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We present improved post-Newtonian-inspired initial data for non-spinning black-hole binaries,
suitable for numerical evolution with punctures. We revisit the work of Tichy et al. [1] and explicitly
calculate remaining integral terms. Thereby we improve the accuracy in the far zone, by including
realistic gravitational waves in the initial data. We investigate the behavior of this data both at the
center of mass and in the far zone, demonstrating agreement of the transverse-traceless parts of the
new metric with quadrupole-approximation waveforms. An advantage of these data is that they can
be used for numerical evolutions to make a direct connection between the merger waveforms and

the post-Newtonian inspiral waveforms.
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I. INTRODUCTION

Post-Newtonian (PN) methods have played a funda-
mental role in our understanding of the astrophysical im-
plications of Einstein’s theory of general relativity. Most
importantly, they have been used to confirm that the ra-
diation of gravitational waves accounts for energy loss in
known binary pulsar configurations. They have also been
used to create templates for the gravitational waves emit-
ted from compact binaries which might be detected by
ground-based gravitational wave observatories, such as
LIGO [2, 3], and the NASA/ESA planned space-based
mission, LISA [4, 5]. However, PN methods have not
been extensively used to provide initial data for binary
evolution in numerical relativity, nor, until recently (see
[6]), have they been extensively studied so that their lim-
itations could be well identified and the results of numer-
ical relativity independently confirmed.

Until the end of 2004, the field of numerical relativ-
ity was struggling to compute even a single orbit for
a black-hole binary (BHB). Although debate occurred
on the advantages of one type of initial data over an-
other, the primary focus within the numerical relativ-
ity community was on code refinement which would lead
to more stable evolution. Astrophysical realism was
very much a secondary issue. However, this situation
has radically changed in the last few years with the in-
troduction of two essentially independent, but equally
successful techniques: the generalized harmonic gauge
(GHG) method developed by Pretorius [7] and the “mov-
ing puncture” approach, independently developed by the
UTB and NASA Goddard groups [8, 9]. Originally in-
troduced by Brandt & Briigmann [10] in the context of
initial data, the puncture method explicitly factored out
the singular part of the metric. When used in numerical

evolution in which the punctures remained fixed on the
numerical grid, it resulted in distortions of the coordinate
system and instabilities in the BSSN evolution scheme.
The revolutionary idea behind the moving puncture ap-
proach was precisely, not to factor out the singular part
of the metric, but rather evolve it together with the reg-
ular part, allowing the punctures to move freely across
the grid with a suitable choice of the gauge.

A golden age for numerical relativity is now emerg-
ing, in which multiple groups are using different com-
puter codes to evolve BHBs for several orbits before
plunge and merger [11, 12, 13, 14, 15, 16, 17, 18}. Com-
parison of the numerical results obtained from these
various codes has begun [19, 20, 21], and compari-
son with PN inspiral waveforms has also been carried
out with tantalizing success [6, 22, 23]. The appli-
cation of successful numerical relativity tools to study
some important astrophysical properties (e.g. preces-
sion, recoil, spin-orbit coupling, elliptical orbits, ete)
of spinning and/or unequal mass-black hole systems is
currently producing extremely interesting new results
[24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. It
now seems that the primary obstacle to further progress
is simply one of computing power. In this new situation,
it is perhaps time to return to the question of what initial
data will best describe an astrophysical BHB.

To date, the best-motivated description of pre-merger
BHBs has been supplied by PN methods. We might ex-
pect, then, that a PN-based approach would give us the
most astrophysically correct initial data from which to
run fall numerical simulations. In practice, PN results
are frequently obtained in a form ill-adapted to numeri-
cal evolution. PN analysis deals with the full four-metric,
in harmonic coordinates; numerical evolutions frequently
use ADM-type coordinates, with a canonical decomposi-




tion of the four-metric into a spatial metric and extrinsic
curvature.

