

Free Molecular Heat Transfer Programs for Setup and
Dynamic Updating the Conductors in Thermal Desktop

Eric T. Malroy: eric.t.malroy@nasa.gov
Johnson Space Center
2101 NASA Road 1
Houston, TX 77058

Abstract

 Thermal Desktop has the capability of modeling free molecular heat transfer
(FMHT), but limitations are observed when working with large models during
transient operation. To overcome this limitation, a MatLab program was developed
that processes the Thermal Desktop free molecular conductors. It sets up the logic
and arrays used to automate the updating of the conductors while SINDA/FLUINT
is running using Fortran subroutines. The theory of the free molecular heating is
presented along with the process required to setup the conductors, arrays and logic
in Thermal Desktop.

 2

Background
 Thermal Desktop [1] has the capability of modeling free molecular heat transfer
(FMHT) by using the RadCad radiation modules. The software underneath Thermal
Desktop that actually solves the equations is SINDA/Fluint [2]. The user specified
surface properties can account for the accommodation coefficient of FMHT and the user
has to supply a constant term to account for the rest of the conductor. Although this
method is possibly useful to model a small number of FMHT conductors, it quickly
becomes laborious and impractical for large transient models where the conductors
change over time. This method of modeling is nonstandard given that the FMHT usually
modeled is external heating [1]. These observations about the capabilities of Thermal
Desktop were drawn while developing a thermal model of the test facility and telescope
for the James Webb Space Telescope Project. Two requirements were identified to enable
a practical FMHT modeling system useful for large FMHT models.
 The first requirement is to have a semi-automated process to setup the FMHT
radiation conductors. Sometimes with large models it is useful to have several radiation
tasks used to setup the FMHT conductors since each task is limited to 10,000 conductors.
The programs developed use arrays to store the inputs, which are limited to 10,000
entries. This can require the user to sort out duplicate conductors based on the submodel
names of the surface nodes. Many radiation tasks prevent the arrays used in the logic
structure from being too long. Also, the user needs to eliminate the small value
conductors that have little impact on the heat transfer. A user will quickly realize that the
number of conductors can quickly escalate to an extreme number when large numbers of
surfaces or subdivisions are used. For example, three flat surfaces which have a 10 by 10
nodal subdivision will result in 30,000 conductors if all conductors are used. A MatLab
model was developed that enables the sorting and elimination of FMHT conductors that
are generated from Thermal Desktop.
 The second need identified to enable a practical system useful for large FMHT
models was to have the conductors updated as the gas pressure, gas temperature, and
surface temperatures change in transient models. A logic structure and the modules to
calculate the FMHT conductors were developed to update the conductor values during
transient operation. This paper describes the FMHT programs developed for modeling
large FMHT systems. Also, the setup and operation of the programs is presented.

Relation of Free Molecular Heating to the Different Modes of
Fluid Heat Transfer
 In modeling fluids, there are three regimes of heat transfer that are typically
taught in engineering heat transfer classes: forced convection, natural convection and
mixed forced and natural convection (see Table 1). Forced convection is the heat transfer
resulting from fluid flowing over a surface. The velocity of the fluid over the surface
results in energy transfer from either the fluid to the surface or vice versa depending on
the difference in temperature of the fluid and surface. In this mode of heat transfer there
are different correlations for both laminar and turbulent flow cases.
 Natural convection is the transfer of energy, where the velocity of the fluid remote
from the surface is essentially zero. The force due to gravity drives the fluid velocity near

 3

the surface due to density differences resulting in heat transfer between the surface and
fluid. Notice that natural convection can only occur when gravity is appreciable.
Microgravity conditions, which are common in space environments away from planet
surfaces, prevent natural convection.

Table 1. Modes of Heat Transfer for Fluids
General
Area

Heat
Transfer
Mode

Relevant
Environment

Description

Forced
Convection

Fluid flows over
surface

Fluid flowing over surface
results in heat transfer

Natural
Convection

Gravity environments
where fluid away
from surface has zero
velocity

Body forces cause fluid
flow near surface resulting
in heat transfer

Mixed Forced &
Natural

Gravity environments
where there is a
flowing fluid with
large temperature
gradients

Both fluid flow and body
forces result in an
accumulated larger flow
resulting in heat transfer

Continuum
(Kn < 0.01)

Conduction Microgravity
conditions

With low gravity and cases
where there is no forced
flow, the fluid does not
move so the heat transfers
through the fluid by
conduction

Mixed Mixed Free
Molecular &
Continuum

Space environments
with low pressure
(0.01 < Kn < 0.30)

Between the continuum
and free molecular mode
where both modes are
active

Free
Molecular

Free Molecular Space environments
with low pressure
(Kn > 0.3)

High temperature surface
imparts energy into fluid
molecules which travel to
other low temperature
surface, thus transferring
energy. Intermolecular
collisions are few while
traversing the distance
between the surfaces.

 Mixed forced and natural convection is the case where both modes of heat
transfer are significant. The Grashof and Reynolds number have a relation that identifies
the mixed regime:

 4

 :1
Re2 <<
Gr forced convection only (1a)

 :1
Re2 ≈
Gr mixed convection (1b)

 :1
Re2 >>
Gr natural convection only (1c)

forceinertial
forcebuoyancyGr

≈2Re
 (1d)

 Conduction heat transfer of fluids is another regime of heat transfer that is often
overlooked in engineering heat transfer classes. This mode of heat transfer often occurs in
microgravity environments. It can also occur in low pressure conditions near the free
molecular regime. The conductor is modeled by treating the gas as a solid surface and the
conductor is calculated appropriately based on the cross sectional area and length
between surfaces, k*A/L.
 Free Molecular heating occurs in very low density gases where the mean free path
of the gas molecules is large compared to the distance between the surfaces. The
Knudsen number is the ratio of the mean free path and the effective length between
surfaces.

eL

Kn λ
≡ (2)

 Kn Knudsen number
 λ mean free path
 eL effective length between surfaces

When the Knudsen number is greater than 0.30 one should use the free molecular
relations to account for heat transfer. It is instructive to follow a gas molecule to see how
energy is transferred between surfaces in free molecular heating. A low energy gas
molecule hits the high temperature surface. The vibration of the molecules on the surface
will impart greater energy into the gas molecule, typically causing it to depart the surface
with a higher velocity. Given that the mean free path is large compared to the distance
between the surfaces, the probability is relatively high that the gas molecule will reach
the other surface without any collisions with other gas molecules. The high energy gas
molecule, if the trajectory is correct, then transfers the energy to the low energy surface
by hitting the surface. The impact causes the vibration of molecules to increase on the
low temperature surface. Energy is therefore transferred from the high temperature

 5

surface to the low temperature surface. Large numbers of molecules will transfer energy
in this fashion resulting in a significant energy transfer.
 When the Knudsen number is less than 0.30 and greater than 0.01, the mode of
heat transfer is mixed containing both free molecular heating and continuum heating –
one of the four types, but most likely conduction or natural convection. The magnitude of
heat transfer is typically greater than the free molecular, but less than the full continuum
heat transfer mode.

Theory of Free Molecular Heat Transfer
 The mean free path tells the mean distance that a molecule will travel in a gas
before a collision with another gas molecule will occur. The relation of the mean free
path to the effective length between surfaces tells if a heat transfer process is in the free
molecular mode. This ratio is the Knudsen number which is shown in equation (2). The
mean free path is calculated by the following relation:

MWg
TR

p c

u

2
πμλ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (3)

 λ mean free path (MFP)
 μ gas viscosity
 p gas pressure
 uR universal gas constant
 T temperature that causes high energy collisions
 (T hot surface)
 cg units conversion
 MW molecular weight

 Table 2 shows when to use the free molecular or continuum equations. Notice that
when the mean free path is about a third of the effective length or greater, that the free
molecular equations should be used. The continuum equations should be used when the
mean free path is significantly small (1/100) compared to the effective length. The mixed
mode is between the two cases and caution should be used in using the free molecular
heating equations since it can give an inflated value for the heat transfer.

 6

Table 2. Determining the Mode of Heat Transfer
Heat Transfer Mode Determining Factor Equations to Use
Continuum Kn < 0.01 Use gas conduction, natural

convection or other
equations

Mixed Continuum & FM 0.01 < Kn < 0.30 Use FM equations with
caution (you will
overestimate the heat
transfer)

Free Molecular Kn > 0.30 Use FM equations

 The basic equation for FMHT between two surfaces is the following [3]:

 ()12112 TTAFFpGQ a −= (4)

 G G factor
 p gas absolute pressure
 aF accommodation coefficient factor
 12F view factor from surface number one to surface
 number two
 1A surface area of surface number one
 1T surface temperature of surface number one
 2T surface temperature of surface number two

The equation is analogous to radiation heat transfer between two surfaces. This is
apparent when the accommodation coefficient factor is examined. Specifically, the
accommodation coefficient factor, Fa, is analogous to the Fe emissivity factor in radiation
so the form of the equation can be taken from radiation handbooks. The radiation
equation is the following:

 ()4
1

4
2112 TTAFFQ e −= σ (5)

 σ Stefan-Boltzmann constant
 eF emissivity factor
 12F view factor
 1A area of surface number one
 2T absolute temperature of surface number two
 1T absolute temperature of surface number one

The equations are similar except for the fourth power term. In radiation the Fe term
depends on the geometry and the emissivity of the surfaces (see table 3).

 7

Table 3. Different Geometries and the Resulting Fe Equation for Radiation
Type of radiation
exchange

eF
1 Equation Comments

Two Surfaces that Form
an Enclosure

22

2121

1

112)1(
1

)1(
A

FAF
⋅
−⋅⋅

++
−⋅

ε
ε

ε
ε More general case

Large (Infinite) Parallel
Planes 111

21

−+
εε

F12 = 1
A1 = A2

Long (Infinite)
Concentric Cylinders ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

−
+

2

1

2

2

1

11
r
r

ε
ε

ε

F12 = 1

2

1

2

1

r
r

A
A

=

Concentric Spheres 2

2

1

2

2

1

11
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
+

r
r

ε
ε

ε

F12 = 1
2

2

1

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r
r

A
A

If we use the equation in Table 3 with two surfaces enclosing one another with a view
factor of one, then the equation results in the following:

 ⎥
⎦

⎤
⎢
⎣

⎡
−⋅+= 1111

22

1

1 εε A
A

Fe

 (6)

 eF emissivity factor
 1ε emissivity of surface number one
 2ε emissivity of surface number two
 1A area of surface number one
 2A area of surface number two

The accommodation coefficient factor is analogous to the emissivity factor. The form of
the emissivity factor equation chosen will depend on the geometry. For equation (6) the
accommodation coefficient factor equation is the following:

 ⎥
⎦

⎤
⎢
⎣

⎡
−⋅+= 1111

22

1

1 aA
A

aFa

 (7)

 aF accommodation coefficient factor
 1a accommodation coefficient based on surface number one
 temperature (analogous to emissivity)
 2a accommodation coefficient based on surface number two
 temperature (analogous to emissivity)

 8

 1A area of surface number one
 2A area of surface number two

The accommodation coefficient, a, is analogous to emissivity. It represents the ratio of
the actual energy transfer and is a function of the surface temperature. A curve fit of the
equation for helium for the temperature ranging from 20 to 300 K is the following [4]:

262249.030168.1 −⋅= ii Ta (8)

 Ti absolute temperature of surface i
 ai accommodation coefficient for surface i

The last term needed to calculate the FMHT for a surface is the G term which is the
following:

TMW
RgG uc

⋅⋅
⋅

−
+

=
πγ

γ
81

1 (9)

 γ ratio of specific heats (based on hot surface)
 cg units conversion constant
 uR universal gas constant
 MW molecular weight
 T gas absolute temperature (hot surface)

Once all terms of the free molecular equation are calculated, equation (4) can be used to
find the heat transfer. The value of the conductor is the following:

112 AFFpGG acond = (10)

Operation of Thermal Desktop
Thermal Desktop generates the free molecular conductors by using RadCad. A new
radiation analysis group can be generated by selecting the main menu item “Thermal”
and selecting the “Radiation Analysis Groups …” menu (see figure 1).

