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ABSTRACT 
 
 In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during 
atomic oxygen exposure through oxidation and erosion.  There can be terrestrial benefits of such 
interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due 
to chemical modification and texturing.  Such modification of the surface may be useful for 
biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity 
of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and 
spreading of cells on textured Petri dishes.  The purpose of this study was to determine the effect 
of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine 
whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, 
the contact angles between the polymer and a water droplet placed on the polymer’s surface were 
measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. 
Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-
fluorinated polymers. Significant decreases in the water contact angle occurred with atomic 
oxygen exposure.  Fluorinated polymers were found to be less sensitive to changes in 
hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers 
became more hydrophobic.  The majority of change in water contact angle of the non-fluorinated 
polymers was found to occur with very low fluence exposures, indicating potential cell culturing 
benefit with short treatment time.  
  
INTRODUCTION 
 
 In low Earth orbit (LEO), chemical and mechanical properties of spacecraft materials can 
change significantly from exposure to various space environmental effects, such as ultraviolet 
radiation, ionizing radiation, thermal cycling and atomic oxygen.  The naturally occurring form 
of oxygen in Earth’s atmosphere is diatomic, but in LEO, diatomic oxygen is photodissociated 
by short wavelength ultraviolet radiation from the Sun and becomes monatomic.  When the 
resulting monatomic particle collides with materials with gaseous oxidation products, the 
resulting gas dissipates, and the surface of the material is eroded away.  Polymers used on the 
exterior of spacecraft are chosen for certain favorable attributes, such as high flexibility, low 
density, electrical and optical properties (such as a low solar absorptance to thermal emittance 
ratio (αs/ε)).  For most polymers, the oxidation products are gaseous species, and therefore 
polymers are textured and eroded away in the LEO space environment due to atomic oxygen 
exposure.   
 There can be terrestrial benefits of such atomic oxygen interaction.  For example, the 
modification of hydrophobic or hydrophilic properties of polymers through chemical 
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modification and texturing may be useful for biomedical applications. For certain biomedical 
applications cellular attachment to polymer surfaces is desired.  By altering the surfaces of 
polymers, increased cell attachment can be achieved for cell culturing applications [1].  Atomic 
oxygen texturing may increase the hydrophilicity of plastic containers thus allowing increased 
adhesion and spreading of cells on textured Petri dishes.  NASA Glenn Research Center and the 
Cleveland Clinic Foundation have studied increased adhesion and spreading of osteosarcoma 
cells on atomic oxygen textured Aclar [2,3] .    
 Previous studies have been conducted at NASA Glenn Research Center investigating 
texturing of polymer surfaces, using techniques such as ion beam and atomic oxygen texturing 
and grit-blasting, for various industrial, art restoration and biomedical applications. Various 
materials’ properties have been investigated as a function of texturing duration.  For example, the 
effect of atomic oxygen exposure on the coefficient of static friction and morphology of polymer 
surfaces has been investigated; specifically to determine a decrease as a function of fluence [1].  
Studies were also conducted using abrasive grit blasting for examining RMS roughness growth 
of glass microscope slides, 300 series stainless steel, and polymethylmethacrylate [2].  Also, the 
effect of atomic oxygen exposure on the hydrophilicity of polyimide Kapton, polystyrene, and 
natural rubber at an atomic oxygen fluence of 1020 atoms/cm2 has been investigated [1].   
 The purpose of this study was to determine the effect of atomic oxygen exposure as a 
function of fluence on the hydrophilicity of nine chemically different polymers.  The polymers 
were exposed to nine different atomic oxygen fluences, or exposure levels.  To determine 
whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, 
the contact angle between the polymer and a water droplet placed on the polymer’s surface were 
measured in relation to fluence.  The greater the contact angle the more hydrophobic the 
substance.  Details on the polymers tested, the experimental procedures, and the water contact 
angle versus fluence data are provided.  
 
MATERIALS AND EXPERIMENTAL PROCEDURES 
 
Polymers 
 
 Nine different thin film polymers, of varying chemistries, were tested.  These polymers 
along with their chemical abbreviations and film thicknesses are provided in Table 1.  These 
polymers were chosen because they are commonly used for polymer characteristics testing.  In 
addition, some are used for storing liquids, such as PMMA (beverage containers) and 
Polystyrene (Petri-dishes).  Both fluorinated and non-fluorinated polymers were evaluated. 
 