Fortunately, many PN results have been translated
into the language of ADM by Ohta, Damour, Schéfer
and collaborators. Explicit results for 2.5PN BHB data
in the near zone were given by Schéfer [39] and Jara-
nowski & Schéfer (JS) [40], and these were implemented
numerically by Tichy et al. [1]. Their insight was that the
ADM-transverse-traceless (TT) gauge used by Schéfer
was well-adapted to the puncture approach.

The initial data provided previously by Tichy et
al. already includes PN information. It is accurate up
to order (v/c)® in the near zone (r < )), but has the dis-
advantage that the accuracy drops to order (v/c)® in the
far zone (r >> A) [here A is the gravitational wavelength].
Thus the data were incomplete in the sense that they did
not include the correct TT radiative piece in the metric,
~and thus did not contain realistic gravitational waves.

In this paper, we revisit the PN data problem in ADM-
TT coordinates, with the aim of supplying Numerical
Relativity with initial BHB data that extends as far
as necessary, and contains realistic gravitational waves.
To do this, we have evaluated the “missing pieces” of
Schéfer’s TT metric for the case of two non-spinning par-
ticles. We have analyzed the near- and far-zone behavior
of this data, and incorporated it numerically in the Cac-
tus framework.

The remainder of this paper is laid out as follows. In
Section II, we summarize the results of Schéfer (1985)
[39], and Jaranowski & Schéfer (1997) [40] and their ap-
plication by Tichy et al. (2003) [1], to the production of
puncture data for numerical evolution. In Section III, we
derive briefly the additional terms necessary to complete
RTT to order (v/c)?, deferring details to Appendix A.
We pause to consider the issue of orbital phase calcula-
tion in PN theory in Section IV. In Section V, we study
the full data both analytically and numerically. Section
VI summarizes our results, and lays the groundwork for
numerical evolution of this data, to be presented in a
subsequent article.

II. ADM-TT GAUGE IN POST-NEWTONIAN
DATA

The “ADM-TT” gauge [39, 41] is a 341 split of data
where the three-metric differs from conformal flatness
precisely by a TT radiative part:
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(1 t3 ¢) Tij + hig' s

Gi5 =
7t o= 0.
The fields ¢, 7% and h};T can all be expanded in a

post-Newtonian series. Solving the constraint equations
of 3+1 general relativity in this gauge, [39, 40] obtained
explicit expressions up to O(v/c)® valid in the near zone,

incorporating an arbitrary number of spinless point par-
ticles, with arbitrary masses m4. For N particles, the
lowest-order contribution to the conformal factor is:

o —4GZ =4, (1)
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where 74 = /T — Z 4 Is the distance from the field point
to the location of particle A. In principle h;ro is com-
puted from

hTT 6TT kl Dretskl7 (2)

where O} is the inverse d’Alembertian (with a “no-
incoming-radiation” condition [42]), sp is a non-local
source term and 5;1;”1 is the TT-projection operator.

In order to compute hiTjT we first rewrite it as

h;’ro = “5iTkal A7+ (07, - A_l)] Skl
TT(NZ — _
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Note that the near-zone approximation h; of hiT

has already been computed in [39] up to order O(v/c)*
(see also Eq. 10 below). The last term in Eq. (3) is diffi-
cult to compute because

o 1
s = 167G Y HES(w —an) + 2009 @)
2 A

is a non-local source. However, we can approximate sg;
by
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and show that

h‘Lj (div) — _5TTM(D;61T, A—1>(skl _gkl) ~ O(U/C)S (6)
in the near zone Furthermore, outside the near zone
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rest of h;l;T, which falls off like 1/r. Hence
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where h;l;lz 4iw) €20 be neglected if we only keep terms up
to O(v/c)*.