 9

Figure 1. Radiation Analysis Group Manager Page.

Notice that three analysis groups have been added in Figure 1: FMHT, FMHTbase,
Radiation1. The “BASE” group will be shown when the “Radiation Analysis Group
Manager” window has been opened for the first time. The user will add additional groups
as desired. It should be noted here that the properties cannot be changed here under
the “Radiation Analysis Group Manager”. It is used to add a new group, change
the group name, remove groups, copy groups, purge unused groups and set the
default group. Typically, this is where the user defines the name of the RadCad radiation
groups. The mode of heat transfer for the group can be defined as free molecular heating
under the properties menu in the “Case Set Manager” section.
 Under the “Case Set Manager” menu the user can find the “Radiation Tasks” tab
which brings up the page allowing the user to generate radiation tasks (see figure 2). This
needs to be completed after the name has been added to the “Radiation Analysis Group
Manager” as discussed above. Figure 2 shows that four Radiation tasks have been added:
BASE, FMHT, FMHTbase, and Radiation1. These were added to the tasks by selecting
them individually from the “Analysis Group” pull down menu (see the blue arrow in
Figure 2). Next, the “Add” button is pushed to put them in the analysis group task list
(see the green ellipse around the button in Figure 2). The properties of the analysis group
are set by selecting the analysis group from the list and then pushing the “properties”
button (see the red ellipse in Figure 2). The “Radiation Analysis Data” page pops up
when the button is pushed.

 10

Figure 2. “Radiation Tasks” page can generate a number of radiation tasks.

The “Radiation Analysis Data” page has a number of menu tabs that allows the properties
of the tasks to be set (see Figure 3). The “Control” tab page allows the number of rays
shot from the nodes to be specified which defines the view factor or Bij value. Either the
view factor will be calculated or the Bij value will be calculated based on the method
chosen under the “Radiation Calculation” menu, when this method of calculation is
chosen to generate the conductors. This menu item is under the main “Thermal” menu.
The user can also specify a select number of nodes to shoot additional rays from on the
“Control” tab page. The energy cutoff fraction can also be specified, which will prevent
the low energy conductors from being generated. The help menu on the page will explain
all the options more clearly.

 11

Figure 3. “Radiation Analysis Data” page sets the properties of radiation groups.

The “Radk Output” tab opens a page that can specify the radiation group to be free
molecular (see Figure 4). The red ellipse in Figure 4 shows the “Free molecular Output”
button. This button will bring up the popup window shown in Figure 5. The conductors
can be specified to be linear which is required of free molecular conductors. The free
molecular multiplier can also be specified on this window. It is unnecessary to define this
multiplier when the programs defined in this paper are used. The programs will update
the conductors during operation.

 12

Figure 4. The “Radiation Analysis Data” page also has the tab menu page “Radk
Output” which has the “Free Molecular Conduction Output” button (red ellipse
highlights button).

 13

Figure 5. The “Free Molecular” popup window enables the conductors to be linear.

There are essentially two ways to generate the radiation or free molecular conductors
once the radiation tasks (including free molecular tasks) are defined. The first is to use
the “Radiation Calculation” menu found under the main “Thermal” menu (see Figure 6).

Figure 6. The menu items are found under the “Radiation Calculations” menu. The
red ellipse shows the two options used to generate the area file AREAFIJ.ar and free
molecular conductors file AREAFIJ.DAT for the programs in this paper.

Prior to using these options found in Figure 6, the user should apply the radiation group
to the appropriate surfaces. This is accomplished by first selecting the surface and then
selecting the “Edit” menu under the main “Thermal” menu. Also the “Edit” button can be
selected from the toolbar button that shows a star and a pencil. When this toolbar button
is highlighted the description “Edit Any Thermal Desktop Object” should be highlighted.
The “Thermal Model Data” page should appear once the edit button is pushed. Under the
“Radiation” tab the active surfaces are defined for each radiation or free molecular group.
Figure 7 shows the “Radiation” tab of the “Thermal Model Data” page. Figure 7 shows
both surfaces active for the BASE group. The groups FMHT, FMHTbase and Radiation1
are not applied to the surface of either side.

 14

Figure 7. “Thermal Model Data” page that associates a surface with the radiation
analysis group.

After the radiation groups are applied to the surfaces it is then possible to generate the
output files found in Figure 6. To output the radiation or free molecular group, it must
first be set as the default group under the “Radiation Analysis Group Manager” page
found in Figure 1. The desired radiation or free molecular group needs to be selected and
the “Set Default” needs to be pushed. Once this is complete, the menu items of Figure 6
can be selected to output files.
 The second way to generate the radiation or free molecular conductors is to use
the “Case Set Manager” page. This option automates the output of the conductors, just
prior to the Sinda/Fluint run. This method is not the choice when the free molecular
programs presented in this paper are used. Further details about Thermal Desktop or
Sinda/Fluint are found in the user manuals [1,2].

 15

Operation of the MatLab Program
 Prior to running the MatLab program FMHTPRE.m, the area file and the
conductors need to be output from Thermal Desktop. These files are found in Appendix
A and B. The Radiation Calculation menu under the main menu “Thermal” shows the
RadCad modules that will output the area file and the conductors (see red ellipse in
Figure 6) . First, the user needs to set the default free molecular group from the
“Radiation Analysis Group Manager” window (see Figure 1). All conductors are
generated based on the free molecular group selected. The second task is to calculate the
view factors, which is the first menu item circled in red in Figure 6. The name on the
menu item is “Calc View Factors” and the file AREAFIJ.ar is output when this menu
item is selected. The directory “<radiation group name>.rcf” is also generated by this task
which is needed for outputting the conductors. Appendix A shows a shortened version of
this file. The submodel name is given along with the node number and the associated
area of the surface.
 The third task is to generate the conductors by selecting the “Output Area*Fij
File” menu item (see second menu item in red ellipse of Figure 6). The file
AREAFIJ.DAT is generated by this action. Appendix B shows a shorten version of this
file. Once this is complete, the user is ready to run the MatLab program FMHTPRE.m.
This file is found in Appendix D along with some of the other modules required by the
program. From the command line of the MatLab window, the user should run the
program FMHTPRE.m by typing in the directory and MatLab program name. For
example, the user could type in “C:\Workarea\FMHT\FMHTPRE” and hit “return” to run
the MatLab program from the command line if the MatLab file FMHTPRE.m is in the
directory. This causes the MatLab program to execute.
 The MatLab program first prompts for the base value for the array numbers. Table
4 shows a case where the base value is 700. The MatLab program next prompts for the
increment value of the arrays. For the array number shown in Table 4 the increment value
was 10. The arrays that are generated by the program are used with the logic in SINDA
FLUINT. Once the data is generated, the arrays can be pasted into the different locations
as shown in Table 4 in the “Location” column. For example, arrays 710 through 780 (or
whatever the base value and increment value is used) would all go in the ARRAY DATA
HEADER for the specified submodel. Figure 8 shows the “SINDA” tab page in the “Case
Set Information” menu where the information can be pasted manually in the ARRAY
DATA of the appropriate submodel. The string array should be pasted in the CARRAY
DATA of the appropriate submodel (array 800 in Table 4).
 The MatLab program then prompts for the name of the submodel that contains the
viscosity array. It needs to be in a different submodel than arrays 710 through 790. Table
4 shows the value of 333. This number can be selected arbitrarily, but it must not conflict
with the other arrays. The program next prompts for the input and output file names. The
input files must exist and contain the information that was previously generated (see
Figure 6). Also, MatLab must recognize the directories and the files. The output file
name can be whatever the user desires, but it must not overwrite another file name. The
next prompt asks the user if the header data should be processed. “No” should always be
input for this prompt since the function is not needed.

 16

TABLE 4. Arrays constructed by the MatLab program
Array
Number

Array Description Array
Type

Location

User Specified
(e.g. 333)

Viscosity Real Different submodel than
700 ARRAY DATA

710 Conductor number a Integer ARRAY DATA of user
specified submodel

720 First node number of
conductor

Integer “

730 Second node number of
conductor

Integer “

740 Area associated with first
node number

Real “

750 Area associated with the
second node number

Real “

760 View factor Real “
770 Effective length array Real “
780 Array that has the index of the

submodel name of node 1
found in the CARRAY

Integer “

790 Array that has the index of
submodel name of node 2
found in the CARRAY

Integer “

800 CARRAY data that has
strings listing the submodels

String CARRAY DATA of user
specified submodel

 The next prompt is for the cutoff value for the conductors. This input enables the
conductors to be eliminated from the model which are smaller than the cutoff value. The
very small conductors will tend to have less impact on the model and can typically be
deleted without much effect. A warning should be given here; however, since a small
conductor with a very high temperature difference between the nodes can have a
significant impact on the results. The user needs to use this option with care and good
judgment. Also, the nodal subdivision can determine when the free molecular conductors
are retained or not. This can cause important conductors to be eliminated from a model
when actually the conductors have a significant impact on the results.
 The user also has the option of eliminating conductors based on the names of the
submodels associated with the nodes of the conductors. There are cases where the
temperature of two submodels will be nearly the same. Rather than including these
conductors and increasing the solve time, the user may decide to eliminate them. Another
case may be when the temperature of a submodel is nearly the same. The user can specify
that the free molecular conductors attached between the nodes of the same submodel be
eliminated. Again, this will speed up the solve time. A final example is the case where
the view factor between the surfaces of two submodels is small. The free molecular
conductors can be eliminated for this case also. Engineering judgment is needed when
using this option.

 17

Figure 8. The SINDA tab under the “Case Set Information” page

 The user also has the option of selecting the conductor numbers which will not be
eliminated no matter the names of the submodels of the two nodes. This option allows for
critical conductors to be retained. The last prompt is the option specifying the effective
length based on the submodel names of the two nodes of the conductor. This is only an
approximation and is used when the free-molecular Fortran subroutines check the mode
of heat transfer. Ideally the user will find the distances between the surfaces of the
conductors, but most the time this is not practical when the free molecular conductors are
many. The user then can input the worst case conditions to see when the mode of heat
transfer changes from free molecular to continuum. If this should happen the user will
need to modify the free molecular Fortran subroutines to switch the modeling so the
appropriate continuum equations are used. Possibly, logic will need to be incorporated to
turn off the free molecular submodel and to turn on another submodel of conductors
which model the appropriate continuum equations. If it is known that the heat transfer
mode is always in the free molecular region, it is important that the user select effective
lengths appropriately so the free molecular equations are used without any added factor
applied to the free molecular conductor. Appendix C shows the inputs and prompts for
the MatLab m-file FMHTPRE.m. Appendixes A and B shows, respectively, the file
AREAFIJ.ar and AREAIJ.DAT (partial file). The output from FMHTPRE.m is found in
Appendix E.

