all query points, depending on local
density of the point distribution [5]. Local methods also suffer from the problem
that the resulting interpolant is not continuous. Meyer showed that while krig-
ing produces smooth continues surfaces, it has zero order continuity along its
borders [6]. Thus, at interface boundaries where the neighborhood changes, the
interpolant behaves discontinuously. Therefore, it is important to consider and
solve the global system for each interpolant. However, solving such large dense
systems for each query point is impractical.

Recently a more principled approach to approximating kriging has been pro-
posed based on a technique called covariance tapering [7]. The problems arise
from the fact that the covariance functions that are used in kriging have global
support. In tapering these functions are approximated by functions that have
only local support, and that possess certain necessary mathematical properties.
This achieves greater efficiency by replacing large dense kriging systems with
much sparser linear systems. Covariance tapering has been successfully applied
to a restriction of our problem, called simple kriging [7]. Simple kriging is not an
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unbiased estimator for stationary data whose mean value differs from zero, how-
ever. We generalize these results by showing how to apply covariance tapering
to the more general problem of ordinary kriging.

Our implementations combine, utilize, and enhance a number of different ap-
proaches that have been introduced in literature for solving large linear systems
for interpolation of scattered data points. For very large systems, exact methods
such as Gaussian elimination are impractical since they require O(n®) time and
O(n?) storage. As Billings et al. suggested, we use an iterative approach [8]-
In particular, we use the SYMMLQ method [9], for solving the large but sparse
ordinary kriging systems that result from tapering.

The main technical issue that need to be overcome in our algorithmic solution
is that the points’ covariance matrix for kriging should be symmetric positive
definite [3,10]. The goal of tapering is to obtain a sparse approximate repre-
sentation of the covariance matrix whilé maintaining its positive definiteness.
Furrer et al: used tapering to obtain a sparse linear system of the form Az = b,
where A is the tapered symmetric positive definite covariance matrix [7]. Thus,
Cholesky factorization [11] could be used to solve their linear systems. They im-
plemented an efficient sparse Cholesky decomposition method. They also showed
if these tapers are used for a limited class of covariance models, the solution of
the system converges to the solution of the original system. Matrix A in the
ordinary kriging system, while symmetric, is not positive definite. Thus, their
approach is not applicable to the ordinary kriging system [10]. Therefore, we use
tapering only to obtain a sparse linear system. Then, we use SYMMLQ t0 solve

- the ordinary kriging system [9]. . ' '

We show that solving large kriging systems becomes practical via tapering
and iterative methods, and results in lower estimation errors compared to tradi-
tional local approaches, and significant memory savings compared to the original
global system. We also developed a more efficient variant of the sparse SYMMLQ
method for large ordinary kriging systems. This approach adaptively finds the
correct local neighborhood for each query point in the interpolation process.

We start with a brief review of the ordinary kriging in Section 2. In Section 3
the tapering properties are mentioned. We introduce our approaches for solving
the ordinary kriging problem in Section 4. Section 5 describes data sets we used.
Then, we describe our experiments and results in Section 6. Section 7 concludes
the paper. Full version of our paper has details that were omitted due to the

space limit [10]. :

-2  Ordinary Kriging

Kriging is an interpolation method named after Danie Krige, a South African
mining engineer, who pioneered in the field of geostatistics [5]. Kriging is also
referred to as the Gaussian process predictor in the machine learning domain [12).
Kriging and its variants have been traditionally used in mining and geostatistics
applications [4, 5, 3]. The most commonly used variant is called ordinary kriging,
which is often referred to as a BLUE method, that is, a Best Linear Unbiased




Estimator [3,7]. Ordinary kriging is considered to be best because it minimizes
the variance of the estimation error. It is linear because estimates are weighted
linear combination of available data, and is unbiased since it aims to have the
mean error equal to zero [3]. Minimizing the variance of the estimation error
forms the objective function of an optimization problem. Ensuring unbiasedness
of the error imposes a constraint on this objective function. Formalizing this
objective function with its constraint results in the following system (10,3, 7].