The full expression for h.;l;T for N interacting point par-
ticles from Eq. (4.3} of [39] is (making the replacement
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where sag = 74 + 7B + 74p. The other two terms in
Eq. (8) can be shown to be small in the near zone (r < A,
where the characteristic wavelength A\ ~ 100M for d ~
10M). However, h;l;.T (NZ) g only a valid approximation
to ALY in the near zone, and becomes inaccurate when
used further afield.
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Setting aside these far-field issues, Tichy et al. (1] ap-
plied Schifer’s formulation, in the context of a black-hole
binary system, and constructed initial data that are ac-
curate up to O(v/c)® in the near zone. In particular,
they noted that the ADM-TT decomposition was well-
adapted to the use in numerical relativity of punctures
[10] to handle black-hole singularities.

The PN-based puncture data of Tichy et al. have not
been used for numerical evolutions. This is in part be-
cause these data, just like standard puncture data, do not
contain realistic gravitational waves in the far zone. To
illustrate this, we restrict to the case of two point sources,
and compute the “plus” and “cross” polarizations of the
near-zone approximation for AT

pN?) = h?j“NZ)eg e, (11)
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For comparison, the corresponding polarizations of the
quadrupole approximation for the gravitational-wave
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The first term in (8), h,; can be expanded in v/c as
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The leading order term at O{v/c)*
Eq. (A20) of [40]:

, is given explicitly by
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strain are given by (paraphrasing Eq. (3.4) of [43]):
2M

hy = —(1+ cos? ) (WMfGW/)Z/B COS(CDGW'), (13)
hy = 4—7‘/\1 cos Q(WMfgw)Q/a Sin(@(;w), (14)
where M = 13/% M is the “chirp mass” of the binary,

given in terms of the total PN mass of the system M =
mi + ma, and the symmetric mass ratio v = mymo/M?*. 2
®ow(t) and few(t) are the phase and frequency of the
radiation at time ¢, exactly twice the orbital phase ®(7)
and orbital frequency Q(7)/2w, evaluated at the retarded
time 7 = t" =t — r. The lowest-order PN prediction for
radiation-reaction effects yields a simple inspiral of the
binary over time, with orbital phasing given by

(15)
(16)

2(7) = (1) - 0%,

1 -3
8M © !

where © = v (t, — 7)/5M, M and v are given below
(14), and ¢, is a nominal “coalescence time”. Finally, the
angle # above is the “inclination angle of orbital angular
momentum to the line of sight toward the detector”; that
is, just the polar angle to the field point, when the binary
moves in the z-y plane.

Additionally, to evaluate (11-12), we need the trans-
verse momentum p corresponding to the desired separa-
tion r19. The simplest expression for this is the classical

A7) =
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FIG. 1: Plus polarization of the quadrupole (black/solid)

and near-zone (red/dashed) strains observed at fleld point
r = 100M, 8 = =x/4, ¢ = 0. The binary orbits in the z-y
plane, with initial separation is r12 = 10M, with a nominal

coalescence time t, ~ 1180M. Both phase and amplitude of
B IT (4)

i are very wrong outside the near zone.

Keplerian relation, which we give parametrized by Q(7):

rig = M(MQ)™%3,
= Mv(MQ)*/3,

(17)
(18)
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In Fig. 1 we compare the plus polarization of the two
waveforms (11) and (13) at a field point » = 1000,
f = 7w/4, ¢ = 0, for a binary in the z-y plane, with
initial separation r13 = 10M. The orbital frequency of
the binary is related to the separation r12 and momenta
p entering (11) by (17-18). In the lowest level of approx-
imation, the binary has a nominal PN coalescence time
t. ~ 1180M. As expected, both phase and amplitude of

hZ-T ) are wrong outside the near zone. This means that
the data constructed from h;[J‘-T ® have the wrong wave
content, but nevertheless these data are still accurate up

to order (v/c)® in the far zone.

It is evident from the present-time dependence of (10)
that it cannot actually contain any of the past history of
an inspiralling binary. We would expect that a correct
“wave-like” contribution should depend rather on the re-
tarded time of each contributing point source. It seems
evident that the correct behavior must, in fact, be con-
tained in the as-yet unevaluated parts of (8). The requi-
site evaluation is what we undertake in the next section.