 18

Setup of Thermal Desktop for Modeling Dynamic Free
Molecular Heat Transfer
 Once the output files are generated in MatLab the user has to manually insert
portions of the data in the correct “Global Sinda Inputs” and “Thermal Inputs” sections of
Thermal Desktop (see Figure 8). The submodel name where the conductors are placed is
the third input specified in the MatLab program FMHTPRE.m. If the input file
InputFMHT.dat (see Appendix C) was input for FMHTPRE.m, then these conductors
should be placed in submodel “MAIN” as well as arrays 510, 520, 530, 540, 550, 560,
570, 580, 590, 333 and 600 (see Appendix E). Figure 9 shows the different header names
used in a SINDA submodel. The conductors should be copied to the “Conductor” header
inputs page while the arrays should be copied to the “Array” header inputs page (see
figure 9). Array 600 should be copied to the “Carray” header inputs page of submodel
Main, while the viscosity array should be copied to the appropriate submodel that the
user supplied in the fourth input to the MatLab program FMHTPRE.m. The array should
be copied to the “Array” header page of that submodel. All the calls to the subroutine
“ARYTRN” should be copied to the global SINDA/FLUINT input “OPERATIONS”
page (see Figure 8). The calls to “ARYTRN” put the memory locations of the pointers of
the arrays into array 333 to enable the rapid updating of the conductors. The call to
FMHTCOND should be located where the user wants the conductors updated. For a
steady state run this should be in VARIABLES 0. For a transient run, the location is in
VARIABLES 0, but the user may opt to speed up the solve time by putting the call in the
OUTPUT header (see Figure 9). The conductors will only update as often as the output
calls are called. The “SINDA Control Information” page controls the length of time
between output calls.

Figure 9. The Headers used for submodel MAIN. This menu is activated by double
clicking on the submodel name under the “Thermal Inputs” section observed in the
previous figure.

 19

 Appendix F shows the Fortran modules which need to be copied to the
“Subroutine” Global SINDA/FLUINT input page (see figure 8). The first subroutine is
used to calculate the Knudsen number. This determines the mode of heat transfer. The
subroutine FMHT calculates the conductor value and assumes that helium is the fluid. If
helium is not the gas then the equations for the “ATERM1” and “ATERM2” variables
need to be modified for the appropriate gas [5]. The module is also written assuming
English units, which is easy to modify. The subroutine FMHTCOND is the main module.
One weakness of the module is when the heating mode is the mixed or continuum.
Currently, the subroutine uses the free molecular heating rate for the mixed mode and
uses a factor times the free molecular heating rate for the continuum mode. The user may
want to have two submodels: one to model the free molecular heating and the other the
continuum . The user would have to setup the logic to shut off and on the appropriate
submodels, depending on the type of heating. The FMHTCOND subroutine could be
modified to accomplish this. The current module works if the mode of heat transfer is in
the free molecular mode, or near this mode in the mixed region. Outside of this region,
the user may need to modify the module by changing the factor applied to the free
molecular heating rate.
 Once the Thermal Desktop model is setup, the analysis can begin by activating
Thermal Desktop. SINDA/FLUINT runs underneath the Thermal Desktop GUI solving
the model. The user has to be careful in the setup of the model to avoid excessive solve
times when the free molecular conductors are used.

Conclusion
 The programs, arrays and logic structure were developed to enable the dynamic
update of conductors in thermal desktop. The MatLab program FMHTPRE.m processes
the Thermal Desktop conductors and sets up the arrays. The user needs to manually copy
portions of the output to different input regions in Thermal Desktop. Also, Fortran
subroutines are provided that perform the actual updates to the conductors. The
subroutines are setup for helium gas, but the equations can be modified for other gases.
The maximum number of free molecular conductors allowed is 10,000 for a given
radiation task. Additional radiation tasks for FMHT can be generated to account for more
conductors. Modifications to the Fortran subroutines may be warranted, when the mode
of heat transfer is in the mixed or continuum mode. The FMHT Thermal Desktop model
should be activated by using the “Case Set Manager” once the model is setup. Careful
setup of the model is needed to avoid excessive solve times.

 20

References
1. Panczak, T., Ring, S., Welch, M., Johnson, D., “Thermal Desktop User’s Manual,

CAD Based Thermal Analysis and Design”, Version 5.0, C&R Technologies,
Oct., 2006.

2. Cullimore, B., Ring, S., Johnson, D., “User’s Manual SINDA/FLUINT General
Purpose Thermal/Fluid Network Analyzer”, Version 5.0, C&R Technologies,
Oct., 2006.

3. Sutherlin, Steven, “The X-Ray Calibration Facility (XRCF) Thermal
Characterization Test Cycle 3 Data Correlation”, Report No.: MG-02-878, George
C. Marshall Space Flight Center Engineering Directorate, Contract NAS8-00187,
Sverdrup, A Jacobs Company, Dec 20, 2002.

4. Cleveland, Paul E., E-mail correspondence with attached work, Energy Solutions
Inter., Apr 14, 2005. The curve fit equation was provided in the work.

5. Barron, Randall, “Cryogenic Heat Transfer”, Taylor & Francis, 1 edition, May 1
1999, pp 250.

Index to Appendixes

A …….... AREAFIJ.ar: Thermal Desktop generates this file showing the surface area associated with
 the node number and submodel name. It is needed as an input file for the MatLabA program
 FMHTPRE.m. Only part of the file is shown here since the full file is very large. This partial
 file shows the general format of the file.
B ……… AREAFIJ.DAT: This example file shows the free molecular conductors generated by
 Thermal Desktop. This input file is a needed for the MatLab program FMHTPRE.m.
C ……… InputFMHT.dat: This file shows the inputs for the MatLab program FMHTPRE.m which are
 shown in bold red-color font.
D ……… FMHTPRE.m: The MatLab program used to setup the free molecular conductors and the
 arrays used by the SINDA logic. Files AREAFIJ.ar and AREAFIJ.DAT are needed for the
 execution of this file.
E ……… OutputFMHT.dat: This file shows the results generated by the MatLab program
 FMHTPRE.m.
F ……… Fortran Free Molecular Subroutines

APPENDIX A
AREAFIJ.ar

 Here is a condensed version of file AREAFIJ.ar. It is the file that shows the area
associated with each node. This file is only an example file.

 MAIN.1 0.455347
 MAIN.2 0.910694
 MAIN.3 0.910694
 MAIN.4 0.910694
 MAIN.5 0.910694
 MAIN.6 0.910694
 MAIN.7 0.910694
 MAIN.8 0.910694
 NISHROUD.1 12.8991
 NISHROUD.2 12.8991
 NISHROUD.3 12.8991
 NISHROUD.4 12.8991
 NISHROUD.5 12.8991
 NISHROUD.6 12.8991
 NISHROUD.7 12.8991
 NISHROUD.8 12.8991
 NISHROUD.9 12.8991
 NISHROUD.10 12.8991
 NISHROUD.11 12.8991
 NISHROUD.12 12.8991

1

APPENDIX B
AREAFIJTEST.DAT

 This file is generated by Thermal Desktop.

HEADER CONDUCTOR DATA, MAIN
C SINDA/FLUINT data created with Thermal Desktop 4.8 Patch 4s
C Generated on Sun Apr 22 18:10:55 2007
C
C Generated from database FMHT.rcf
C Bij Cutoff factor: 0.0010000
C Free Molecular Output Enabled
C Conductor Units are: BTU/hr/F
C Free Molecular Multiplier 0.17611 BTU/hr/ft^2/F
C (more information at end of file)
C
C PSTOP causes the radks not to be echoed to the preprocessor pp.out file
PSTOP
C Symbol names, values, comments
C AddHT, 12.0, additional height to include for Ni Pane...
C AddMylar, 2.0, distance between Ni panel and Mylar shee...
C AngHt, 10*pi/180, Angle for the heating xy plane
C AngHtMx, Angle - (LHTBOX/(pi*RadHe_in*2))*360.0, Maximum angle to move the surface
heat l...
C Angle, 22.5, Angle of Helium shrouds [degrees]
C ArcLeng, pi*Radius_He*2*Angle/360
C ArcL_in, ArcLeng*12.0, Arc Length in Inches
C AREA, pi*(Diam)^2/4.0, Flow Area of tubes [in^2]
C AREAHDR, pi*DiamHdr^2/4, Cross sectional area of header
C Diam, .625, Tube diameter [in]
C DiamHdr, 1.5, Diameter of header [in]
C EndHt, Ht_in + AddHT*2, This is used to increase the Ni panel, m...
C Gthck, 0.125
C Height, 41, Height of Helium Shrouds
C HeTemp, 15, Temperature Helium Shrouds [K]
C Ht_in, Height*12, Height of shroud in inches
C LengthHT, 100, Length used to position the heating surf...
C LHTBOX, 12.0, Edge of Heating Box used to model the `p...
C LngHTMX, Ht_in - LHTBOX, Maximum height to apply point heating
C LTube, Ht_in/NTube, Length of individual tube [in]
C MAXAVDT, 0.0, Maximum Average Temperature of the GHe p...
C MAXDT, 0.0, Maximum temperature difference over the ...
C mdot, 14.5, Mass flow rate [gram/sec]
C NiTemp, 90, Nitrogen shroud temperature [K]
C Npipes, 5, Number of tubes in shroud
C NTube, 20, Number of TD Tubes per height
C Pout, 14.0, Outlet Pressure
C QQheat, .25, Heat Load on surface [Watt/ft^2]
C QQPOINT, 0.5, Heat Load on Point Surface [Watt/ft^2]
C RadHe_in, Radius_He*12.0, Radius of Helium Shroud [in]
C RadHT, 273, Radius for Heating Surface to position i...
C Radius_He, 22.625, Radius of Helium shrouds [ft]
C RadMylar, RadNi+AddMylar, Radius of mylar sheets