Table 1.  Polymers Tested for Atomic Oxygen Altered Hydrophilicity. 

Abbreviation Polymer Name Trade Name Thickness 
PE Polyethylene Alathon; Lupolen 2 mil 

PET Polyethylene terephthalate Mylar A 2 mil 
POM Polyoxymethylene Delrin; Celcon 4 mil 
PS Polystyrene Lustrex; Polystyrol 2 mil 
PP Polypropylene Profax; Propathene 20 mil 

PMMA Polymethylmethacrylate Plexiglas; Lucite 2 mil 
FEP Fluorinated ethylene propylene Teflon FEP 2 mil 

PTFE Polytetrafluoroethylene Fluon; Teflon 2 mil 
PCTFE Polychlorotrifluoroethylene Neoflon CTFE M-300 5 mil 
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Atomic Oxygen Exposure 
 

Polymer samples were treated with atomic oxygen using a 100-watt, 13.56 MHz RF 
plasma asher operated on air.  The plasma was adjusted by sight to the brightest level in order to 
decrease the amount of time a sample would be exposed to reach the desired fluence level. For 
this experiment the effective atomic oxygen fluence (F) was found by determining the mass loss 
of a Kapton H witness coupon.  The vacuum desiccated witness coupons were weighed before 
and after ashing using a Mettler Balance Model 3M. 

The equation used for finding the LEO effective fluence is provided in equation 1.  
Polyimide Kapton H is used as the specified witness coupon because the erosion yield (Ey) is 
well characterized in the LEO space environment (3.0×10–24 cm3/atom) [4].  Erosion yield is a 
measurement of the volume of the material that will erode for each atom of atomic oxygen that 
impacts the surface.  Effective fluence is defined as the total number of particles (in this 
experiment, oxygen atoms) that interact with the sample per area (cm2).  The atomic oxygen flux 
(f ), used to determine the necessary exposure time for a desired fluence, is the number of oxygen 
atoms to which the material was exposed (per cm2) per second (F = f × t). 
 

yAE
MF

ρ
Δ

=       (1)   

F = Fluence (atoms/cm2) 
ΔΜ = Change in mass (g) 
ρ = Density of Kapton (1.42 g/cm3) 
A = Surface area (cm2) 
Ey = erosion yield of Kapton H (3.0×10–24cm3/atom) 
 

 Pristine samples were compared with samples that had been exposed to atomic oxygen at 
various fluence levels.  Minimum and maximum fluences for the ashing trials were set based on 
the effective AO erosion of the witness coupon in the asher.  The time intervals for ashing were 
determined by finding the logarithmic values of the minimum and maximum fluences.  The 
difference of these two values was divided by the desired number of intervals (8). The initial 
desired fluence was then multiplied by this result (2.371374), as was each subsequent desired 
fluence. The flux in the asher was determined to be approximately 3.0×1015 cm3/atom sec.  The 
desired fluences and thus the planned exposure times are provided in Table 2.   
 

Table 2.  Atomic Oxygen Fluence, Flux and Exposures Durations. 
Fluence 

(atoms/cm2) 
Flux 

(atoms/cm2sec) 
Time in Asher 

(hours) 
1.00E+18 3.00E+15 0.1 
2.37E+18 3.00E+15 0.2 
5.62E+18 3.00E+15 0.5 
1.33E+19 3.00E+15 1.2 
3.16E+19 3.00E+15 2.9 
7.50E+19 3.00E+15 6.9 
1.78E+20 3.00E+15 16.5 
4.22E+20 3.00E+15 39 
1.00E+21 3.00E+15 92.6 
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Water Contact Angle Procedures 
 

The water contact angle for each sample was measured using a Contact Angle Measuring 
System Model G1, manufactured by Kernco Instruments.  Droplets of deionized water were 
placed upon each sample using a 20 μl micropipette and the tangent was found using adjustable 
crosshairs.  For each exposed polymer three measurements were obtained at three different 
locations of the polymer.  The water contact angle for each exposure was based on an average of 
the three values.   
 
