
Ching Y. Loh

Taitech, Inc., Beavercreek, Ohio

Philip C.E. Jorgenson

Glenn Research Center, Cleveland, Ohio

A Time-Accurate Upwind Unstructured Finite

Volume Method for Compressible Flow With

Cure of Pathological Behaviors

NASA/TM—2007-214918

July 2007



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI Program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NASA Aeronautics and Space Database and its

public interface, the NASA Technical Reports Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world.

Results are published in both non-NASA channels and

by NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counterpart of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies that

contain minimal annotation. Does not contain

extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services also include creating custom

thesauri, building customized databases, organizing

and publishing research results.

For more information about the NASA STI

program, see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 301–621–0134

• Telephone the NASA STI Help Desk at

301–621–0390

• Write to:

           NASA Center for AeroSpace Information (CASI)

           7115 Standard Drive

           Hanover, MD 21076–1320



A Time-Accurate Upwind Unstructured Finite

Volume Method for Compressible Flow With

Cure of Pathological Behaviors

NASA/TM—2007-214918

July 2007

National Aeronautics and

Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Ching Y. Loh

Taitech, Inc., Beavercreek, Ohio

Philip C.E. Jorgenson

Glenn Research Center, Cleveland, Ohio



Acknowledgments

This work received support from the Supersonics Project Office of NASA Glenn Research Center. The authors are thankful for

Dr. H.T. Huynh for providing the two-dimensional Roe approximate Riemann solver.

Available from

NASA Center for Aerospace Information

7115 Standard Drive

Hanover, MD 21076–1320

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

This work was sponsored by the Fundamental Aeronautics Program

at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

This report is a formal draft or working

paper, intended to solicit comments and

ideas from a technical peer group.



Abstract

A time-accurate, upwind, finite volume method for computing compressible flows on unstructured
grids is presented. The method is second order accurate in space and time and yields high resolution
in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy
correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind
schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping
scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction
stage.

However, even with these up-to-date improvements, and a Roe Riemann solver with entropy correc-
tion, the basic upwind scheme is still plagued by the so-called “pathological behaviors,” e.g., the carbuncle
phenomenon, the expansion shock, etc. A systematic solution to these limitations is presented, which uses
a simple dissipation model while still preserving second order accuracy. The modified, stabilized scheme
is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper.

The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU
Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic
to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA
(computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the
method.

1 Introduction
Finite volume (FV) schemes are gaining popularity in computational fluid dynamics (CFD) and computational

aeroacoustics (CAA) primarily due to their robustness and geometric flexibility. The FV schemes are based on the
Gauss divergence theorem applied to a control volume (CV) and consist of two steps. In the first (reconstruction) step,
with given initial conditions, the cell average flow variables are reconstructed into linear or higher order polynomials
within the CV. The second (evolution) step involves computing the surface fluxes of the CV; the cell averaged values of
flow variables are then obtained for a solution at the next time level. The surface flux calculation in these schemes can
be categorized into two types: the centered schemes and the upwind schemes [1]. While the upwind schemes require
a Riemann solver (exact or approximate), the centered schemes, such as the NT (Nassayahu-Tadmor) [2] scheme and
the CE/SE scheme [3, 4], do not.
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There are currently many popular upwind schemes being used in CFD and CAA. The Godunov scheme and the
TVD high resolution schemes [5, 6] are considered to be the fundamental upwind schemes. In the past decades there
has been significant progress in improving the accuracy of the upwind methods by using higher order approximations,
e.g., the ENO (essentially non-oscillatory) [7] and WENO (weighted ENO) [8] schemes; the DG (discontinuous
Galerkin) [9] scheme; the SV (spectral finite volume) and the SD (spectral difference) schemes [10, 11].

The purpose of this paper is to present a practical method that avoids high computer costs but with reasonable
accuracy while retaining its robustness. In this work a basic upwind scheme is chosen similar to the one presented,
for solving the Euler equations, in [1]. As the upwind methods are prone to exhibit “pathological behaviors”[12-16]
such as the carbuncle phenomenon and the expansion shock, the method presented here will provide a cure for these
undesired phenomena.

In the present paper, we focus on the construction of an enhanced time-accurate upwind (ETAU) FV scheme for
the Euler/Navier-Stokes equations on unstructured grids (triangular or tetrahedral), which removes the pathological
behaviors through a simple dissipation model. Other researchers have considered the role and implementation of
dissipation models in upwind schemes [1, 12 - 16]. However, the present work takes a new systematic approach to
numerical dissipation to broaden the capabilities of the basic upwind scheme. The ETAU scheme is second order
accurate in space and time, and stable for long run times. It is capable of computing flows over a wide range of flow
regimes which include discontinuities as well as very low Mach number viscous flows, making the scheme appropriate
for practical CFD and CAA problems.

The governing equations and the basic unstructured Euler/Navier-Stokes solver are briefly described in Section 2,
with simple implementations of the boundary conditions, in particular, the non-reflecting boundary condition (NRBC).
Section 3 is devoted to the cure of the pathological behaviors that warrants a stable scheme – ETAU. Several examples
are presented in Section 4 that demonstrate how such annoying behaviors are overcome in a systematic way. In Section
5, the ETAU Euler/Navier-Stokes solver is tested in numerical examples from supersonic to low subsonic flow speed,
with emphasis on stable, long run time viscous flows for CAA computations. Concluding remarks are addressed in
Section 6.