III. COMPLETING THE EVALUATION OF h}T

To move forward, we simplify (8) and (10) to the case
of only two particles. Then, (8) reduces to:

RIT — pTT(ND) | 163 / P1iP1j etk (E-T) 4 P2iP2j P2ip2j iR (E—72) _ g_ My M12¢ N125 i F(E-1)
- “ my my 2 712
G N21i 215 ik .(F—7 b (w/k)2 —iw(t=7) B dwdr
.,..5 Mo M ———T12 et (£—-%2) kZ (w n ; 6)2 (2 7{) h7.7 (div) (19)
— 5, TT(NZ) r1| Pl T2 | P2 TT1 Gmims _ yTT2 Gmyimg .
= M g L/mj Hy L/mz} i {V 2712 nw} Hi; {V 2712 7112}
+h1] (div)» (20)
where
TTAj= ._ o (w/k)? AP i (1
H [u = 167G /dT @ )4 Ui U _7] mel (F-Fa(7)) g—tw (t—7) (21)

Here, the “T'T projection” is effected using the operator
P! := 6! — k; k7 /k?. For an arbitrary spatial vector 1,

1
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Details on the evaluation of these terms are presented
in Appendix A. After calculation, we write the result as
a sum of terms evaluated at the present field-point time
t, the retarded time {7, defined by

t—th —ralth) =0, (23)




and integrals between t7, and ¢,

where the three parts are given by:
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In Fig. 2, we show the retarded times calculated for
each particle, as measured at points along the = axis, for
the same orbit as in Fig. 1. We also show the corre-
sponding retarded times for a binary in a stable circular
orbit. Since the small-scale oscillatory effect of the finite
orbital radius would be lost by the overall linear trend,
we have multiplied by the orbital radius.

TT (4)

A. Reconciling with Jaranowski & Schifer’s hy;

From the derivation above it is clear that h;l;-T includes

retardation effects, so it will not depend solely on the
present time. We might even expect that all “present-
time” contributions should vanish individually, or should
cancel out. In fact, it can be seen easily from (25) that
the “¢” part of the second and third terms of Eq. (20)
exactly cancel out the “kinetic” part (first line) of Eq.
(10). That is, we can simply remove that line to begin
with, and use the “t™ part instead. One may also inquire
whether the “¢” parts of the fourth and fifth terms of Eq.
(20) above,

TT (pot,now) __ TT1 G?’I”Ll me
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Gmime .
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FIG. 2: Retarded times for particles 1 and 2, as measured by
observers along the z axis at the initial time ¢ = 0, for the
binary of Fig. 1. To highlight the oscillatory effect of the
finite-radius orbit on t”, we first multiply by r, which is the
average field distance.

similarly cancel the remaining, “potential” parts of Eq.
(10). The answer is “not completely”; expanding in pow-
ers of 1/7, we find:
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where W = sinf cos(¢p — ®(t)), and ®(¢) is the orbital
phase of particle 1. That is, the “new” contribution can-
cels the 1/r and 1/r? pieces of h;gT @ entirely. More-
over, the h;l;lg divy term in Eq. (20) will be neglected from
here on because it is small both in the near and the far
zone [39].

We note here two general properties of the contribu-
tions to the full hLT.

1. In the near zone h;-l;-T )

all other terms arise from (3;% — A™1)sg;. Thus
all other terms must cancel within the accuracy of
the near-zone approximation.

is the dominant term since

RET ™) g very wrong far from the sources; thus,

i
the new corrections should “cancel” h;P.T @ entirely

far from sources. Note, however, that while h;; =
—0O-} sy depends only on retarded time, its TT-
projection hJT = 6T * hyy has a more complicated
causal structure; E.g. the finite time integral comes
from applying the TT-projection. [Proof: If we
had a source given exactly by 3g, h};-T ) would
" depend only the present time, h;; would depend
only on retarded time, and h;g-T would (as we have
computed) contain a finite time integral term.]