(50) (1) = (%) o

where C is the matrix of points’ pairwise covariances, L is a column vector of
all ones and of size n, and w is the vector of weights w;, ..., ws. Therefore, the
minimization problem for n points reduces to solving a linear system of size
(n+1)?, which is impractical for very large data sets via direct approaches. It is
also important that matrix C be positive definite [10, 3]. Note that the coefficient
matrix in the above linear system is a symmetric matrix which is not positive
definite since it has a zero entry on its diagonal.

Pairwise covariances are modeled as a function of points’ separation. These
functions should result in a positive definite covariance matrix. Christakos [13]
showed necessary and sufficient conditions for such permissible covariance func-
tions. Two of these valid covariance functions, are the Gaussian and Spherical
covariance functions (C, and C, respectively). Please see [13,3,5] for details of
these and other permissible covariance functions.

3 Tapering Covariances

Tapering covariances for the kriging interpolation problem, as described in {71,
is the process of obtaining a sparse representation of the points’ pairwise co-
variances so that positive definiteness of the covariance matrix as well as the
smoothness property of the covariance function be preserved. The sparse rep-
resentation via tapering is obtained through the Schur product of the original
positive definite covariance matrix by another such matrix.

Crap(h) = C(R) x Ca(h). @)

The tapered covariance matrix, Ctqp, is zero for points that are more than a
certain distance apart from each other. It is also positive definite since it is the
Schur product of two positive definite matrices. A taper is considered valid for
a covariance model if it perseveres its positive-definiteness property and makes
- the approximate system’s solution converge to the original system’s solution.

The authors of [7] mention few valid tapering functions. We used Spherical,
Wendlandy, Wendland,, and TopHat tapers [7]. These tapers are valid for RS
and lower dimensions [7]. Tapers need to be as smooth as the original covariance
function at origin to guarantee convergence to the optimal estimator (7). Thus,
for a Gaussian covariance function, which is infinitely differentiable, no taper




exists that satisfies this smoothness requirement. However, since tapers proposed
in [7] still maintain positive definiteness of the covariance matrices, we examined
using these tapers for Gaussian covariance functions as well. We are using these
tapers mainly to build a sparse approximate system to our original global system
even though these tapers do not guarantee convergence to the optimal solution

of the original global dense system theoretically.

4 Our Approaches

We implemented both local and global methods for the ordinary kriging problem.

Local Methods: This is the traditional and the most common way of solving
kriging systems. That is, instead of considering all known values in the interpo-
lation process, points within a neighborhood of the query point are considered.
Neighborhood sizes are defined either by a fixed number of points closest to the
query point or by points within a fixed radius from the query point. Therefore,
the problem is solved locally. We experimented our interpolations using both of
these local approaches. We defined the fixed radius to be the distance beyond
which correlation values are less than 10~ of the maximum correlation. Simi-
larly, for the fixed number approach, we used maximum connectivity degree of
points’ pairwise covariances, when covariance values are larger than 107¢ of the
maximum covariance value. Gaussian elimination [14] was used for solving the
local linear systems in both cases.

Global Tapered Methods: In global tapered methods we first redefine
our points’ covariance function to be the tapered covariance function obtained
. through Eq. (2), where C'(h) is the points’ pairwise covariance function, and
Cy(h) is a tapering function. We then solve the linear system using the SYMMLQ
approach as mentioned in [9]. Note that, while one can use conjugate gradient
method for solving symmetric systems, the method is guaranteed to converge
only when the coefficient matrix is both symmetric and positive definite [15].
Since ordinary kriging systems are symmetric and not positive definite, we used
SYMMLQ. We implemented a sparse SYMMLQ method, similar to the sparse conju-
gate gradient method in [16]. In [16]’s implementation, matrix elements that are
less than or equal to a threshold value are ignored. Since we obtain sparseness
through tapering, this threshold value for our application is zero.