2 The Basic Unstructured Euler/Navier-Stokes FV Solver
Because computer time and memory still need to be considered when computing time-accurate unsteady flows,

an upwind FV scheme that is second order accurate (in the absence of flow discontinuities) in space and time is
chosen. The basic upwind scheme includes many attributes often found in the construction of high order schemes:
the geometries are calculated as accurately as possible, the use of a Cauchy-Kowalewski type evaluation of the time
derivative, and a multidimensional limiter for the reconstruction stage. A brief description of the basic upwind scheme
is outlined below, beginning with the Euler/Navier-Stokes (E/N-S) equations in conservation form.

2.1 Conservation form of the unsteady compressible Euler/Navier-Stokes equations
The conservation form of the two-dimensional E/N-S equations are briefly sketched here. The three-dimensional

E/N-S equations can be treated in a similar way. Let ρ, u, v, p, and γ be the density, the two velocity components, static
pressure, and constant specific heat ratio, respectively. The two-dimensional unsteady E/N-S equations are written in
the standard conservation form:

Ut +Fx +Gy = 0, (1)

where x, y, and t are the streamwise and transverse coordinates and time, respectively. The flux vectors are further
split into inviscid and viscous fluxes:

F = Fi −Fv, G = Gi −Gv.

The conservative flow variable vector U, and the inviscid flux vectors Fi and Gi are given in nondimensional form as:

U =







U1
U2
U3
U4






=







ρ
ρu
ρv
ρe






, Fi =







ρu
ρu2 + p

ρuv
ρuH






, Gi =







ρv
ρuv

ρv2 + p
ρvH






.
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Figure 1. (a) A typical unstructured triangular grid in two-dimensional space, (b) control volume in E3, (c) ghost cell is a mirror image of the
boundary cell.

Here the internal energy has the form e = p
ρ(γ−1)

+1/2(u2 +v2), and the enthalpy is H = p/ρ+e. The nondimension-
alized viscous flux vectors Fv and Gv are written as:

Fv =









0
µ(2ux − 2

3 ∇·V)
µ(vx +uy)

µ[2uux +(uy + vx)v− 2
3(∇·V)u+ γ

Pr
∂
∂y (

U4
U1

− u2+v2
2 )]









,

and

Gv =









0
µ(vx +uy)

µ(2vy − 2
3 ∇·V)

µ[2vvy +(uy + vx)u− 2
3 (∇·V)v+ γ

Pr
∂
∂y (

U4
U1

− u2+v2
2 )]









,

where ux,uy,vx,vy are the flow velocity gradients with Pr being the Prandtl number, µ = 1/Re is the dynamic viscosity
where Re is the Reynolds number; the velocity divergence is ∇·V = ux + vy. For air at standard conditions, Pr = 0.72
and γ = 1.4.

2.2 The time-marching (evolution) stage
A typical two-dimensional unstructured triangular grid cell used in the scheme is illustrated in Fig. 1. Here, ∆ABC

is a triangular cell centered at O and D,E,F are the centers of the neighboring triangular cells (compact stencil). The
flow variables at the previous time step are stored at these triangle cell centers. By considering (x,y, t) as coordinates of
a three-dimensional Euclidean space, E3, and using the Gauss divergence theorem, it follows that Eq. (1) is equivalent
to the integral conservation law:

I

S
Im ·ds = 0, m = 1,2,3,4, (2)

where S denotes the surface around a space-time control volume (CV) in E3 (e.g. the prism ABC−A′B′C′ in Fig. 1b)
and Im = (Fm,Gm,Um). For the surface integrals in Eq. (2), according to the philosophy of high order upwind schemes
[10, 11, 17,], gaussian quadratures are required. Here, for second order accuracy, the integrands are approximated by
linear functions and the only gaussian point is the centroid of each space-time hyper-surface (e.g., M in Fig. 1b, or in
Fig. 2a for a tetrahedral cell). The simple quadrature of the surface integrals in Eq. (2) leads to the update formulation
of U at O from time step n to n+1:

Un+1 = Un − ∆t
∆s

3

∑
k=1

[Fn+1/2
k (nx)k +Gn+1/2

k (ny)k]∆lk, (3)

where Fk, Gk, (nx)k, (ny)k, k = 1,2,3, are respectively the two flux vectors, the out-going unit normal vector com-
ponents at the centers of the three cylindrical surfaces ABB′A′, BCC′B′ and CAA′C′. The lengths of the edges of the
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Figure 2. (a) A typical unstructured tetrahedral grid cell ABCD in three-dimensional space, with O as its centroid. (b) ghost cell is a mirror image
of the boundary cell, centered at P.

triangular cell ∆ABC, AB, BC and CA, are represented by ∆lk, k = 1,2,3; ∆s the area of ∆ABC and ∆t the time step
size.

The inviscid part of the fluxes Fn+1/2
k , Gn+1/2

k are generated via the Riemann solver. Here, the Roe approximate
Riemann solver [18] with an entropy correction [1] is employed and works very well. At time level t = n∆t, the
conservative flow variable vector Un is given at all triangular cell centers (e.g. O,D,E,F in Fig. 1a or P in Fig. 2a for
three-dimensional space). The spatial gradients Ux and Uy can then be reconstructed via a multidimensional limiter
(as described below), and conveniently stored for further use. The left and right (L and R in Fig. 1 and Fig. 2) states
at the center of each surface of the space-time CV are established by linear Taylor expansion from their corresponding
cell centers. For instance, at the center, M, of the surface ABB′A′ (Fig. 1b, Fig. 2a), the R and L states are respectively:

Un+1/2
R = Un

D +(Un
x)D∆x+(Un

y)D∆y+(Un
t )D

∆t
2 , (4)

Un+1/2
L = Un

O +(Un
x)O∆x+(Un

y)O∆y+(Un
t )O

∆t
2 . (5)

Here, the subscripts O and D indicate which cell center flow variables are used, ∆x and ∆y correspond to either DM or
OM. Note that since the out-going unit normal is chosen, the L-state is always evaluated from the current cell center
O and the R-state always from its neighboring cell centers (D,E, or F).