1

C RadNi, 330
C RADSET, 80/pi, Radius to setup piping
C RadWall, 390, Radius of wall [in] (65 ft diam)
C spacing, ArcL_in/Npipes, Spacing of tubes [in]
C StartHt, -AddHT, Starting height for Nitrogen Panel, Myla...
C TAVER, 0.0, Average Temperature over the GHe Panel f...
C TAVMN, 0.0, The minimum average temperature up to th...
C TAVMX, 0.0, The maximum average temperature up to th...
C Thick, .125, Thickness of shroud - Inches
C ThkTube, .1875
C TZMAX, 0.0, Maximum time step over the GHe Panel at ...
C TZMIN, 0.0, Minimum Temperature over the GHe Panel a...
C Vol, AREA*LTube
C VolHDR, AREAHDR*spacing/2.0, Volume of Header tubes
C Walltemp, 80
C XHEAT, RadHT*cos(AngHt*pi/180), Location of X variable for hotspot on GH...
C YHEAT, RadHT*sin(AngHt*pi/180), Y coordinate for hotspot location
C ZHEAT, LengthHT, Z coordinate that marks the Heating surf...
C
C view factor format:
C cond_id node_1 node_2 Area*Fij $ Fij Fji
C
C MAIN.1 to Space disabled, Bij = 0.35500
C MAIN.2 to Space disabled, Bij = 0.35520
C MAIN.3 to Space disabled, Bij = 0.35860
C MAIN.4 to Space disabled, Bij = 0.34960
C MAIN.5 to Space disabled, Bij = 0.35380
C MAIN.6 to Space disabled, Bij = 0.33960
C MAIN.7 to Space disabled, Bij = 0.35460
C MAIN.8 to Space disabled, Bij = 0.35140
C MAIN.9 to Space disabled, Bij = 0.34680
C MAIN.10 to Space disabled, Bij = 0.35540
C MAIN.11 to Space disabled, Bij = 0.35480
C MAIN.12 to Space disabled, Bij = 0.24280
C MAIN.13 to Space disabled, Bij = 0.23620
C MAIN.14 to Space disabled, Bij = 0.23160
C MAIN.15 to Space disabled, Bij = 0.22540
C MAIN.16 to Space disabled, Bij = 0.22440
C MAIN.17 to Space disabled, Bij = 0.23300
C MAIN.18 to Space disabled, Bij = 0.22680
C MAIN.19 to Space disabled, Bij = 0.23860
C MAIN.20 to Space disabled, Bij = 0.23000
C MAIN.21 to Space disabled, Bij = 0.24000
C MAIN.22 to Space disabled, Bij = 0.23800
C MAIN.23 to Space disabled, Bij = 0.14260
C MAIN.24 to Space disabled, Bij = 0.13240
C MAIN.25 to Space disabled, Bij = 0.12940
C MAIN.26 to Space disabled, Bij = 0.13120
C NISHROUD.95 to Space disabled, Bij = 0.60760
C NISHROUD.96 to Space disabled, Bij = 0.60020
C NISHROUD.97 to Space disabled, Bij = 0.69620
C NISHROUD.98 to Space disabled, Bij = 0.82020
C NISHROUD.99 to Space disabled, Bij = 0.91120
C NISHROUD.100 to Space disabled, Bij = 0.93760
 1, MAIN.1, NISHROUD.1, 0.00097614 $ 0.012173,0.00042971
 2, MAIN.1, NISHROUD.2, 0.0032378 $ 0.040376, 0.0014253
 3, MAIN.1, NISHROUD.3, 0.0089540 $ 0.11166, 0.0039416

2

 4, MAIN.1, NISHROUD.4, 0.012005 $ 0.14970, 0.0052846
 5, MAIN.1, NISHROUD.5, 0.0062183 $ 0.077543, 0.0027373
 6, MAIN.1, NISHROUD.6, 0.0018606 $ 0.023202,0.00081904
 7, MAIN.1, NISHROUD.7, 0.00062431 $ 0.0077853,0.00027483
 8, MAIN.1, NISHROUD.8, 0.00014434 $ 0.0018000,6.3541e-005
 9, MAIN.1, NISHROUD.11, 0.00057407 $ 0.0071588,0.00025271
 10, MAIN.1, NISHROUD.12, 0.0015188 $ 0.018940,0.00066859
 11, MAIN.1, NISHROUD.13, 0.0028819 $ 0.035937, 0.0012686
 12, MAIN.1, NISHROUD.14, 0.0036195 $ 0.045136, 0.0015933
 13, MAIN.1, NISHROUD.15, 0.0027296 $ 0.034039, 0.0012016
 14, MAIN.1, NISHROUD.16, 0.0010112 $ 0.012610,0.00044513
 15, MAIN.1, NISHROUD.17, 0.00024057 $ 0.0030000,0.00010590
 16, MAIN.1, NISHROUD.18, 0.00020850 $ 0.0026000,9.1782e-005
 17, MAIN.1, NISHROUD.21, 0.00036888 $ 0.0046000,0.00016238
 18, MAIN.1, NISHROUD.22, 0.00047956 $ 0.0059802,0.00021111
 19, MAIN.1, NISHROUD.23, 0.00070568 $ 0.0088000,0.00031065
 20, MAIN.1, NISHROUD.24, 0.00076345 $ 0.0095204,0.00033608
 21, MAIN.1, NISHROUD.25, 0.00065416 $ 0.0081575,0.00028797
 22, MAIN.1, NISHROUD.26, 0.00022454 $ 0.0028000,9.8842e-005
 23, MAIN.1, NISHROUD.27, 0.00022454 $ 0.0028000,9.8842e-005
 24, MAIN.1, NISHROUD.28, 0.00014434 $ 0.0018000,6.3541e-005
 25, MAIN.1, NISHROUD.32, 0.00016038 $ 0.0020000,7.0601e-005
 26, MAIN.1, NISHROUD.33, 0.00014434 $ 0.0018000,6.3541e-005
 27, MAIN.1, NISHROUD.34, 0.00016038 $ 0.0020000,7.0601e-005
 28, MAIN.1, NISHROUD.35, 0.00017642 $ 0.0022000,7.7662e-005
 29, MAIN.1, NISHROUD.46, 0.00047037 $ 0.0058656,0.00020706
 30, MAIN.2, NISHROUD.1, 0.0019482 $ 0.012147,0.00085760
 31, MAIN.2, NISHROUD.2, 0.0047106 $ 0.029371, 0.0020736
 32, MAIN.2, NISHROUD.3, 0.013273 $ 0.082761, 0.0058430
 33, MAIN.2, NISHROUD.4, 0.021955 $ 0.13689, 0.0096649
 34, MAIN.2, NISHROUD.5, 0.015291 $ 0.095343, 0.0067314
 35, MAIN.2, NISHROUD.6, 0.0056966 $ 0.035519, 0.0025077
 36, MAIN.2, NISHROUD.7, 0.0018638 $ 0.011621,0.00082044
 37, MAIN.2, NISHROUD.8, 0.00064710 $ 0.0040348,0.00028486
 38, MAIN.2, NISHROUD.11, 0.0010725 $ 0.0066874,0.00047214
 11953, NISHROUD.1, NISHROUD.3, 0.0028018 $ 0.0012334, 0.0012334
 11954, NISHROUD.1, NISHROUD.4, 0.0027260 $ 0.0012000, 0.0012000
 11955, NISHROUD.1, NISHROUD.5, 0.0034226 $ 0.0015067, 0.0015067
 11956, NISHROUD.1, NISHROUD.6, 0.0025195 $ 0.0011091, 0.0011091
 11957, NISHROUD.1, NISHROUD.7, 0.0026849 $ 0.0011819, 0.0011819
 11958, NISHROUD.1, NISHROUD.8, 0.0038622 $ 0.0017002, 0.0017002
 11959, NISHROUD.1, NISHROUD.9, 0.0026849 $ 0.0011819, 0.001181
C NISHROUD.93 12.899 5000 1.0000 0.16235 0.001 5.6
C NISHROUD.94 12.899 5000 1.0000 0.30297 0.000 6.5
C NISHROUD.95 12.899 5000 1.0000 0.39068 0.000 7.1
C NISHROUD.96 12.899 5000 1.0000 0.39197 0.000 6.9
C NISHROUD.97 12.899 5000 1.0000 0.30350 0.000 6.5
C NISHROUD.98 12.899 5000 1.0000 0.16974 0.001 5.8
C NISHROUD.99 12.899 5000 1.0000 0.082379 0.000 4.6
C NISHROUD.100 12.899 5000 1.0000 0.042768 0.001 4.1
C
PSTART
C 331 calculation nodes
C 12870 radks were output, 2216 radks were filtered out
C 166 nodes(50%) have bij sum + bij inactive < .9
C 5000 average number of rays per node shot

3

APPENDIX C
InputFMHT.dat

 This file shows the input used for the MatLab program FMHTPRE.m. The prompts by the
program are in black while the inputs are in bold red.

>> FMHTPRE

Enter the base value for the array numbers.
A description of the array numbers is the following:
% Pntr to numeric value of viscosity array REAL Array
% 710.....Conductor Number Array INTEGER ARRAY
% 720.....Node# 1 array (first Node# on conductor) INTEGER ARRAY
% 730.....Node# 2 array (second Node# on conductor) INTEGER ARRAY
% 740.....Area array of Node 1 REAL ARRAY
% 750.....Area array of Node 2 REAL ARRAY
% 760.....View Factor array REAL ARRAY
% 770.....Effective Length Array REAL ARRAY
% 780.....Nodal index submodel array INTEGER ARRAY
% 790.....Nodal index submodel array INTEGER ARRAY
% 800.....Index to string array of submodels STRING ARRAY

 Notice that the "base value" used for these arrays was 700
 The increment value was 10

Enter the "base value" for the arrays:
200
Enter the "increment value" for the arrays:
10

Enter the submodel name that the arrays above will be in.
Enter the submodel name:
MAIN

Enter the submodel name that contains the viscosity array.
If you don't know this just enter something now and you
can change it later in the output manually.

Enter
VISC

 the viscosity submodel name:

Enter the number of the viscosity array:
555

Enter the directory and filename to get the data:
Example: "C:\Mydirect\happyface\clownface\base\AREAFIJ.DAT"
 AREAFIJTEST.DAT

Enter the directory and filename to write out the preprocessed data.
Example: "fmht.dat" or "C:\Squid\swim\prefmht.dat"
 OutputFMHT.out

1

Enter the directory and filename to get Area information.
Example: "AREAFIJ.ar" or "C:\EM_WORK\James_Webb\ERICS_WORK\AREAFIJ.ar"
Enter director and filename:
AREAFIJ.ar

Do you want to process the header data?
 Enter "y" or "yes" if you do.
no

Enter the cutoff value for the conductors
You enter a small value to eliminate some of the conductors
that are not really needed. Engineering judgement is needed
for this. Enter 0 if you don"t want to eliminate conductors
Enter th
0.00018

e cutoff value for the conductors

Next you will be deciding which pairs of submodel names to
eliminate conductors between. For example, the free molecular
conduction between like surfaces that are nearly the same
temperature is small. You can eliminate those conductors,
saving solve time, without significant impact on the model
Do you want to eliminate conductors based upon the names of
the node submodels?
Do you want to eliminate conductors by node submodel name?
 Enter "y" for yes
y
Each group of components in your thermal model have submodels associated with them.
The cases where you may want to eliminate FMHTing conductors are the following:
 1) You may want to eliminate conductors to the same submodel. The reason for
 this is that the temperature may be so close together that the FMHT is
 insignificant. Why have the added conductors if they are not important?
 2) The two different submodels may have temperatures that are expected to
 be the same. If they are close in temperature eliminate the FMHT conductors
 3) The two different submodels may not be visible to each other. If the
 visibility is poor the conduction by free molecular heat transfer will be small.
 4) After having run your model, you may observe that the heat transfer is small
 (or relatively small) between the two submodels. To prevent large solve times
 with a large model you can eliminate these conductors.

Now you need to enter the submodel names which you want to eliminate FMHT conductors
from. First I will ask you the first submodel name. Next, I will ask you the other.
submodel name.