Global Tapered and Projected Methods: This implementation is moti-
vated by numerous empirical results in geostatistics indicating that interpolation
weights associated with points that are very far from the query point tend to
be close to zero. That is, very far points do not seem to contribute much to
the interpolation weights. This phenomenon is called the screening effect in the
geostatistical literature [17]. Stein showed conditioned under which the screening
effect occurs for gridded data [17). While the screening effect has been the basis
for using local methods, there is no proof of this empirically supported idea for
scattered data points [7]. We use this conjecture for solving the global ordinary
kriging system Az = b and observing that many elements of b are zero after
tapering. This indicates that for each zero element b; , representing the covari-




ance between the query point and the it data point, we have Cj = 0. Thus,
we expect their associated interpolation weight, w;, to be very close to zero.
We assign zero to such w;’s, and consider solving a smaller system Az’ = V',
where b’ consists of nonzero entries of b. We store indices of nonzero rows in
b in a vector called indices. A' contains only those elements of A whose row
and column indices both appear in indices. This method is effectively the same
as the fixed radius neighborhood size, except that the local neighborhood is
found adaptively. There are several differences between this approach and the
local methods. One is that we build the global matrix A once, and use relevant
parts of it, contributing to nonzero weights, for each query point. Second, for
each query, the local neighborhood is found adaptively by looking at covariance
values in the global system. Third, the covariance values are modified through
tapering.

5 Data Sets

As mentioned before, we cannot solve the original global systems exactly for
very large data sets, and thus cannot compare our solutions with respect to the
original global systems. Therefore, we need ground truth values for our data
sets. Also, since performance of local approaches can depend on data points’
density around the query point, we would like our data sets to be scattered non-
uniformly. Therefore, we create our scattered data sets by sampling points of a
large dense grid from both uniform and Gaussian distributions. We generated
our synthetic data sets using the Sgems [18] software. We generated values on a
(1000 x 1000) grid, using the Sequential Gaussian Simulation (sgsim) algorithm
of the Sgems software [19, 18]. Points were simulated through ordinary kriging
with a Gaussian covariance function of range equal to 12, using a maximum of
400 neighboring points within a 24 unit radius area. Then, we created 5 sparse
data sets by sampling 0.01% to 5% of the original simulated grid’s points. This
procedure resulted in sparse data sets of sizes ranging from over 9K to over 48K.
The sampling was done so that the concentration of points in different locations
vary. For each data set, 5% of the sampled points were from 10 randomly selected
Caussian distributions. The rest of the points were drawn from the uniform
distribution. Details of the real data tests and results are in our full paper [10].

6 Experiments

All experiments were run on a Sun Fire V20z running Red Hat Enterprise release
3, using the g++ compiler version 3.2.3. Our software is implemented in C+-+,
using the GsTL and ANN libraries [19,20]. GsTL is used to build and solving the
linear systems. ANN is used for finding nearest neighbors for local approaches.

For each input data we examined various ordinary kriging methods on 200
query points. Half of these query points were sampled uniformly from the original
grids. The other 100 query points were sampled from the Gaussian distributions.




We tested both local and global methods. Local methods used Gaussian elimi-
nation for solving the linear systems while global tapered methods used sparse
SYMMLQ. Running times are averaged over 5 runs.

We examined methods mentionied in Section 4. Global approaches require
selection of a tapering function. For synthetic data, we examined all tapers men-
tioned in Section 3. Even though there is no taper which is as smooth as the
Gaussian model to guarantee convergence to the optimal estimates, in almost all
cases, we obtained lower estimation errors when using global tapered approaches.
As expected, smoother functions result in lower estimation errors. Also, results
from tapered and projected cases are comparable to their corresponding tapered
global approaches. In other words, projecting the global tapered system did not
significantly affect the quality of results compared to the global tapered approach
in our experiments. In most cases, Top Hat and Spherical tapers performed simi-
lar to each other with respect to the estimation error, and so did Wendland, and
Wendland, tapers. Wendland tapers give the lowest overall estimation errors.
Among Wendland tapers, Wendland; has lower CPU running times for solving
the systems. Figure 1 shows the absolute errors and CPU running times, when
Wendland, taper is used.