Additionally, the full LT agrees well with quadrupole
predictions, which we demonstrate in Section V.

IV. HIGHER-POST-NEWTONIAN PHASE
INFORMATION

The calculations presented above lead to waveform am-
plitudes that are accurate up to O(v/c)* everywhere.
However, the phase of the waveforms (via hT7) is critical
for detection purposes, and to model this to high accu-
racy, we desire that our initial-data wave content already
encode the phase as accurately as possible.

A. Circular or Inspiral?

Waveform phase is a direct consequence of orbital
phase. To lowest approximation, we can assume a binary
moving in a closed circular orbit (for zero eccentricity).
Although physically unrealistic — since radiation reaction
will lead to inspiral and merger of the particles — this is
perfectly consistent with our amplitude calculations. Up
to 2PN order, we can have closed circular orbits, where

f

the sources’ linear momenta p are related to the separa-
tion 712 by, say, Eq. (2.4) of [1]. However, a circular orbit
has implications for the retarded radiation, since radia-
tion observed at each point in the present time will have
arisen from an orbit of the same size (with same momenta
and accelerations). As more distant field points have ear-
lier retarded times, the circular orbit approximation will
get worse for those further field points.

These relations are at the heart of the quadrupole ap-
proximation for the observed wave strain (13-14). As the
signal phase is so crucial for detector scientists, a popular
compromise set of waveforms has been arrived at, called
the “restricted post-Newtonian” approximation. In this
approximation, we work with the quadrupole approxima-
tion wave amplitudes (thus ignoring post-Newtonian am-
plitude corrections), but feed these high-order-accurate
PN phases. That is, we still use expressions (13) and (14),
but with more complicated expressions for the phase
(1) + B(te) !

Expressions for the higher-PN orbital phase can be
found in many references; for instance, Eq. (6.29) of
[44] gives the orbital phase to high PN order, in radia-
tive coordinates. Higher-order corrections to the phase
in ADM-TT gauge can in principle be obtained through
a contact transformation, or from direct ADM-TT calcu-
lations [45].

Given this phase (and the implied orbital frequency ),
we can now derive the separation 719 and momentum p.
For instance, in the manner of [46], we find to second PN
(post leading) order:

r12(Q) - (3-v)
lM = (M)~ — e
2
_(8= 8;’2’ =87 )®, (30
p(Q) _ (15 = v)
N = (MO)Y? + —6——(1\19)

N (441 — 324y — v/?)

= (MQ)5/3. (31)

B. Numerical Implementation of High-Order Phase

For numerically constructing initial data, the primary
input is the coordinate separation of the holes. This

! For consistency, one could similarly “upgrade” fow, but this
may not be necessary for signal phase determination.
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FIG. 3: The zz component of the full h:fS-T for a binary with
initial separation d = 10M in a circular (black/solid) or in-
spiralling (red/dashed) orbit. The orbital configuration is the
same as for Fig. 1, apart from the Keplerian relations, where
we have used the higher-order Keplerian relations (30-31).
Note the frequency broadening at more distant field points.

must be maintained exactly so that the punctures can
be placed on the numerical grid. To ensure this, we in-
vert Eq. (30) to obtain the exact Q, corresponding to
our desired rig.

Now we use Eq. {16) with ¢ = 0 to find the coalescence
time £, that yields this Q.. Once we have obtained t.,
we can find the orbital phase & and frequency {2 at any
retarded time 7 directly from Egs. (15-16), and the cor-
responding separation rjs and momentum p from Egs.
(30-31).