Enter pairs of submodel names to eliminate conductors
Enter
MAIN

 the first submodel name

Enter the second submodel name
MAIN
Continue? <y> n
y

Enter pairs of submodel names to eliminate conductors
Enter the first submodel name
NISHROUD
Enter the second submodel name
NISHROUD
Continue? <y> n

2

n
You may want to keep some FMHT conductors in the model even if you eliminated
the conductors by using the previous option (using submodel names). You can
now specify the conductor numbers that you want to keep in the model no matter
the name of the submodel associated with the nodes. You may know that there are
a few conductors that are important which you wish to not eliminate. This option
allows you to keep those conductors in the model.
Do
y
 you want to keep some FMHT conductors in the model? <y>

Enter the FMHT conductor to keep in the model
100
Continue? <y> n
y
Ente
101

r the FMHT conductor to keep in the model

Continue? <y> n
y
Ente
102

r the FMHT conductor to keep in the model

Co
y
ntinue? <y> n

Enter the FMHT conductor to keep in the model
103
Co
n
ntinue? <y> n

EFFECTIVE LENGTHS BETWEEN SUBMODELS

The effective length is used to find the Regime of fluid heat transfer
This module is used so the user is able to setup the array of effective
lengths -- APPROXIMATE VALUES based on the submodel names
It is recommended that the user modify this and put in the actual
effective lengths -- But this is useful to get the model running.
Also, if you already know the regime that you are in then this is not
really needed. Just make sure that the logic calls the correct solve
method to calculate the FMHT conductors. Use feet as the units
Do you want to define the effective length between submodels? <y> n
y

First you will enter the pair of submodel names.
Next you will enter the effective length associated with the two submodels
Enter the
NISHROUD

 first submodel Name (for effective length)

Enter the second submodel Name (for effective length)
MAIN
Enter the effective length for the two submodels [ft]
55
Do
n
 you want to add more effective lengths? <y> n

Enter the default effective length if the submodels are not found
1.0

===

3

APPENDIX D
FMHTPRE.m

 The MatLab program that processes the free molecular conductors and
sets up the arrays used in the logic of SINDA/FLUINT for the automated
updating of the conductors.

function FMHTPRE(action)
% ***
% FMHTPRE.m program that processes data and sets up the
% Free Molecular Heat Transfer (FMHT) logic that allows
% for transient operation.
% **
% FILE NAME: FMHTPRE
% (Free Molecular Heat Transfer Preprocessor)
% PROGRAMMER: Eric Malroy (Eric.T.Malroy@nasa.gov)
% DATE: 3/03/07
% LAST MODIFICATION DATE: 8/22/07
% VERSION: 1.1
% **
% DESCRIPTION
% Specifically, this module sets up the the following arrays
% that allow for transient free molecular heat transfer:
% viscnum.....Pntr to numeric value of viscosity array REAL Array
% 710.....Conductor Number Array INTEGER ARRAY
% 720.....Node# 1 array (first Node# on conductor) INTEGER ARRAY
% 730.....Node# 2 array (second Node# on conductor) INTEGER ARRAY
% 740.....Area array of Node 1 REAL ARRAY
% 750.....Area array of Node 2 REAL ARRAY
% 760.....View Factor array REAL ARRAY
% 770.....Effective Length Array REAL ARRAY
% 780.....Nodal index submodel array INTEGER ARRAY
% 790.....Nodal index submodel array INTEGER ARRAY
% 800.....Index to UCA array CRYTRAN STRING ARRAY
%**
% First Get Required Inputs
% *************************
% *** find base number and increment value to write out array numbers
JWSTpath2add
flg9 = 1;
if(flg9 == 1)
 disp('***');
 disp('Enter the base value for the array numbers.');
 disp('A description of the array numbers is the following:');
 disp('% Pntr to numeric value of viscosity array REAL Array');
 disp('% 710.....Conductor Number Array INTEGER ARRAY');
 disp('% 720.....Node# 1 array (first Node# on conductor) INTEGER ARRAY');
 disp('% 730.....Node# 2 array (second Node# on conductor) INTEGER ARRAY');
 disp('% 740.....Area array of Node 1 REAL ARRAY');
 disp('% 750.....Area array of Node 2 REAL ARRAY');
 disp('% 760.....View Factor array REAL ARRAY');
 disp('% 770.....Effective Length Array REAL ARRAY');
 disp('% 780.....Nodal index submodel array INTEGER ARRAY');
 disp('% 790.....Nodal index submodel array INTEGER ARRAY');
 disp('% 800.....Index to string array of submodels STRING ARRAY');

1

 disp(' ');
 disp(' Notice that the "base value" used for these arrays was 700');
 disp(' The increment value was 10');
 disp(' ');
 baseN = input('Enter the "base value" for the arrays: \n');
 IncrN = input('Enter the "increment value" for the arrays: \n');
 disp('***');
 disp('Enter the submodel name that the arrays above will be in.');
 rysub = input('Enter the submodel name:\n','s');
 disp('***');
 disp('Enter the submodel name that contains the viscosity array.');
 disp('If you don''t know this just enter something now and you');
 disp('can change it later in the output manually.');
 viscsub = input('\nEnter the viscosity submodel name:\n','s');
 viscnum = input('Enter the number of the viscosity array:\n');
 disp('***');
 disp('Enter the directory and filename to get the data:');
 disp('Example: "C:\Mydirect\happyface\clownface\base\AREAFIJ.DAT"');
 rfnam = input(' ','s');
 disp('***');
 disp('Enter the directory and filename to write out the preprocessed data.');
 disp('Example: "fmht.dat" or "C:\Squid\swim\prefmht.dat" ');
 wfnam = input(' ','s');
 disp('***');
 disp('Enter the directory and filename to get Area information.');
 disp('Example: "AREAFIJ.ar" or "C:\EM_WORK\James_Webb\ERICS_WORK\AREAFIJ.ar"');
 afnam = input('Enter director and filename:\n','s');
 afpntr = fopen(afnam,'r');
 iter = 0;
 while (1)
 iter = iter+1;
 aline1 = fgetl(afpntr);
 jjj = rem(500,iter);
 if (jjj == 0)
 iter;
 aline1;
 end
 sz_ln = size(aline1);
 if ~ischar(aline1), break, end
 if (sz_ln(2)>10)
 [areasub{iter},nodena(iter,1),nodena(iter,2)] = areaget(aline1);
 end
 end
 fclose(afpntr);
 rfpntr = fopen(rfnam,'r');
 wfpntr = fopen(wfnam,'a');
 phdflg = input('Do you want to process the header data?\n Enter "y" or "yes" if you
do.\n','s');
 if(strcmp(phdflg,'y')|strcmp(phdflg,'yes'))
 flgs1 = 1;
 disp('Do you want to search for the free molecular multiplier?');
 sfmm = input('Enter "y" or "yes" if you do:\n','s');
 if(strcmp(sfmm,'y')|strcmp(sfmm,'yes'))
 flgs2 = 1;
 else
 flgs2 = 0;
 end
 else
 flgs1 = 0;
 flgs2 = 0;
 end

 lnflg = 1;

2

 while(lnflg)
 tline1 = fgetl(rfpntr);
 [newln,oflag] = strlibr(1,'add cr/lf',tline1,120,32);
 qtest1 = findstr(newln,'HEADER CONDUCTOR DATA,');
 qtest2 = findstr(newln,'PSTOP');
 qtest3 = findstr(newln,'Area*Fij');
 qtest4 = findstr(newln,'Free Molecular Multiplier');
 if (isempty(qtest1)&isempty(qtest2))
 if(exist('prline','var'))
 prline = [prline,newln];
 else
 prline = newln;
 end
 end
 if (~isempty(qtest3))
 lnflg = 0;
 end
 if (~isempty(qtest4))
 fmmnum = str2num(newln((qtest4(1)+26):(qtest4(1)+35)));
 end
 end
 if (flgs1)
 fprintf(wfpntr,'%s',prline);
 end
 if (flgs2 == 1)
 disp('Enter the Free Molecular Multiplier from the AREAFIJ.DAT');
 fmmnum = input('Enter the real value for the multiplier: ');
 end
 disp('***');
 disp('Enter the cutoff value for the conductors.');
 disp('You enter a small value to eliminate some of the conductors');
 disp('that are not really needed. Engineering judgment is needed');
 disp('here. Enter 0 if you don''t want to eliminate conductors.');
 cutoff = input('Enter the cutoff value for the conductors:\n');
 disp('***');
 disp('Next you will be deciding which pairs of submodel names to ');
 disp('eliminate conductors between. For example, the free molecular');
 disp('conduction between like surfaces that are nearly the same ');
 disp('temperature is small. You can eliminate these conductors,');
 disp('saving solve time, without significant impact on the model.');
 disp('Do you want to eliminate conductors based upon the names of');
 disp('the node submodels?');
 strelim = input('Do you want to eliminate conductors by node submodel name?\n Enter "y" for
yes\n','s');
 if(isempty(strelim)|strcmp(strelim,'y')|strcmp(strelim,'yes'))
 flgs3 = 1;
 disp('Each group of components in your thermal model have submodels associated with
them.');
 disp('The cases where you may want to eliminate FMHTing conductors are the following:');
 disp(' 1) You may want to eliminate conductors attached to the same submodel. The
reason');
 disp(' for this is that the temperature may be so close together that the FMHT is ');
 disp(' insignificant. Why have the added conductors if they are not important?');
 disp(' 2) The two different submodels may have temperatures that are expected to');
 disp(' be the same. If they are close in temperature eliminate the FMHT conductors.');
 disp(' 3) The two different submodels may not be visible to each other. If the');
 disp(' visibility is poor the conduction by free molecular heat transfer will be
small.');
 disp(' 4) After running your model, you may observe that the heat transfer is small');
 disp(' (or relatively small) between the two submodels. To prevent large solve times');
 disp(' with a large model you can eliminate these conductors.');
 disp(' 5) The maximum number of conductors allowed in a free molecular group is 10,000.');
 disp(' This is due to the limitation imposed by Sinda Fluint on the number of array');