The procedure that is outlined by Huynh [1] for solving the Euler equations is used in this work for the solution of
the inviscid part of the Navier-Stokes equations. Huynh also showed that the Euler scheme is second order accurate in
space and time. This is used as the basis of a flow solver that will be augmented later to cure the undesired pathological
behaviors of this basic upwind scheme.

The evaluation of the viscous fluxes Fv and Gv follows the formulation in Section 2.1, but only the R-state data is
used. As the flow is assumed to be linear within each cell, spatial derivatives are constant therein and can be applied
directly without Taylor expansion.

In the time direction, the time derivative Ut is evaluated at time step n∆t as described below.

2.3 The Cauchy-Kowalewski/Lax-Wendroff time stepping
The Cauchy-Kowalewski concept makes use of the governing equations to represent the time derivative by the

spatial derivatives. Lax and Wendroff were the first to apply the concept to the Euler equations in their well-known
Lax-Wendroff scheme. The idea was followed by other researchers, e.g., the NT and CE/SE schemes [2,4] use this
technique to obtain Un

t at t = n∆t. Recently, Toro further extended the idea in deriving a solution for the GRP (gen-
eralized Riemann problem) in their ADER scheme [19]. Here, for second order accuracy in time, evaluation of Ut

follows the Lax-Wendroff procedure:
Un

t = −Fn
x −Gn

y (6)

As the Reynolds number, Re, is usually high (or viscosity, µ, small), F and G can be well-approximated by their
inviscid portions, (6) is simplified to:

Un
t = −(

∂Fi

∂U
)nUn

x − (
∂Gi

∂U
)nUn

y (7)
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Un
t is then substituted respectively to (4) or (5) to obtain the initial right and the left states Un+1/2

R and Un+1/2
L . Primitive

variable equivalents of Un+1/2
R and Un+1/2

L are then provided as R and L states to the Roe approximate Riemann solver
[1, 18]. A numerical flux for a given face is thus evaluated. Once the flux data is computed at each face, the averaged
solution is updated to the (n+1)∆t time level (the top face of the CV , ∆A′B′C′) using equation (3).

2.4 Evaluation of spatial gradients by a multidimensional limiter and the reconstruction stage
The reconstruction stage uses averaged flow data U updated at the current cell center O and at its three neighboring

cell centers D,E, and F (Fig. 1a). In general, the reconstruction process requires solving an overdetermined system
(see, e.g.,[17]). For second order accuracy, U must be reconstructed into a linear vector function within the current
cell via a limiter. Here, a multidimensional as opposed to dimension by dimension limiter is employed. Let u denote
a component of U and l = |OD|; by simple finite difference, a linear equation for the gradients (ux, uy) is obtained:

uD −uO

l
= ux

xD − xO

l
+uy

yD − yO

l

or
(xD − xO)ux +(yD − yO)uy = uD −uO.

Here, the subscripts O and D denote the corresponding cell centers. Similarly, two more such linear equations are
available from the u data at E and O as well as at F and O.

(xE − xO)ux +(yE − yO)uy = uE −uO,

(xF − xO)ux +(yF − yO)uy = uF −uO.

Generally, any combination of two of these equations yields a set of spatial gradients for u. There are three sets of
such gradients, namely, (u(1)

x ,u(1)
y ), (u(2)

x ,u(2)
y ) and (u(3)

x ,u(3)
y ). Their moduli or l2 norms, mi =

√

(u(i)
x )2 +(u(i)

y )2,
i = 1,2,3, are calculated as a measure. Then, a multidimensional limiter based on the magnitude of the norms is
applied to all spatial gradients to achieve a single, unified set of gradients for U. Two such multidimensional limiters
are recommended here: the minmod limiter and the extended van Albada limiter [20] (weighted averaging).

When the minmod limiter is employed, the gradient (u(i)
x ,u(i)

y ) corresponding to mi = min(m1,m2,m3) is chosen.
When the extended van Albada limiter is used, let w1 = (m2m3)α,w2 = (m1m3)α,w3 = (m1m2)α, α ≥ 0, the final
gradients are evaluated through weighted averaging:

ux =
w1u(1)

x +w2u(2)
x +w3u(3)

x

w1 +w2 +w3
, uy =

w1u(1)
y +w2u(2)

y +w3u(3)
y

w1 +w2 +w3
.

The extended van Albada limiter or weighted averaging was previously used in the CE/SE method [3, 4]. Different
αs provide numerical dissipation at different levels. A small α, e.g.,α = 0.5, usually yields less dissipation, and is
appropriate for aeroacoustics computations. In the presence of a shock or a contact discontinuity, a larger α(= 2.0) is
needed. In the rare extreme situation with high Mach number and strong shocks, the computed gradients ux, uy need
to be further limited by a factor in order to keep the numerical procedure stable.

After the gradients for each component of U are evaluated, the reconstructed U is linear within the entire grid cell,
∆ABC (Fig. 1a and b). The solution can be considered as either second order accurate or high resolution. An impor-
tant advantage of the multidimensional reconstruction is that a simple and robust absorbing nonreflecting boundary
condition (NRBC) can be applied, as sketched in the next subsection.

2.5 Boundary conditions
The solver is completed with treatments of some frequently used boundary conditions. For convenience, all the

ghost cells are generated as a mirror image of their corresponding boundary cell (∆ABC in Fig. 1c). The given physical
boundary conditions (BCs) are specified at the ghost cell centers (e.g. D in Fig. 1c).