RESULTS AND DISCUSSION 
 
 The average water contact angles and standard deviations for each polymer at each 
exposure level are provided in Table 3 along with the pristine sample data (fluence = 0 
atoms/cm2).  The water contact angle versus fluence is graphed for each of the polymers and is 
provided in Figures 1 through 9.  Testing at a fluence level of 1.0×1021 atoms/cm2 was not 
conducted as planned because the majority of polymers were too severely eroded at this fluence 
level.  For comparison purposes, the non-fluorinated polymers have been plotted together in 
Figure 10 and the fluorinated polymers have been plotted together in Figure 11. 
 It was determined that after even the shortest atomic oxygen exposure, non-fluorinated 
polymer samples became more hydrophilic than their pristine counterparts.  This may be due to 
either surface texture changes or oxidation functionality surface changes.  Despite long-term 
exposure (fluence of 5.16×1020 atoms/cm2), the water contact angles remained relatively 
unchanged after initial exposure (seen in Figure 10).  This implies that increasing the atomic 
oxygen fluence did not affect the hydrophilicity of the polymers. Rather, polymers were affected 
similarly by a very short exposure (<1×1019 atoms/cm2).  This implies that oxidation 
functionality is more likely the contributor to increased hydrophilicity rather than texture, as 
texture would continue to develop with fluence. 
 The water contact angles of fluorinated polymers did not exhibit the same trend as the 
non-fluorinated polymers.  For example, PCTFE and PTFE became slightly more hydrophobic 
after atomic oxygen exposure (as seen in Figures 1 and 6, respectively).  Although Teflon FEP 
did become more hydrophilic, its water contact angles did not decrease as much as those of the 
non-fluorinated polymers, as shown in Figure 10.  Therefore, two trends occurred based on the 
fluorination of the polymer.  In the first trend, non-fluorinated polymers saw a decrease in water 
contact angle and a significant increase in hydrophilicity with atomic oxygen plasma exposure.  
In the second, fluorinated polymers had either a small increase in hydrophilicity or became more 
hydrophobic with atomic oxygen plasma exposure.   
 As mentioned, the majority of change in water contact angle of the non-fluorinated 
polymers was found to occur with very low fluence exposures.  This indicates potential cell 
culturing benefit with very short treatment time. 
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Table 3. Average Water Contact Angles. 

Polymer 
Fluence 

(atoms/cm2) 
Average 

Contact Angle
Std 
Dev Polymer

Fluence 
(atoms/cm2)

Average 
Contact Angle

Std 
Dev 

0 94.1 1.5 0 81.5 0.9 
2.07E+18 37.9 1.0 8.16E+18 55.3 0.1 
2.83E+18 31.4 0.1 1.64E+19 43.1 0.1 
8.16E+18 30.7 0.3 1.79E+19 54.8 0.7 
1.79E+19 32.4 0.8 4.85E+19 43.1 0.1 
2.22E+19 23.9 0.1 6.20E+19 35.3 0.3 
4.85E+19 32.2 0.2 9.57E+19 47.2 0.9 
6.20E+19 23.1 0.2 1.00E+20 40.2 0.2 
1.00E+20 28.1 0.2 1.37E+20 25.8 0.4 

PE 

5.16E+20 27.3 0.1 

PP 

5.16E+20 0 0.0 
0 67.5 2.4 0 75.3 1.5 

2.07E+18 18.8 0.6 2.07E+18 45.7 0.6 
8.16E+18 16.7 0.1 1.79E+19 35.8 0.3 
1.79E+19 16.8 0.2 2.22E+19 20.4 0.3 
2.22E+19 3.52 0.7 5.35E+19 35.2 0.2 
4.85E+19 8.52 4.4 6.20E+19 12.5 0.2 
5.02E+19 16.1 0.1 7.26E+19 12.3 0.3 
6.20E+19 9.82 0.2 8.16E+19 38.5 1.2 
7.26E+19 8.33 0.1 9.57E+19 46.4 0.5 
9.57E+19 17.6 0.5 1.00E+20 39.7 0.2 

PET 

5.16E+20 16.5 0.2 

PMMA 

5.16E+20 0 0.0 
0 68.3 0.8 0 95.7 1.6 

2.83E+18 48 0.1 8.16E+18 76.1 0.6 
8.16E+18 39.6 0.4 1.79E+19 83.1 0.4 
1.79E+19 26 0.4 2.22E+19 90.4 0.9 
2.22E+19 30.7 8.7 4.85E+19 83.8 0.1 
4.85E+19 35.6 0.1 6.20E+19 75.2 0.3 
6.20E+19 28 0.1 9.57E+19 80.6 0.8 
1.00E+20 35.6 0.2 1.00E+20 82.2 0.2 
1.37E+20 35 0.2 1.37E+20 65.4 0.3 