3

 disp(' elements. If your conductors are over this number, then you may have to
eliminate');
 disp(' some conductors.');
 disp(' ');
 pause(5);
 disp('Enter the submodel names used to eliminate FMHT conductors');
 disp('First, I will ask you the first submodel name. Next, I will ask you the other');
 disp('submodel name. ');
 flg7 = 1;
 itersub = 0;
 while (flg7)
 disp(' ')
 itersub = itersub + 1;
 disp('Enter pairs of submodel names to eliminate conductors.');
 strsub{itersub,1} = input('Enter the first submodel name:\n','s');
 strsub{itersub,2} = input('Enter the second submodel name:\n','s');
 ttt = input('Continue? <y> n\n','s');
 if (isempty(ttt)|strcmp(ttt,'y')|strcmp(ttt,'yes'))
 flg7 = 1;
 else
 flg7 = 0;
 subcnt = itersub;
 end
 end
 else
 subcnt = 0;
 end
 %***
 % Keep some FMHT Conductors in the Model
 % **************************************
 disp('You may want to keep some FMHT conductors in the model even if you eliminated');
 disp('the conductors by using the previous option -- using submodel names. You can');
 disp('now specify the conductor numbers that you want to keep in the model no matter');
 disp('the name of the submodel associated with the nodes. You may know that there are')
 disp('a few conductors that are inportant which you wish to not eliminate. This option');
 disp('allows you to keep those conductors in the model.')
 fkeep = input('Do you want to keep some FMHT conductors in the model? <y> \n','s');
 if(isempty(fkeep)|strcmp(fkeep,'y')|strcmp(fkeep,'yes'))
 kflag = 1;
 i = 0;
 while(kflag)
 i = i + 1;
 condn(i) = input('Enter the FMHT conductor to keep in the model:\n');
 sflg1 = input('Continue? <y> n\n','s');
 if(isempty(sflg1)|strcmp(sflg1,'y')|strcmp(sflg1,'Y')|strcmp(sflg1,'yes'))
 kflag = 1;
 else
 kflag = 0;
 keepcnt = i;
 end
 clear sflg1;
 end
 else
 keepcnt = 0;
 end
 %***
 % Enter Effective Lengths between Submodels
 disp('***********************************');
 disp('EFFECTIVE LENGTHS BETWEEN SUBMODELS');
 disp('***********************************');
 disp('The effective length is used to find the Regime of the free molecular heat transfer');
 disp('This module is used so the user is able to setup the array of effective');
 disp('lengths -- APPROXIMATE VALUES based on the submodel names.');

4

 disp('It is recommended that the user modify this and put in the actual');
 disp('effective lengths -- But this is useful to get the model running.');
 disp('Also, if you already know the regime of heat tranfer then this is not');
 disp('really needed. Just make sure that the logic calls the correct solve ');
 disp('method to calculate the FMHT conductors. Use feet as the units.');
 zflg = input('Do you want to define the effective length between submodels? <y> n\n','s')
 if(isempty(zflg)|strcmp(zflg,'y')|strcmp(zflg,'yes'))
 disp('First you will enter the pair of submodel names.');
 disp('Next you will enter the effective length associated with the two submodels.');
 itr = 0;
 efflag = 1;
 jflg = 1;
 while (jflg)
 itr = itr + 1;
 effcell{itr,1} = input('Enter the first submodel Name (for effective length):\n','s');
 effcell{itr,2} = input('Enter the second submodel Name (for effective length):\n','s');
 effry(itr) = input('Enter the effective length for the two submodels [ft]:\n');
 zflg = input('Do you want to add more effective lengths? <y> n\n','s');
 if(isempty(zflg)|strcmp(zflg,'y')|strcmp(zflg,'yes')|strcmp(zflg,'Y'))
 jflg = 1;
 else
 jflg = 0;
 end
 end
 effdef = input('Enter the default effective length if the submodels are not found:\n');
 end
 % ********************************
 % Start processing conductor lines
 % ********************************
 lnflg = 1;
 cntr = 0;
 icnt =0;
 indxk = 0;
 while(lnflg)
 icnt = icnt + 1;
 tline1 = fgets(rfpntr);
 sz_tline1 = size(tline1)
 if ~ischar(tline1), break, end
 qtest1 = findstr(tline1,'C ')
 jjj = rem(500,icnt);
 if (jjj == 0)
 tline1;
 qtest1;
 icnt;
 end
 if ((isempty(qtest1))&(sz_tline1(2)>20))
 [cnd,n1sub,nod1,n2sub,nod2,cval,vwfr] = cdatget(tline1);
 % **
 % First go through logic to decide if conductor will be used
 kflag = 0; % Means the conductor will not be used
 if keepcnt > 0
 for(j=1:keepcnt)
 if (cnd == condn(j))
 kflag = 1;
 break;
 end
 end
 end
 if (cval > cutoff)
 % next check to see that submodels are not excluded
 if subcnt == 0
 kflag = 1;
 else

5

 tflag = 0;
 for i=1:subcnt
 flgz1 = strcmp(n1sub,strsub{i,1});
 flgz2 = strcmp(n2sub,strsub{i,2});
 flgz3 = strcmp(n1sub,strsub{i,2});
 flgz4 = strcmp(n2sub,strsub{i,1});
 if (((flgz1 ==1)&(flgz2 == 1))|((flgz3 == 1)&(flgz4 == 1)))
 tflag = 1;
 break;
 end
 end
 if (tflag == 0)
 kflag = 1;
 end
 end
 end
 % **
 if (kflag == 1) % Conductor will be used
 % ***
 % The next two logic structures are used to fill the KRAY strings
 % if the name of the submodel has not been used before.
 % Check to see if node 1 submodel name is in the list of nodes to keep
 cntr = cntr + 1;
 if (indxk > 0)
 for itx=1:indxk
 flg98 = strcmp(n1sub,kray{itx});
 if (flg98 == 1)
 aryindx1(cntr) = itx;
 break;
 end
 end
 if (flg98 == 0)
 indxk = indxk + 1;
 kray{indxk}=n1sub;
 aryindx1(cntr) = indxk;
 end
 else
 kray{1} = n1sub;
 indxk = 1;
 aryindx1(cntr) = indxk;
 end
 % **
 % Check to see if node 2 submodel name is in the list of nodes to keep
 for itx=1:indxk
 flg99 = strcmp(n2sub,kray{itx});
 if (flg99 == 1)
 aryindx2(cntr) = itx;
 break;
 end
 end
 if (flg99 == 0)
 indxk = indxk + 1;
 kray{indxk}=n2sub;
 aryindx2(cntr) = indxk;
 end
 % **
 % Enter other Array data: conductor values, node #'s, view factor
 arycond(cntr) = cnd;
 aryn1(cntr) = nod1;
 aryn2(cntr) = nod2;
 aryvf(cntr) = vwfr;
 % **
 % find the area for node #1

6

 sz_nodena = size(nodena);
 itrx = 0;
 flg = 1;
 while(flg)
 itrx = itrx + 1;
 if(nodena(itrx,1)==nod1)
 flg77 = strcmp(areasub{itrx},n1sub);
 if (flg77 == 1)
 flg = 0;
 arya1(cntr) = nodena(itrx,2);
 end
 if (itrx==sz_nodena(1))
 flg = 0;
 end
 end
 end
 if (flg77 == 0)
 strhd = ['Error: area not found in list - ',n1sub,'.',num2str(nod1)];
 disp(strhd);
 arya1(cntr) = -1.0;
 end
 % **
 % find the area for node #2
 itrx = 0;
 flg = 1;
 flg77 = 0;
 while(flg)
 itrx = itrx + 1;
 if(nodena(itrx,1)==nod2)
 flg77 = strcmp(areasub{itrx},n2sub);
 if (flg77 == 1)
 flg = 0;
 arya2(cntr) = nodena(itrx,2);
 end
 if (itrx==sz_nodena(1))
 flg = 0;
 end
 end
 end
 if (flg77 == 0)
 strhd = ['Error: area not found in list - ',n2sub,'.',num2str(nod2)];
 disp(strhd);
 arya2(cntr) = -1.0;
 end
 % **
 % EFFECTIVE LENGTHS
 % *****************
 % Decide which effective length to use
 if (efflag == 1)
 sz_effry = size(effry);
 lflag = 0;
 for i=1:sz_effry(2)
 tflg1 = strcmp(effcell{i,1},n1sub);
 tflg2 = strcmp(effcell{i,2},n2sub);
 tflg3 = strcmp(effcell{i,2},n1sub);
 tflg4 = strcmp(effcell{i,1},n2sub);
 if (((tflg1 ==1)&(tflg2 == 1))|((tflg3 == 1)&(tflg4 == 1)))
 aryeff(cntr) = effry(i);
 lflag = 1;
 break;
 end
 end
 if (lflag == 0)

7

 aryeff(cntr) = effdef;
 end
 end
 %
 % **
 if(exist('prline2','var'))
 prline2 = [prline2,tline1];
 else
 prline2 = tline1;
 end
 else
 if(exist('prline2','var'))
 prline2 = [prline2,'C ',tline1];
 else
 prline2 = ['C ',tline1];
 end
 end
 end
 %if statement to find if line has "C " qtest1 = findstr(tline,'C ');
 end
 % End of while statement for processing lines
 % **
 % write out conductors
 if (exist('prline2','var')&(ischar(prline2)))
 fprintf(wfpntr,'%s',prline2);
 fprintf(wfpntr,'%s\n\n','C ');
 end
 % **
 % Write out arrays for Thermal Desktop logic
 fprintf(wfpntr,'%s\n','C **');
 fprintf(wfpntr,'%s\n','C **** ARRAYS FOR THERMAL DESKTOP LOGIC ***');
 cel{1} = [' ',int2str((baseN+1*IncrN)),'= '];
 cel{2} = ' ';
 cel{3} = ' ';
 cel{4} = ' ';
 cel{5} = ', ';
 cel{6} = '%d';
 nrw = 8;
 flgg = 1;
 % cel
 % arycond
 % nrw
 % flgg
 fprintf(wfpntr,'%s\n\n',ray2str(cel,arycond,nrw,flgg));
 cel{1} = [' ',int2str((baseN+2*IncrN)),'= '];
 fprintf(wfpntr,'%s\n\n',ray2str(cel,aryn1,nrw,flgg));
 cel{1} = [' ',int2str((baseN+3*IncrN)),'= '];
 fprintf(wfpntr,'%s\n\n',ray2str(cel,aryn2,nrw,flgg));
 cel{1} = [' ',int2str((baseN+4*IncrN)),'= '];
 cel{6} = '%7.3f';
 fprintf(wfpntr,'%s\n\n',ray2str(cel,arya1,nrw,flgg));
 cel{1} = [' ',int2str((baseN+5*IncrN)),'= '];
 cel{6} = '%7.3f';
 fprintf(wfpntr,'%s\n\n',ray2str(cel,arya2,nrw,flgg));
 cel{1} = [' ',int2str((baseN+6*IncrN)),'= '];
 cel{6} = '%8.3f';
 fprintf(wfpntr,'%s\n\n',ray2str(cel,aryvf,nrw,flgg));
 cel{1} = [' ',int2str((baseN+7*IncrN)),'= '];
 cel{6} = '%8.3f';
 fprintf(wfpntr,'%s\n\n',ray2str(cel,aryeff,nrw,flgg));
 cel{1} = [' ',int2str((baseN+8*IncrN)),'= '];
 cel{6} = '%d';
 fprintf(wfpntr,'%s\n\n',ray2str(cel,aryindx1,nrw,flgg));