NASA/TM—2007-214918 5



2.5.1 slip wall BCs For a slip wall boundary, flow variables U = (U1,U2,U3,U4)T at the ghost cell center D
(Fig. 1c) are mirror images of those at the boundary cell center O. Let W = (U2,U3),

(U1)D = (U1)O, WD = WO −2(WO •n)n, (U4)D = (U4)O,

where n is the out-going unit normal at the boundary (AB in Fig. 1c). Spatial gradients at the ghost cell center also
need to be defined in an appropriate way.

2.5.2 no-slip wall BCs For a no-slip wall, the BC is slightly different.

(U1)D = (U1)O, WD = −WO, (U4)D = (U4)O.

2.5.3 nonreflecting boundary conditions (NRBCs) One of the most important advantages of the mul-
tidimensional reconstruction is that it allows a simple but robust absorbing NRBC. In principle, the NRBC is based on
the decomposition of the local Euler solution into its Fourier modes – plane waves. A C1 continuity criterion for the
flow variables is inferred as a generic NRBC [21, 22]. After the multidimensional reconstruction, U is linear and hence
C1 continuous within the CV , in particular, across the boundary surface ( dash line AB in Fig. 1c). Then practically
no reflection is generated, details can be found in [22]. The NRBC can be consistently extended to three-dimensional
space, only the line AB now becomes a boundary surface element ∆ABC (Fig. 2b). In principle, the difference between
the conventional characteristic-based NRBC and the present NRBC is, the former is based on decomposition of the
Euler equations into characteristic fields, and the latter is based on a local decomposition of the solution into plane
waves or Fourier modes. But in practice, no such decomposition operation is required. Any given physical boundary
conditions at the ghost cell center (e.g. D in Fig. 2a) are automatically nonreflecting, no additional numerical im-
plementation is needed. Often, when discrepancy between the BC and the flow in the domain interior is developed,
an absorbing layer is consequently formed around the boundary as a buffer zone. The absorbing layer is somewhat
similar to the matched layer in the PML (perfectly matched layer) method [23] for NRBC, but they are two different
methods. More details on the NRBCs can be found in [21, 22].

2.6 Extension to three-dimensional space
The basic E/N-S upwind scheme can be consistently extended to three-dimensional space. The governing equa-

tion, Eq.(1), is now extended to
Ut +Fx +Gy +Hz = 0. (8)

Here, similar to Section 2.1, U, F, G, and H are the three-dimensional versions of the conservative flow variables and
the flux vectors. All the numerical implementations from Sections 2.2-2.5 can be extended to the three-dimensional
case. The update formulation, Eq. (3), becomes

Un+1 = Un − ∆t
∆v

4

∑
k=1

[Fn+1/2
k (nx)k +Gn+1/2

k (ny)k +Hn+1/2
k (nz)k]∆sk, (9)

where ∆v and ∆sk, k = 1,2,3,4, represent the volume and the surface areas of the current tetrahedral cell. Figure 2a
shows the tetrahedral cell ABCD centered at O and one of its four neighbors centered at P. For a boundary cell ABCD,
the corresponding ghost cell is its mirror image (Fig. 2b).

3 Cure of the Pathological Behaviors
The basic scheme described above is an improved upwind scheme of the Godunov type. The scheme works well

with many benchmark type problems but still suffers from the general symptom of the so-called pathological behaviors
described by Quirk [12] and others. The pathological behaviors and their cure are discussed below.

3.1 The pathological behaviors and how they occur
Despite the great success of the upwind schemes, there are still some cases of failure reported by researchers. For

example, the carbuncle phenomenon in the bow shock of a blunt body, the expansion shock when a supersonic flow of

NASA/TM—2007-214918 6
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high Mach number passes over a sharp edge, and the kinked Mach stem when a supersonic flow passes a wedged wall,
etc. [13 - 16]. These pathological behaviors occur mostly when a grid line is aligned with a strong shock or expansion.
It is generally agreed that insufficient dissipation and the consequent local numerical instability lead to such failures
[12, 13, 15].

In the literature, for the Godunov type upwind schemes, a general cure is switching to different Riemann solvers
to gain some more dissipation. For example, an expansion shock can be cured by switching from a Roe approximate
Riemann solver to an HLLE Riemann solver [12]. A comparison of the performances of various Riemann solvers or
flux-splitting is given in [13]. One needs to know in advance which Riemann solver is appropriate for the particular
flow problem being considered. This reduces the robustness of the scheme. Lin [14] provides a way to add dissipation
to FDS (flux difference splitting) schemes to treat the carbuncle phenomena and the slow moving shock instability.
Other curing measures may be found in the references of these papers. The recent residue distribution (RD) schemes
(e.g. [24]) utilize a pointwise representation of the solution. As in a finite difference scheme, the unknowns are updated
at the cell vertices and the stabilization mechanism is similar to artificial viscosity.

In his investigation, Xu [15, 16] further argued that for a Godunov type upwind scheme,

The dissipation required by the numerical stability mainly comes from the Riemann solver at the cell interface.
With the given L and R states across the cell interface (L and R in Fig. 3a), the Riemann solver attempts to
compromise the two different states to an intermediate state for the flux by some kind of averaging. For example,
in the Roe approximate Riemann solver, ρL/(ρL +

√ρLρR) is used as the weighing factor in the weighted
averaging for the flow variables. The averaging process is accompanied by an entropy increase and numerical
dissipation is generated.
The amount of dissipation varies subject to the L and R states and is in the direction normal to the cell interface.
The more they differ from each other, the more the numerical dissipation.
After applying a Riemann solver to the interface between two adjacent cells, the divergence theorem stipulates
that only the normal flux vector components at the interface are considered in the evaluation of surface fluxes
and all the tangential components are ignored. In the direction tangent to the surface, no wave is assumed to
occur and the numerical dissipation is absent.