POM 

5.16E+20 45.7 0.1 

FEP 

5.16E+20 75.1 0.1 
0 72.5 1.9 0 72 1.0 

2.07E+18 11 0.5 8.16E+18 81.1 0.4 
2.83E+18 10.9 0.1 1.40E+19 81.9 0.1 
7.17E+18 6.65 0.1 2.22E+19 81.2 0.8 
1.79E+19 5 0.4 5.02E+19 78.6 0.3 
2.22E+19 11 0.9 5.35E+19 80.6 0.4 
4.85E+19 9.68 0.0 6.20E+19 81.6 0.6 
6.20E+19 5.37 0.2 9.57E+19 76.3 0.8 
1.00E+20 4.18 0.2 1.37E+20 81.4 0.0 

PS 

5.16E+20 8.03 0.2 

PTFE 

5.16E+20 82.4 0.2 
   0 34.3 2.9 
   8.16E+18 74.6 0.6 
   1.79E+19 68 0.9 
   2.22E+19 56.6 0.4 
   4.85E+19 54.7 0.3 
   6.20E+19 42.7 0.2 
   9.57E+19 65.3 0.8 
   1.00E+20 51.2 0.1 

 

   

PCTFE 

5.16E+20 82.4 0.1 
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y = -1.1518Ln(x) + 81.051
R2 = 0.9712
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Fig. 1. Water contact angle versus atomic oxygen fluence of PE 
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R2 = 0.9171
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Fig. 2. Water contact angle versus atomic oxygen fluence of PET 
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y = -0.5688Ln(x) + 61.673
R2 = 0.6815
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Fig. 3. Water contact angles versus atomic oxygen fluence of POM 
 

y = -1.146Ln(x) + 59.134
R2 = 0.9861
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Fig. 4.  Water contact angles versus atomic oxygen fluence for PS 
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y = -0.8052Ln(x) + 74.66
R2 = 0.4756
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Fig. 5. Water contact angle versus atomic oxygen fluence of PP 
 

y = -0.852Ln(x) + 67.122
R2 = 0.4969
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Fig. 6. Water contact angles versus atomic oxygen fluence of PMMA 
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y = -0.299Ln(x) + 92.647
R2 = 0.4024
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Fig. 7. Water contact angle versus atomic oxygen fluence for FEP 
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Fig. 8. Water contact angles versus atomic oxygen fluence of PTFE 
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y = 0.4882Ln(x) + 39.779
R2 = 0.3689
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Fig. 9. Water contact angle versus atomic oxygen fluence of PCTFE 
 
 
 

SUMMARY & CONCLUSIONS 
 
 The purpose of this study was to determine the effect of atomic oxygen exposure, 
measured as a function of effective Kapton fluence, on the hydrophilicity of nine different 
polymers.  Modification of hydrophobic or hydrophilic properties of polymers due to chemical 
modification and texturing through atomic oxygen exposure can be useful for biomedical 
applications.  The polymers were exposed to atomic oxygen in a RF plasma asher operated in air.  
Samples were exposed to nine fluences ranging from 2.07×1018 to 5.16×1020 atoms/cm2. Atomic 
oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated 
polymers. Significant decreases in the water contact angle occurred rapidly with atomic oxygen 
exposure.  Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for 
equivalent fluence exposures, and two of the fluorinated polymers became more hydrophobic.  
The majority of change in water contact angle of the non-fluorinated polymers was found to 
occur with very low fluence exposures, indicating potential cell culturing benefit with very short 
treatment time.  

 



NASA/TM—2007-214925 11

y = -0.8052Ln(x) + 74.66
R2 = 0.4756

y = -1.1518Ln(x) + 81.051
R2 = 0.9712

y = -0.5688Ln(x) + 61.673
R2 = 0.6814

y = -1.146Ln(x) + 59.134
R2 = 0.9861

y = -0.852Ln(x) + 67.122
R2 = 0.4969

y = -0.9558Ln(x) + 56.315
R2 = 0.9171

0

10

20

30

40

50

60

70

80

90

100

0 1E+20 2E+20 3E+20 4E+20 5E+20

Atomic Oxygen Fluence (atoms/cm2)

A
ve

ra
ge

 W
at

er
 C

on
ta

ct
 A

ng
le

 (D
eg

re
es

)
PE

PET

PMMA

PP

POM

PS

Fig. 10. Water contact angles versus atomic oxygen fluence for non-fluorinated polymers 
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Fig. 11. Water contact angles versus atomic oxygen fluence for fluorinated polymers 
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