8

 cel{1} = [' ',int2str((baseN+9*IncrN)),'= '];
 cel{6} = '%d';
 fprintf(wfpntr,'%s\n\n',ray2str(cel,aryindx2,nrw,flgg));
 kray
 kstr = cell2str(kray,':');
 fprintf(wfpntr,'%s',[' ',int2str((baseN+10*IncrN)),' =',kstr,char(10),char(13)]);
 fprintf(wfpntr,'%s',[' 333=0,0,0,0,0,0,0,0,0,0,0',char(10),char(13)]);
 fprintf(wfpntr,'%s',['C
***',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL ARYTRN(''',rysub,''',333,IPNTR)',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',viscsub,''',',int2str(viscnum),',NA(IPNTR+1))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+IncrN)),',NA(IPNTR+2))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+2*IncrN)),',NA(IPNTR+3))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+3*IncrN)),',NA(IPNTR+4))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+4*IncrN)),',NA(IPNTR+5))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+5*IncrN)),',NA(IPNTR+6))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+6*IncrN)),',NA(IPNTR+7))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+7*IncrN)),',NA(IPNTR+8))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+8*IncrN)),',NA(IPNTR+9))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
ARYTRN(''',rysub,''',',int2str((baseN+9*IncrN)),',NA(IPNTR+10))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
CRYTRN(''',rysub,''',',int2str((baseN+10*IncrN)),',NA(IPNTR+11))',char(10),char(13)]);
 fprintf(wfpntr,'%s',['C 1e-6 torr = 1.9337E-8psi (Note: you need to input PRESS with the
correct pressure)',char(10),char(13)]);
 fprintf(wfpntr,'%s',['F CALL
FMHTCOND(''',rysub,''',IPNTR,',int2str((baseN+10*IncrN)),',4.0032,PRESS,1.667)',char(10),char(13)
]);
 status = fclose('all');
end
%==
function [stro] = ray2str(celray,nvect,nrow,flg)
% RAY2STR.m Constructs a Thermal Desktop array out of the
% vector
% ***
% INPUT ARGUMENTS:
% ****************
% celray{1}first string (left margin)
% celray{2}middle/end string (left margin)
% celray{3}end row string (right margin)
% celray{4}end string end line (right margin, last line)
% celray{5}dividing string (between each number)
% celray{6}string print format (example '%d')
% nvectvector array to print as string
% (example: nvect = [1.4,1.5,3.6])
% nrowthe number of numbers per row to print to string (max 10)
% flguse this to specify the type of conversion
% It is really for future use. (set to 1)
% ****************
% OUTPUT ARGUMENTS:
% strooutput string
% **
if (flg == 1)
 sz_nvect = size(nvect);

9

 loopcnt = floor(sz_nvect(2)/nrow);
 lstrow = rem(sz_nvect(2),nrow);
 for (i=1:loopcnt)
 idx0 = (i-1)*nrow + 1;
 idx1 = i*nrow - 1;
 idx2 = i*nrow
 if (i == 1)
 lineb = [celray{1},sprintf([celray{6},celray{5}],nvect(1:idx1)), ...
 sprintf(celray{6},nvect(idx2)),celray{3},char(10),char(13)];
 elseif(i~=loopcnt)
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13)];
 else
 switch lstrow
 case 0
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{4},char(10),char(13)];
 case 1
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13),celray{2},sprintf(celray{6}, ...
 nvect(idx2+1)),celray{4},char(10),char(13)];
 case 2
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13),celray{2},sprintf(celray{6}, ...
 nvect(idx2+1)),celray{5},sprintf(celray{6}, ...
 nvect((idx2+2))),celray{4},char(10),char(13)];
 case 3
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+2)), ...
 sprintf([celray{6},celray{4}], ...
 nvect((idx2+3))),char(10),char(13)];
 case 4
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+3)), ...
 sprintf([celray{6},celray{4}], ...
 nvect((idx2+4))),char(10),char(13)];
 case 5
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+4)), ...
 sprintf([celray{6},celray{4}], ...
 nvect((idx2+5))),char(10),char(13)];
 case 6
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+5)), ...
 sprintf([celray{6},celray{4}], ...
 nvect((idx2+6))),char(10),char(13)];
 case 7
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+6)), ...

10

 sprintf([celray{6},celray{4}], ...
 nvect((idx2+7))),char(10),char(13)];
 case 8
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+7)), ...
 sprintf([celray{6},celray{4}], ...
 nvect((idx2+8))),char(10),char(13)];
 case 9
 lineb = [lineb,celray{2},sprintf([celray{6},celray{5}], ...
 nvect(idx0:idx1)),sprintf(celray{6},nvect(idx2)), ...
 celray{3},char(10),char(13), ...
 celray{2},sprintf([celray{6},celray{5}],nvect(idx2:idx2+8)), ...
 sprintf([celray{6},celray{4}], ...
 nvect((idx2+9))),char(10),char(13)];
 otherwise
 disp('Error in module ray2str.m. Wrong case input!');
 end
 end
 end
end % Add here for more cases

stro = lineb;

%===
function [cnd,n1sub,nod1,n2sub,nod2,cval,vwf] = cdatget(strg)
%CDATGET.m finds the relevant conductor data from the string
% **
% INPUT ARGUMENTS:
% ****************
% strgcharacter string
% Some examples are the following lines:
% 1, HEPAN1.1000, NIPAN1.1, 0.028711 $ 0.19040,5.1941e-006
% 2, HEPAN1.1001, NIPAN1.1, 0.057754 $ 0.19150,1.0448e-005
% 3, HEPAN1.1002, NIPAN1.1, 0.057331 $ 0.19010,1.0372e-005
% 4, HEPAN1.1003, NIPAN1.1, 0.057120 $ 0.18940,1.0334e-005
% **
% OUTPUT ARGUMENTS:
% *****************
% cndconductor number integer
% n1subsubmodel name for node 1 (char string)
% nod1node 1 number (int)
% n2subsubmodel name for node 2 (char string)
% nod2node 2 number (int)
% vwfview factor Fij (real)
% ***
JWSTpath2add
ry = findstr(strg,',');

cnd = str2num(strg(1:(ry(1)-1)));
str1 = strg(1:(ry(1)-1));
str2 = strg((ry(1)+1):(ry(2)-1));
str3 = strg((ry(2)+1):(ry(3)-1));
str4 = strg((ry(3)+1):(ry(4)-1));
ry2 = findstr(str2,'.');
[n1sub] = strlibr(4,str2(1:(ry2(1)-1)));
sz_str2 = size(str2);
nod1 = str2num(str2((ry2(1)+1):sz_str2(2)));

ry3 = findstr(str3,'.');
[n2sub] = strlibr(4,str3(1:(ry3(1)-1)));
sz_str3 = size(str3);

11

nod2 = str2num(str3((ry3(1)+1):sz_str3(2)));

ry4 = findstr(str4,'$');
sz_str4 = size(str4);
cval = str2num(str4(1:(ry4(1)-1)));
str5 = str4((ry4(1)+1):sz_str4(2));
vwf = str2num(str5);

% ===
% JWSTpath2add.m
% Used for the James Webb Space Telescope with the Free Molecular Heating
% ***
addpath C:\FMHT\MatLabFMHT
addpath C:\matlablibr\strings
% addpath other paths as needed

12

APPENDIX E
OutputFMHT.dat

 This file shows the output generated by the MatLab program FMHTPRE.m. The program
eliminates conductors by commenting them out by putting a “C” in front of the line. SINDA/FLUINT
does not construct these conductors with the comments when the program is activated. The arrays
generated below the conductors are used in the logic so the conductors can be updated periodically in
a transient run of SINDA/FLUINT. Normally, the number of conductors generated is large so the
length of the arrays will be large – the same number as the conductors. The arrays are limited to
10,000 entries, so at most 10,000 active free molecular conductors are allowed for this submodel. If
more conductors are needed the user should try to break up the radiation task into several to prevent
the conductors from being too large. The file shown here in the appendix is a condensed version of the
file.

C 335, MAIN.10, NISHROUD.6, 0.013995 $ 0.087263, 0.0061609
C 336, MAIN.10, NISHROUD.7, 0.022670 $ 0.14135, 0.0099793
C 337, MAIN.10, NISHROUD.8, 0.014225 $ 0.088697, 0.0062622
C 338, MAIN.10, NISHROUD.9, 0.0045859 $ 0.028594, 0.0020188
C 339, MAIN.10, NISHROUD.10, 0.0021356 $ 0.013316,0.00094011
C 340, MAIN.10, NISHROUD.13, 0.00050977 $ 0.0031785,0.00022440
 341, MAIN.10, NISHROUD.14, 0.0010849 $ 0.0067643,0.00047757
 342, MAIN.10, NISHROUD.15, 0.0030589 $ 0.019073, 0.0013466
 11953, NISHROUD.1, NISHROUD.3, 0.0028018 $ 0.0012334, 0.0012334
 11954, NISHROUD.1, NISHROUD.4, 0.0027260 $ 0.0012000, 0.0012000
 11955, NISHROUD.1, NISHROUD.5, 0.0034226 $ 0.0015067, 0.0015067
 11956, NISHROUD.1, NISHROUD.6, 0.0025195 $ 0.0011091, 0.0011091
 11957, NISHROUD.1, NISHROUD.7, 0.0026849 $ 0.0011819, 0.0011819
 11958, NISHROUD.1, NISHROUD.8, 0.0038622 $ 0.0017002, 0.0017002
 11959, NISHROUD.1, NISHROUD.9, 0.0026849 $ 0.0011819, 0.001181
C

C **
C **** ARRAYS FOR THERMAL DESKTOP LOGIC ***
 510= 341, 342, 11953, 11954, 11955, 11956, 11957, 11958

 520= 10, 10, 1, 1, 1, 1, 1, 1

 530= 14, 15, 3, 4, 5, 6, 7, 8

 540= 0.911, 0.911, 12.899, 12.899, 12.899, 12.899, 12.899, 12.899

 550= 12.899, 12.899, 12.899, 12.899, 12.899, 12.899, 12.899, 12.899

 560= 0.007, 0.019, 0.001, 0.001, 0.002, 0.001, 0.001, 0.002

1

 570= 23.000, 23.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

 580= 1, 1, 2, 2, 2, 2, 2, 2

 590= 2, 2, 2, 2, 2, 2, 2, 2

 600 =MAIN:NISHROUD

 333=0,0,0,0,0,0,0,0,0,0,0

C ***

F CALL ARYTRN('MAIN',333,IPNTR)

F CALL ARYTRN('VISC',555,NA(IPNTR+1))

F CALL ARYTRN('MAIN',510,NA(IPNTR+2))

F CALL ARYTRN('MAIN',520,NA(IPNTR+3))

F CALL ARYTRN('MAIN',530,NA(IPNTR+4))

F CALL ARYTRN('MAIN',540,NA(IPNTR+5))

F CALL ARYTRN('MAIN',550,NA(IPNTR+6))

F CALL ARYTRN('MAIN',560,NA(IPNTR+7))

F CALL ARYTRN('MAIN',570,NA(IPNTR+8))

F CALL ARYTRN('MAIN',580,NA(IPNTR+9))

F CALL ARYTRN('MAIN',590,NA(IPNTR+10))

F CALL CRYTRN('MAIN',600,NA(IPNTR+11))

C 1e-6 torr = 1.9337E-8psi (Note: you need to input PRESS with the correct pressure)

F CALL FMHTCOND('MAIN',IPNTR,600,4.0032,PRESS,1.667)