Based on Xu’s arguments, we are able to conduct some qualitative analysis to the pathological behaviors such as the
carbuncle phenomena. For convenience, we assume a rectangular grid as shown in Fig. 3a and b. We also assume that
the grid lines AD and BC are aligned with the bow shock. For the grid cell ABCD located near the stagnation point of
the blunt body (Fig. 3a), as the flow states jump sharply across BC due to the bow shock (Fig. 3b), the Riemann solver
(RS) at BC introduces numerical dissipation. The dissipation is directional, no dissipation in the tangential direction
of BC occurs. For the surface (edge) CD, as the L and R states are almost identical (e.g., vL = vR), the RS provides
little or no dissipation in its normal direction. Similar analysis can be applied to the other two surfaces AB and AD.
Thus, the numerical solution is vulnerable to the local temporal or spatial instabilities in the direction tangent to the
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Figure 4. Adding numerical dissipation to a one-dimensional scheme. (a) grid for an unconditionally unstable scheme; (b) grid for the Lax-
Friedrichs scheme.
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Figure 5. Dissipation models in two-dimensional and three-dimensional spaces: (a) for two-dimensional triangular cell, O is the cell center,
M,N,P are the cell edge centers; (b) for three-dimensional tetrahedral cell, O is the cell center, M,N,P,Q are the cell surface centers.

shock, odd-even decoupling or (numerical) shear layer instability may take place and cause the carbuncle phenomena.
A remedy is to add some extra numerical dissipation in the tangential direction to stabilize the numerical computation.

Another typical pathological behavior is the expansion shock that forms in supersonic flow of high Mach number
past a sharp edge (Fig. 3c). The expansion shock represents a different type of insufficient dissipation. Assume the
grid line ABC is aligned with the edge body surface. Although the RSs at AB and BC generate numerical dissipation
in the normal direction, the dissipation may not be enough, and an “expansion shock” still appears. Quirk [12] has
suggested using a more dissipative HLLE Riemann solver and smearing the “expansion shock” to an expansion fan.
Here again, the remedy is to add more numerical dissipation, but this time, in the direction normal to the cell interface.

Analysis of the above two cases hints that if there exists a dissipation model which contributes additional dissi-
pation in both tangential and normal directions or is omnidirectional, these pathological phenomenon will be cured.
Details about this dissipation model are discussed below.

For the unstructured grid we considered in the present paper, the symptom of local numerical instability may look
less severe at first glance as the cell surface orientation is random. However, a similar situation may still occur along
the boundaries. For example, it was found with the basic Euler/Navier-Stokes scheme, the no-slip wall condition does
not work at all. The symptom was overcome after a dissipation model was used.

For robustness and efficiency, we continue to use the Roe approximate Riemann solver (RS) in the present basic
upwind scheme, and propose a simple dissipation model that is external to the RS. The model adds omnidirectional
dissipation to and is embedded in the basic scheme.

3.2 A sample one-dimensional dissipation model
In searching for an appropriate dissipation model, we begin with a simple one-dimensional scalar advection

equation
∂u
∂t

+
∂u
∂x

= 0. (10)
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Two simple one-dimensional schemes are reviewed. The first scheme is a scheme of forward difference in time and
central difference in space (Fig. 4a)

un+1
j = un

j +0.5r(un
j+1−un

j−1) = ua,

where r = ∆t/∆x. It is well known that such a scheme is unconditional unstable. However, if un
j is replaced by an

average of u at the adjacent points, the scheme becomes the Lax-Friedrichs scheme (Fig. 4b),

un+1
j = 0.5(un

j+1 +un
j−1)+0.5r(un

j+1−un
j−1) = ub,

which is stable for r ≤ 1. Here, we have learned that when replacing u j by an average of u at the adjacent nodes, a
certain amount of dissipation is added to the scheme, turning the scheme from unstable to a stable one. Furthermore,
in order to control the dissipation, Huynh [1] (ref. Eq. 3.11 therein) blends the two schemes by a weighted average:

un+1
j = βua +(1−β)ub,

where 0 ≤ β < 1. This idea will be extended and applied to the multidimensional schemes below.

3.3 Multidimensional artificial dissipation model
It is straightforward to construct an omnidirectional dissipation model. For example, replacing Un in Eq.(3) by a

weighted average of Un at its neighboring cell centers D, E, and F as in Fig. 1a:

Un = α1Un
D +α2Un

E +α3Un
F

will produce dissipation, where α1 > 0, α2 > 0, α3 > 0, and α1 + α2 + α3 = 1. However, in order to control the
amount of dissipation, a multidimensional dissipation model is proposed based on the above one-dimensional model.
The process is fully embedded in the numerical procedure at no additional cost in operation.

As shown in Fig. 5a, let ∆ABC be the current cell, M,N,P be respectively the mid-points of its edges AB,BC, and
CA (i.e., cell surface centers). The triangle ∆MNP is also centered at O. The R states at these mid-points at time level
n are extrapolated from their respective neighboring cell centers D,E,F :

Un
M = Un

D +(Un
x)D∆x+(Un

y)D∆y,

Un
N = Un

E +(Un
x)E∆x+(Un

y)E∆y,

Un
P = Un

F +(Un
x)F ∆x+(Un

y)F ∆y.

They are an intermediate step of Eq. (4) and cost no extra CPU time in computation. The average of these pointwise
values

Ũ = (Un
M +Un

N +Un
P)/3

is an approximation of UO with spatial smearing. Then, Un in (3) is replaced by a weighted average of Un and Ũ, i.e.,
Eq. (3) becomes

Un+1 = βŨ+(1−β)Un− ∆t
∆s

3

∑
k=1

[Fn+1/2
k (nx)k +Gn+1/2

k (ny)k]∆lk, (11)

Here β, 0≤β < 1, is the weighing factor. By this weighted averaging process, some numerical dissipation is introduced
to the scheme. Selection of the β values depends on the grid geometry and the flow. For most cases, the flow is
insensitive to the value of β and β = 10−4 −10−3 is appropriate for suppressing the pathological behavior. For flows
with extremely high Mach number, β may need to be increased to 0.1−0.2 or higher. Generally, setting β to 10−3 is a
good compromise. With the dissipation model added to the basic scheme, it is referred to the enhanced time-accurate
upwind (ETAU) scheme.