V. NUMERICAL RESULTS AND INVARIANTS

In Fig. 3, we show a representative component of the
retarded-time part of h;T for both circular and leading-
order inspiral orbits. For both orbits, we use the ex-
tended Keplerian relations (30) and (31); otherwise the
orbital configuration is that of Fig.1. We can see that
the cumulative wavelength error of the circular-orbit as-
sumption becomes very large at large distances from the
sources. This demonstrates that using inspiral orbits
instead of circular orbits will significantly enhance the
phase accuracy of the initial data, even though circular
orbits are in principle sufficient when we include terms
only up to O(v/c)* as done in this work. From now on
we use only inspiral orbits.

Next, we compare our full waveform hET (expressed
as the combinations h, and hy) at an intermediate-field
position (r = 100M, 8 = =/4, ¢ = 0) to the lowest-order
quadrupole result. In Fig. 4, the orbital configuration is
the same as for Fig. 1. As one can see, both the 4+ and x
polarizations of our h[T agree very well with quadrupole
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FIG. 4: Plus and cross polarizations of the strain observed at
field point r = 100M, 8 = 7 /4, ¢ = 0. Both the quadrupole-
approximation waveform (black) and the full (red) waveforms
coming from h;l;T are shown. The orbital configuration is the
same as for Fig. 1.

results, as they should.

After having confirmed that we have a PN three-metric
gi; that is accurate up to errors of order O(v/c)®, and
that correctly approaches the quadrupole limit outside
the near zone, we are now ready to construct initial data
for numerical evolutions. In order to do so, we need the
intrinsic curvature Kj;, which can be computed as in
Tichy et al. [1] from the conjugate momentum. The dif-
ference is that here we use the full h?;T instead of the

near zone approximation h;l;T ) to obtain the conjugate
momentum [39]. The result is

) ol 1
K7 = —ypy |75 + 5h + (@ofE)"

+0(v/c)®, (32)

where the error term comes from neglecting terms like
hllawy 8t O(v/e)® in AT, and where ¥pn, () and
¢(2) can be found in Tichy et al. [1]. An additional dif-
ference is that the time derivative of ALT is evaluated
numerically in this work. Note that the results for gy;
are accurate up to O(v/c)?, while the results for K;; are
accurate up O(v/c)®, because K;; contains an additional
time derivative [1, 47, 48].

Next we show the violations of the Hamiltonian and
momentum constraints computed from g;; and Ky, as
functions of the binary separation r12. As we can see in
both panels of Fig. 5, the constraints become smaller for
larger separations, because the post-Newtonian approx-
imation gets better. Note that, as in [1], the constraint

violation remains finite everywhere, and is largest near
each black hole.




FIG. 5: Upper panel: Hamiltonian constraint violation along
the v axis of our new data in the near zone, as a function of
binary separation ri2. Lower panel: Momentum constraint
(y-component) violation of the same data along the z axis.
The orbital configuration is that of Fig. 3.

A. Curvature Invariants and Asymptotic Flatness

In analysis of both initial and evolved data, it is often
instructive to investigate the behavior of scalar curva-
ture invariants, as these give some idea of the far-field
properties of our solution. We expect, for an asymptoti-
cally flat space-time, that in the far field, the speciality
index S = 2772%/Z% will be close to unity. This can
be seen from the following arguments. Let us choose a
tetrad such that the Weyl tensor components 3 and 3
are both zero. Further, we assume that in the far field
1g and 4 are both perturbations of order € off a Kerr
background. Then

s~1-30% o, (33)
V3

which is indeed close to one. Note however, that this
argument only works if the components of the Weyl ten-
sor obey the peeling theorem, such that ¥y ~ O(r~3),
o ~ O(r~®) and 14 ~ O(r~1). In particular, if 1o falls
off more slowly than O(r~%), S will grow for large r.
Now observe that 1o ~ O(r=%) ~ M?3/r® is formally of
O(v/c)®. Thus in order to see the expected behavior of
S =~ 1 in the far-field we need to go to O(v/c)®. If we
only go to O(v/c)* (as done in this work) 1y consists of
uncontrolled remainders only, which should in principle
be dropped. When we numerically compute & we find
that for our data, S deviates further and further from
unity for large distances from the binary. This reflects
the fact that the so-called “incoming” Weyl scalar g

only falls off as 1/r%, due to uncontrolled remainders at
O(v/e)®, which arise from a mixing of background and
TT waveform.