2

APPENDIX F
Fortran Free Molecular Heat Transfer Subroutines

C***
F SUBROUTINE KNNUM(THOTSURF,PSUBM,MOLWT,PPGAS,LEFF,KNUDSEN,FLGX)
C**
C PROGRAMMER: Eric Malroy
C DATE: 2/25/2007
C LAST MOD: 2/25/2007
C DISCRIPTION: Finds the Knudsen number. This tells the type
C of heat transfer
C Continuum Kn < 0.01 FLGX = 1
C Mixed 0.01 < Kn < 0.30 FLGX = 2
C Free Molecular Kn > 0.3 FLGX = 3
C**
C INPUT ARGUMENTS:
C ****************
C THOTSURFTemperature of the hot surface (not gas
C temperature) [R or F]
C PSUBMPointer to array telling the dynamic
C viscosity [R] vs [lbm/ft-hr]
C MOLWTMolecular weight of gas [lbm/lbmole] He = 4.003
C PPGASPressure absolute [psi]
C LEFFEffective length [ft] or is it [in]
C OUTPUT ARGUMENTS:
C KNUDSENKnudsen number
C FLGXInteger flag telling the regime of heat transfer
C FLGX = 1 Continuum
C FLGX = 2 Mixed
C FLGX = 3 Free Molecular
C******************
C***
 CALL COMMON
 DEBOFF
FSTART
 INTEGER ARNUM,FLGX,PSUBM
FSTOP
F REAL PPGAS,LAMBDA,FACTR1,FACTR2,MUU,GCONST1,PIIZ,RUNIV,
F * LEFF,THOTSURF,MOLWT,KNUDSEN,GCONST2
M CALL D1DEG1(
F * (THOTSURF-ABSZRO),A(PSUBM),MUU)
FSTART
 GCONST1 = 5.9955627E-8
 GCONST2 = 32.174
 PIIZ = 3.14159
 RUNIV = 1545.0
 FACTR1 = (MUU)*(GCONST1/PPGAS)
 FACTR2 = sqrt(PIIZ*RUNIV*GCONST2*(THOTSURF-ABSZRO)/(2.0*MOLWT))
 LAMBDA = FACTR1*FACTR2
 KNUDSEN = LAMBDA/LEFF
 KN = ',F15.5,' MU = ',F15.6)
 IF (KNUDSEN .LT. 0.01) THEN
 FLGX = 1
 ELSEIF (KNUDSEN .LT. 0.30) THEN
 FLGX = 2
 ELSE
 FLGX = 3
 ENDIF

1

FSTOP
 RETURN
 DEBON
 END
C***
C***
F SUBROUTINE FMHT(TS1,TS2,AREA1,AREA2,GAMMA,MW,PPGAS,FVF,QFMH,QPAREA,CCND)
C**
C PROGRAMMER: Eric Malroy
C DATE: 2/26/2007
C LAST MOD: 2/26/2007
C DISCRIPTION: Finds the Free Molecular Heat Transfer between two
C surfaces at different temperatures
C**
C INPUT ARGUMENTS:
C ****************
C TS1Temperature of surface number one [R or F]
C TS2Temperature of surface number two [R or F]
C AREA1Area of surface number one [ft^2]
C AREA2Area of surface number two [ft^2]
C MWMolecular weight of gas [lbm/lbmole] He = 4.003
C PPGASPressure absolute [psi]
C FVFView Factor F12 [none]
C OUTPUT ARGUMENTS:
C QFMHHeat rate of the surfaces [BTU/hr]
C QPAREABTU/hr-ft^2 (based on surface #1)
C CCNDConductor value [Btu/hr-R]
C******************
C Important Information: If TS1 < TS2 then the heat rate will
C be negative.
C***
 CALL COMMON
 DEBOFF
FSTART
 INTEGER PNTAR,ARNUM,FLGX
FSTOP
F REAL TS1,TS2,AREA1,AREA2,GAMMA,MW,PPGAS,QFMH,QPAREA,
F * NFACT,THOT,TCOLD,AA1,AA2,ATERM1,ATERM2,HOLD1,
F * FACC,GCONST,PIIZ,RUNIV,FACTR1,FACTR2,GVAL,CCND
FSTART
 IF (TS2 .GT. TS1) THEN
 THOT = (TS2-ABSZRO)
 ELSE
 THOT = (TS1-ABSZRO)
 ENDIF

C **** First find the accommodation coefficient factor (based on helium)
C **** Note this equation needs to be updated if another gas is used!
C **** Curve fit equation based on Barron’s Pg 250 Cryogenic Heat Transfer
 ATERM1 = 1.30168*(TS1-ABSZRO)**(-.262249)
 ATERM2 = 1.30168*(TS2-ABSZRO)**(-.262249)
 HOLD1 = ((1 - ATERM1)/ATERM1) + (1/FVF) + (AREA1*(1 - ATERM2)/(AREA2*ATERM2))
 FACC = 1.0/HOLD1
 GCONST = 32.1740603
 PIIZ = 3.14159
 RUNIV = 1545.0
 FACTR1 = (GAMMA+1.0)/(GAMMA-1.0)
 FACTR2 = sqrt(GCONST*RUNIV/(8.0*PIIZ*MW*THOT))
 GVAL = FACTR1*FACTR2
 CCND = GVAL*PPGAS*FACC*FVF*AREA1*0.185051917
 QFMH = CCND*(TS2 - TS1)
 QPAREA = QFMH/AREA1
FSTOP

2

 RETURN
 DEBON
 END
C***
C***
F SUBROUTINE FMHTCOND(SUBMOD,RYPNTR,MOLWT,PGAS,GAM)
C**
C PROGRAMMER: Eric Malroy
C DATE: 2/27/2007
C LAST MOD: 4/23/2007
C DISCRIPTION: Calculates the conductor values for FMHT. Each
C iteration this module is called to update the conductors for
C transient runs where the gas pressure and surface temperatures
C are changing.
C**
C INPUT ARGUMENTS:
C ****************
C SUBMODSubmodel that contains the ARRAYS
C NA(RYPNTR + 1)Pntr to numeric value of viscosity array [R] vs [lbm/ft-hr]
C NA(RYPNTR + 2)Pntr to Array of conductors
C NA(RYPNTR + 3)Pntr to Array of Node 1
C NA(RYPNTR + 4)Pntr to Array of Node 2
C NA(RYPNTR + 5)Pntr to Array of areas for Node 1
C NA(RYPNTR + 6)Pntr to Array of areas for Node 2
C NA(RYPNTR + 7)Pntr to Array of view factors
C NA(RYPNTR + 8)Pntr to Array of effective lengths
C NA(RYPNTR + 9)Pntr to Array with index to the string
C to use which specifies the submodel for
C NODE 1
C NA(RYPNTR + 10)....Pntr to Array with index to the string
C to use which specifies the submodel for
C NODE 2
C NA(RYPNTR + 11)....Pntr to String array which tells the submodel
C MOLWTMolecular weight of gas in chamber
C PGASPressure of gas in chamber
C GAMGAMMA the ratio of specific heats
C FLGTTells which method to use for finding the
C submodel
C OUTPUT ARGUMENTS:
C******************
C None
C******************
C Important Information: this module has a conflict????
C***
 CALL COMMON
 DEBOFF
FSTART
 CHARACTER SUBMOD*(*),SUBM1*(8),SUBM2*(8)
 REAL THOT,MOLWT,PGAS,KNUD,GAM,FMCND,TTT1,TTT2
 INTEGER STRTCND,INCCND,ENDCND, ICNTS,KCAT,RYPNTR,ICK,JCK,FLGO
 ICNTS = NA(NA(RYPNTR + 2))
 DO KCAT = 1,ICNTS
 CALL GETSTR(NA(RYPNTR+11),NA(NA(RYPNTR + 9)+KCAT),SUBM1)
 CALL GETSTR(NA(RYPNTR+11),NA(NA(RYPNTR + 10)+KCAT),SUBM2)
 TTT1 = T(INTNOD(SUBM1,NA(NA(RYPNTR+3) + KCAT)))
 TTT2 = T(INTNOD(SUBM2,NA(NA(RYPNTR+4) + KCAT)))
 IF (TTT1 .GT. TTT2) THEN
 THOT = TTT1
 ELSE
 THOT = TTT2
 ENDIF
 CALL KNNUM(THOT,NA(RYPNTR + 1),MOLWT,PGAS,A(NA(RYPNTR + 8)+KCAT),KNUD,FLGO)
 CALL FMHT(TTT1,TTT2,A(NA(RYPNTR+5)+KCAT),A(NA(RYPNTR+6)+KCAT),

3

 * GAM,MOLWT,PGAS,A(NA(RYPNTR+7)+KCAT),ATEST,BTEST,FMCND)

 IF (FLGO .EQ. 3) THEN
 G(INTCON(SUBMOD,NA(NA(RYPNTR+2)+KCAT))) = FMCND
 ELSEIF (FLGO .EQ. 2) THEN
 G(INTCON(SUBMOD,NA(NA(RYPNTR+2)+KCAT))) = FMCND
 ELSE
 G(INTCON(SUBMOD,NA(NA(RYPNTR+2)+KCAT))) = FMCND*100.0
 ENDIF

 ENDDO
FSTOP
 RETURN
 DEBON
 END
C***
C***
F SUBROUTINE GETSTR(KRAY,INUM,STROUT)
C**
C PROGRAMMER: Eric Malroy
C DATE: 3/2/2007
C LAST MOD: 3/2/207
C DISCRIPTION: returns the INUM substring within a character
C string that is separated by a colon (:).
C Example
C KRAY = "bigboy:hours:girl:boy:story:silly:happy"
C note: neglect the "
C if INUM = 3 STROUT = "boy"
C if INUM = 1 STROUT = "bigboy"
C if INUM = 7 STROUT = "happy"
C
C**
C INPUT ARGUMENTS:
C ****************
C KRAYPointer to Character Array
C INUMNumber of the substring to select
C OUTPUT ARGUMENTS:
C STROUT
C******************
C Important Information: The array cannot contain ":" or " "
C***
 CALL COMMON
 DEBOFF
FSTART
 CHARACTER(len=128) STRHLD
 CHARACTER(len=8) STROUT
 INTEGER KRAY,ITER,FLG,INDX1,INDX2,INUM,SZ_STR,IST
 FLG = 1
 INDX1 = 0
 STRHLD = UCA((KRAY))
 SZ_STR = LEN(STRHLD)
 DO ITER = 1,INUM
 INDX2 = 0
 FLG = 1
 DO WHILE (FLG==1)
 INDX2 = INDX2 + 1
C WRITE(NUSER1,780)ICHAR(STRHLD((INDX1+INDX2):(INDX1+INDX2))),ICHAR(':')
C 780 FORMAT(I4,I4)
 IST = ICHAR(STRHLD((INDX1+INDX2):(INDX1+INDX2)))
 IF ((IST .EQ. (ICHAR(':'))).OR.(IST .EQ. 32)) THEN
 IF (ITER == INUM) THEN
 STROUT(1:(INDX2-1)) = STRHLD(INDX1+1:(INDX1+INDX2))

4

 ENDIF
 FLG = -1
 INDX1 = INDX1 + INDX2
C WRITE(NUSER1,781)STRHLD((INDX1+INDX2):(INDX1+INDX2)),STROUT
C 781 FORMAT('HEHE',A,' ',A)
 ENDIF
 ENDDO
 ENDDO
C WRITE(NUSER1,777)INUM,SZ_STR,STROUT
C TTT1 = T(INTNOD(STROUT,50))
C WRITE(NUSER1,778)TTT1
C 778 FORMAT('Temperature is ',F15.5)
FSTOP
 RETURN
 DEBON
 END
C***

5

	14074-1.pdf
	Index to Appendixes
	APPENDIX A
	
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F