The ETAU scheme (11) falls within the class of second order accurate upwind schemes analyzed by Huynh [1]
where Fourier analysis is conducted for weighted schemes on triangulated structured meshes. Further discussion on
the accuracy of upwind finite volume schemes using arbitrary unstructured polyhedral grids for three-dimensional
flows can be found in Delanaye and Liu [17].

Equation (11) can be consistently extended to a three-dimensional scheme with tetrahedral grids as shown in
Fig. 5b. In the following, the cure of pathological behaviors is demonstrated in various examples.
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Figure 6. Cure of expansion shock for a supersonic flow diffraction problem. (1) Godunov scheme with no cure (β = 0), the expansion shock is
clearly shown; (2) Godunov scheme with cure (ETAU, β = 0.001), the expansion shock disappears; (3) high-resolution with minmod limiter; (4)
high resolution with van Albada limiter.

4 Examples for Curing the Pathological Behaviors
In this section, we demonstrate how several well-known pathological behaviors are overcome with the present

dissipation model. The general performance of the ETAU scheme will be illustrated in the next section.

4.1 The expansion shock
Consider the problem of a strong shock diffracting over a 900 edge [12]. Here, the shock Mach number is

Ms = 5.09. There are about 14,400 triangular cells in the domain. In order that the expansion could occur, a horizontal
grid line is imposed by extending the top solid wall surface line into the domain. Initially, the flow is set to the quiescent
ambient condition:

(ρ0,u0,v0, p0) = (1,0,0,1/γ), γ = 1.4,

and Ms = 5.09 conditions are imposed at the inlet:

(ρi,ui,vi, pi) = (5.0294,4.0779,0,21.4710).

At the top, bottom, and along the surfaces of the rectangular block, the slip wall condition is imposed. A simple
extrapolation condition is applied to the outlet boundary. Figure 6 shows the density contours with or without the cure.
With β changing slightly from 0 to 0.001, the expansion shock disappears.

4.2 The kinked Mach stem
Another example of the pathological behaviors is the kinked Mach stem over a ramp of 30o [12]. The grid, though

unstructured, is carefully designed with grid lines parallel to the ramp surface or to the y-axis to ensure occurrence of
a kinked Mach stem. There are 36,240 triangular cells in the grid. Initially, the flow is set at the quiescent ambient
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Figure 7. Supersonic flow over a ramp with recovery of the correct Mach stem: (1) Godunov scheme with no cure (β = 0), noise at the top
wall and the kinked Mach stem are clearly shown; (2) Godunov scheme with cure (β = 0.001), the noise disappears and a correct Mach stem is
recovered; (3) high-resolution with minmod limiter (β = 0.001); (4) high resolution with van Albada limiter (β = 0.001).

condition:
(ρ0,u0,v0, p0) = (1,0,0,1/γ),

and Ms = 5.5 conditions are imposed at the inlet:

(ρi,ui,vi, pi) = (5.1489,4.4318,0,25.0893).

Boundary conditions at the top, bottom, and the ramp surface are the slip-wall conditions. Simple extrapolation is
imposed at the outlet boundary. Figure 7 demonstrates how a correct Mach stem is recovered by setting β = 10−3.

4.3 The carbuncle phenomenon
The carbuncle phenomenon occurs with most upwind schemes when computing supersonic flow past a blunt body

with a bow shock. In this example, the blunt body is a half sphere (circle) with a slip-wall boundary condition. Simple
extrapolation is applied to the outflow boundaries. There are about 80,000 triangular cells in the computational domain
and the grid lines are somewhat aligned with the bow shock to trigger the carbuncle phenomenon.

As shown in Fig. 8, for a Godunov scheme (Plot a), the basic scheme (β = 0) with van Albada limiter (Plot c)
or with a minmod limiter (Plot e), the carbuncle phenomenon still exists, even though an entropy correction has been
imposed in the Roe approximate Riemann solver. However, the carbuncle phenomenon disappears when β = 0.01 is
applied. Due the high Mach number, M = 10, the spatial gradients after limiting are further reduced by a factor of 0.1
or 0.2 in order to maintain numerical stability.

4.4 The slowly moving shock
Here the one-dimensional problem is computed in a two-dimensional domain. A grid consisting of 800 uniform

triangular cells is used, spanning between 0 ≤ x ≤ 32. Initially, a strong shock is located at x = 15 with the left states
(ρl ,ul , pl) = (3.86,0.81,10.34) and the right states (ρr,ur, pr) = (1,3.44,1). These states are also imposed as the
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Figure 8. Supersonic M = 10 flow past a circular blunt body, showing carbuncle phenomena and their cure; (a) Godunov (1st order) scheme,
β = 0, (b) Godunov scheme with β = 0.01 imposed; (c) upwind scheme with van Albada limiter, β = 0; (d) with β = 0.01 imposed; (e) upwind
scheme with minmod limiter; (f) with β = 0.01 imposed.