For local approaches, using fixed radius neighborhoods resulted in lower er-
rors for query points from the Gaussian distribution. Using fixed number of
neighbors seems more appropriate for uniformly sampled query points. Consid-
ering maximum degree of points’ covariance connectivity as number of neighbors
to use in the local approach requires extra work and longer running times com-
pared to the fixed radius approach. The fixed radius local approach is faster
than the fixed neighborhood approach by 1-2 orders of magnitude for the uni-
form query points, and is faster within a constant factor to an order of magnitude
for query points from clusters, while giving better or very close by estimations
compared to the fixed number of neighbors approach (Tables 1 and 2). ’

Tapering, used with sparse implementations for solving the linear systems,
results in significant memory savings. Table 3 reports these memory savings for
synthetic data to be a factor of 392 to 437.

Table 1. Average CPU Times for Solving the System over 200 Random Query Points.

Local Tapered Global
n | Fixed | Fixed || Top | Top Hat |[Spherical|Spherical| Wi Wi W2 W
Num {Radius|| Hat |[Projected Projected Projected| Projected

48513/0.03278]0.00862|/8.456] 0.01519 | 7.006 | 0.01393 [31.767| 0.0444 [57.199] 0.04515
39100(0.01473]0.00414/|14.9911 0.00936 | 4.150 | 0.00827 {17.859] 0.0235 |31.558] 0.02370
29487|0.01527(0.00224[[2.563| 0.00604 | 2.103 | 0.00528 |08.732] 0.0139 [15.171| 0.01391
19757|0.00185{0.000461/0.954] 0.00226 | 0.798 | 0.00193 |02.851] 0.0036 [05.158) 0.00396
9951 {0.00034/0.00010}{0.206| 0.00045 | 0.169 | 0.00037 J00.509 0.0005 |00.726] 0.00064

7 Conclusion

Solving very large ordinary Kriging systems via direct approaches is infeasible for large
data sets. We implemented efficient ordinary kriging algorithms through utilizing co-




Table 2. Average Absolute Errors over 200 Randomly Selected Query Points.

Local Tapered Global
n [Fixed[ Fixed || Top | Top Hat [Spherical}Spherical{ W1 Wi We Wa
Num {Radiusj} Hat [Projected Projected Projected Projected|

48513(0.416 0.414 }|0.333] 0.334 0.336 -| "0.337 [0.278] 0.279 [0.276] 0.284
39109(0.461 | 0.462 ||0.346] 0.345 0.343 0.342 10.314] 0.316 {0.313] 0.322
29487(0.504| 0.498 |0.429} 0.430 0.430 0.430 {0.384] 0.384 [0.372} 0.382
19757[0.569| 0.562 ||0.473] 0.474 0.471 0.471 {0.460] 0.463 |0.459} 0.470
9951 [0.749] 0.756 ||0.604] 0.605 0.602 0.603 0.608f 0.610 [0.619] 0.637

Table 3. Memory Savings in the Global Tapered Coefficient Matrix

n (n+1)° Stored |% Stored|Savings
(Total Elements)|Elements Factor

48513| 2,353,608,196 |5,382,536] 0.229 [437.267
39109| 1,529,592,100 |3,516,756] 0.230 [434.944
29487 869,542,144 |2,040,072] 0.235 [426.231
19757] 39,0878,564 934,468 | 0.239 1417.755
9951 99,042,304 252,526 | 0.285 [392.206

variance tapering [7] and iterative methods [14, 16]. Furrer et al. [7] had utilized co-
variance tapering along with sparse Cholesky decomposition to solve simple kriging
systems. Their approach is not applicable o the general ordinary kriging problem. We
used tapering with sparse SYMMLQ method to solve large ordinary kriging systems.
_ We also implemented a variant of the global tapered method through projecting the
global system on to an appropriate smaller system. Global tapered methods resulted -
in memory savings ranging from a factor of 4.54 to 437.27. Global tapered iterative
methods gave better estimation errors compared to the local approaches. The estima-
tion results of the global tapered method were very close to the global tapered and
projected method. The global tapered and projected method solves the linear systems
within order(s) of magnitude faster than the global tapered method.
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