Figure 9. Suppression of spurious oscillation in one-dimensional slowly moving shock at t = 20 (10,000 steps); left: comparison for β = 0 and
β = 0.3; right: comparison for β = 0.3 and β = 0.5, shows growing numerical dissipation with increased β.

inflow and outflow boundary conditions. At the top and bottom of the domain, the usual reflective slip wall conditions
are imposed. With ∆t = 0.002, after running 10,000 steps, the slow shock only moves from x = 15 to x = 17, as shown
in Fig. 9. Figure 9 also shows that by increasing β from 0 to 0.3 and 0.5, the spurious oscillation is suppressed or
eliminated.
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Figure 10. One-dimensional Sod shock tube problem; (a) and (b): comparison of exact and numerical solutions of density; (a) at t = 2.0; (b) at
t = 3.2, (b) shows how a shock, and a rarefaction (on the left hand side) are absorbed at the boundaries. The jumps at the two endpoints indicate the
locations of the absorbing layers.

5 Numerical Examples
The present ETAU finite volume scheme is based on an unstructured grid topology and hence is flexible for com-

plex geometries. With the dissipation model added to the basic scheme, as described in the previous section, the ETAU
scheme covers a broad spectrum of flow from hypersonic to low subsonic, including aeroacoustic computations. Hence
it is a time-accurate scheme of “all speed.” The robustness of the scheme is demonstrated in several numerical exam-
ples below. The results are compared to either exact solutions, experimental data, or results from another numerical
scheme.

5.1 One-dimensional Riemann problem
As a one-dimensional example, the Sod shock tube problem [25] is considered. This example also demonstrates

how a shock and a rarefaction wave exit the one-dimensional domain without spurious reflection. For x ∈ [0,8],
initially, the two flow states are separated at x = 3:

(ρ,u, p) =

{

(1,0,1), if x ≤ 3;
(.125,0,0.1) if x > 3 .

The physical boundary conditions/NRBCs at the left and right ghost cell centers, x =−0.01 and x = 8.01, are constant
and respectively set at

VL = (1,0,1)T , and VR = (0.125,0,0.1)T .

There are 400 uniform cells in [0,8]. The ETAU scheme is employed with time step size ∆t = 0.004. Figure 10a and b
show respectively comparisons of computed and exact results before ( at t = 2.0) and after ( at t = 3.2) the rarefaction
and the shock exit the boundary point x = 0 and x = 8. The shock and the rarefaction are all well captured. A van
Albada limiter with α = 2 and β = 0 are employed. The effectiveness of the NRBCs is also demonstrated. The jumps
near the two end points represent the absorbing layers, which are typical for the absorbing NRBC.

5.2 Shock reflection and multiple shock-vortex interactions
Consider Yee’s problem in a rectangular domain with 0 ≤ x ≤ 400, and 0 ≤ y ≤ 100 as shown in Fig. 11. A

uniform triangulated grid of 40,000 cells is employed. A supersonic flow with a Mach number of 2.9 is given as the
inflow boundary condition

u0 = 2.9, v0 = 0, p0 = 1/1.4, ρ0 = 1.
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Figure 11. Shock reflection problem; left: density contours, right: comparison to the exact solution along the centerline.

The boundary condition at the top is an inclined flow:

utop = 2.6193, vtop = −0.50632, ptop = 1.5282, ρtop = 1.7000.

The outflow boundary condition is the extrapolation NRBC and the bottom is a solid reflecting wall. Then, a steady
oblique shock is formed with 29o inclination and reflected at the bottom wall. Figure 11 demonstrates the density
contours and a comparison of the computed density and the exact solution along the centerline. Here a van Albada
limiter with α = 2 and β = 0 (no dissipation model) are employed.

This steady flow is then used as the initial background mean flow for a further computation of vortex-shock inter-
action [26]. Such computation requires the scheme to handle both acoustic waves and strong shocks simultaneously.
At t = 0, a strong Lamb vortex is placed at (22,60) (Fig. 12). With ∆t = 0.05 and α = 0.5 in the van Albada lim-
iter, 2640 time steps were computed. Figure 12 illustrates the multiple shock-vortex interactions at various times,
and shows that the nonlinear acoustic waves are generated, and how they pass through the shocks and convect down-
stream. Although there is no exact solution or experimental data, the side-by-side comparison in Fig. 12 shows that
the numerical results by the present ETAU scheme and by the CE/SE scheme [3] are practically identical.

5.3 Propagation of linear acoustic pulse and vortex/entropy waves
Despite the capability of the present ETAU scheme in capturing discontinuities in flows of supersonic or hyper-

sonic speed without suffering from the pathological behaviors, it is interesting to check its performance for flows at
low Mach number with delicate acoustic waves. Here is an example illustrating the propagation of three basic types
of weak, linear waves in a two-dimensional domain [26, 27]: linear acoustic pulse, vorticity and entropy waves. The
computational domain in the x-y plane is a square with −100 ≤ x ≤ 100, and −100 ≤ y ≤ 100. A uniform grid with
40,000 uniform triangulated cells is used. Initially, a gaussian acoustic pulse is located at the center of the domain
(0,0) and a weaker entropy/vorticity disturbance is located off the center at (67,0):

p =
1
γ

+δe−α1(x2+y2), ρ = 1+δe−α1(x2+y2) +0.1δe−α2[(x−67)2+y2],

u = M +0.04δye−α2[(x−67)2+y2], v = −0.04δ(x−67)e−α2[(x−67)2+y2],

where γ = 1.4, α1 = ln2/9, and α2 = ln2/25. With a small amplitude factor, δ = 0.001, the Euler equations are
practically linearized. At all four boundaries, flow variables are the given M = 0.5 mean flow conditions:

p =
1
γ
,ρ = 1,u = M = 0.5,v = 0.
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Figure 12. Vortex-shock interaction. isobars at different time steps, showing how non-linear acoustic waves are generated; top: by the current
ETAU scheme (β = 0); bottom: by the CE/SE scheme [3], showing a side-by-side comparison.
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Figure 13. Propagation of linear waves; left: instantaneous density contours at time t = 63, right: comparison between exact and numerical
solutions along the centerline y = 0 at t = 63. When the entropy wave is exiting, notice that no spurious reflection is observed.

Figure 14. Aeolian noise problem for a single cylinder; snapshot of isobars left: and isomachs right: at time step 250,000.

These boundary conditions also play the role as an absorbing NRBC. Figure 13 shows the density contours at time
t = 63, and its comparison to the exact solution along the x axis at t = 63. It is observed that the numerical solution
agrees well with the exact solution and that no reflection is seen along the x axis. For this short term running, β = 0 is
chosen.

5.4 Aeolian noise of flow past single and twin cylinders
This example is an aeroacoustics computation which demonstrates the time-accuracy of the scheme at low Mach

number and for viscous flows. Aeolian noise is the noise generated by flow past a circular cylinder (or cylinders).
First, consider a single circular cylinder with a diameter D = 1.9cm subject to a flow with a free stream Mach number,
M = 0.2 [28]. The diameter, D, is used as the length scale. For convenience, the free stream speed of sound and density
are used as scales for nondimensionalization. The Strouhal number (nondimensional frequency) is here conveniently
defined based on D and the free stream speed of sound. The computational domain contains about 91,000 triangular
cells, spanning between −2.5 ≤ x ≤ 10, and −5 ≤ y ≤ 5. With a van Albada limiter (α = 0.5) and β = 0.0001, 80,000
time steps were computed to ensure the initial start-up transients have exited the domain. During the next 170,000
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Figure 15. PSD at a field point (−1,2) with different βs; left: β = 0.0001; right: β = 0.3; showing that β has no influence on the PSD and
Strouhal No. at the peak (PSD=−4.36, St.=0.037). Due to the larger β, the PSD curve on the right decays faster with increasing Strouhal No.

Table 1. Comparison of experimental and computed aeolian noise frequencies

Mach No. Reynolds No. No. of cylinders Exp. Freq. Comput. Freq.

(Strouhal No.) (Strouhal No.)

0.2 90,000 single 0.0369 0.037

0.0714 15,800 twin 0.0146 0.015

time steps the pressure history at an observation point (−1,2) in the field are recorded. The point is located outside the
vortex sheets to ensure that only acoustic wave fluctuations are recorded. Figure 14 shows the instantaneous isobars
and Mach number contours at this final time step. Vortex sheets downstream of the cylinder are clearly observed.
Then, fast Fourier transform (FFT) analysis is applied to the pressure history. The results are presented as a PSD
(power spectral density) plot in Fig. 15. There are 17,000 sampling points (recorded every 10 time steps) in the
pressure history file, which is just enough to cover 214 = 16,384 points for FFT. In Fig. 15, the single peak of PSD
corresponds to a Strouhal number, St = 0.037, which compares very well with the experimental data [28] (Table 1).
Figure 15 also shows that the value of β has little influence on the Strouhal numbers at the curve peaks. However, the
larger value of β, e.g., 0.3, represents larger dissipation, the corresponding PSD curve is smoother and decays faster
for St ≥ 0.2.

Similar computations are conducted for the aeolian noise problem with twin cylinders. The diameter of the
cylinders is D = 0.955cm and the cylinders are placed vertically 3D apart (Fig. 16) and subjected to a freestream with
a Mach number, M = 0.0714 [29]. The computational domain is about the same size as the single cylinder case, with
a small buffer zone at the downstream outflow boundary. There are about 100,000 triangular cells in the domain. At
a designated point (-1,2), the pressure history is recorded after 80,000 steps at every 20 steps for 660,000 additional
time steps. There are 33,000 sample points in the pressure history file which slightly exceeds 215 = 32,768 for FFT.
Table 1 demonstrates that for either single or twin cylinder, the computed frequencies (Strouhal numbers) agree well
with the experimental data [28, 29]. Thus the present ETAU scheme is appropriate for viscous flow at very low Mach
number. Figure 16 shows the instantaneous isobars, isomachs at time step 740,000 and the interaction between the
two vortex streets from the twin cylinders.
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Figure 16. Snapshots of isobars left: and isomachs right: at time step 740,000 for the twin cylinder aeolian noise problem at free stream
M = 0.0714, β = 0.001, showing vortex streets as well as the grid, the buffer zone is not shown.

6 Concluding Remarks
As a result of striking a balance between accuracy, efficiency, and affordable computer resources (CPU time

and memory), an enhanced time accurate upwind (ETAU) finite volume method for unsteady Euler/Navier-Stokes
equations is presented. The ETAU scheme is nominally second order accurate in space and time. The scheme adopts
concepts from high order upwind schemes, such as the Cauchy-Kowalewski time stepping, accurate evaluation of
surface fluxes, multidimensional limiter, etc. The Roe approximate Riemann solver is employed for its accuracy and
efficiency. Also, employment of the unstructured grid enables flexibility in geometry. A built-in dissipation model in
the ETAU scheme helps to overcome the usual pathological behaviors of the upwind schemes. The parameter β in the
model is associated with the amount of artificial dissipation imposed. The computed flows are generally insensitive to
the β values. Usually, β = 10−4 −10−3 is appropriate for most of the flows. Only when computing flows of different
regimes (e.g. supersonic flow with high Mach number) does β need to be increased.

With the dissipation model, the ETAU scheme is robust and viable for practical computations. It is a scheme of
almost “all speed,” from Mach number 10 to the level as low as 10−2. It is time-accurate and works well with viscous
or inviscid flows that are associated with either strong shocks or with delicate acoustic waves. The multidimensional
limiter in the scheme also helps to establish a simple nonreflecting boundary condition.
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