VI. DISCUSSION AND FUTURE WORK

The exploration and validation of PN inspiral wave-
forms is of crucial importance for gravitational-wave de-
tection and our theoretical understanding of black-hole-
binary systems. The goal of this work is to provide a
step forward in such understanding by building a direct
interface between PN approximations and numerical evo-
lutions along the lines already developed in Ref. [1]. In
this paper we have essentially completed the calculation
of the transverse-traceless part of the ADM-TT metric
to O(v/c)* provided in [1], yielding data that on the ini-
tial Cauchy slice will describe the space-time into the
far-field. We have incorporated this solution into a nu-
merical initial data routine, adapted to the “puncture”
topology that has been so successful recently. We have
demonstrated this data’s numerical properties on the ini-
tial slice.

The next step is to evolve this data with moving punc-
tures, and investigate how the explicit incorporation of
post-Newtonian waveforms in the initial data affects both
the ensuing slow binary inspiral of the sources and the
“new” radiation released from the system. We note es-
pecially that our data are non-conformally flat beyond
O(v/c)®. We expect our data to incorporate smaller
unphysical initial distortions in the black holes than is
possible with conformal flatness, and hence less spurious
gravitational radiation during the numerical evolution.
We see this as a very positive step toward providing fur-
ther validation of numerical relativity results for multiple
orbit simulations by comparison with PN results where
these are expected to be reliable. These initial data will
also allow to fully evaluate the validity of PN results for
merging binaries comparing them with the most accurate
numerical relativity results.
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APPENDIX A: DETAILS OF INTEGRAL
CALCULATION

Here we present some more details of the calculations
that lead to the three contributions to Eq. (21): Egs.
(25-27). Inserting Eq. (22) in the general integral (21),
we can write Hip ,[d] as a combination of scalar and
tensor terms:

2
H%TTA[{L‘] = 167(G/d7’{[uiuj —%'51‘3} Ia
2
5

~ [ucugl, I, + [%52] L4 jAD

] I3 6y

where the “I” integrals are defined as:

31 2 ikrag cosb—iwT
I, = /d kdw (w/k)* e (A2)

(27)4 k2 — (w+ie)?
/ A3k dw ki kI
(2m)* k2
(W/k)
E—(w+ie)?
/ A3k dw kK7 k¢ k4
(27)4 k4
(w/k)Q eikrA cosf@—iwT
(2 — (w+i€)?

-
Iy =

ikra cos@—iwT

(A3)

ijecd
IA

(A4)

Here T =t — 7, and 74 = T — £4. We have also taken
our integration coordinates such that 74 lies in the z di-
rection, so that the dummy momentum vector k satisfies

k- 7y =kracosb , d°k=k?dk sin6dfdg.

Define the unit orthogonal vectors o4 = (0,0,1) , /=
(cos ¢, sin ¢, 0). Then we can write

H':kcosGﬁA%—ksin@l? = E-FA :TAE-ﬁA.
We can also define a projector tensor onto 7

Qab = 6ab_nanb:>Qab:5ab“nanb
”_?Qachb = Qavb 3 Qabnbzo s Q(lbgb:ea.

1. Angular integration

We will neglect the A subscript for now, until it be-
comes relevant again. To calculate the integrals (A2-A4),
we begin with the ¢ integration. The only ¢ dependence
comes from the £ parts of the k terms. It can be seen

from elementary trigonometric integrals that:
/dd)f“ = /dqseaebec =0
/d¢ea£b = 7Q°,
/dqszzaebecgd =

We use these to calculate the ¢ integrals for I4° and
I3%¢4, Define w = cosf. Then

/dgbl}: 27,

Z_ (Qachd + Qac de + Qad ch) ]

kakb 2 b 2 b
/dgzﬁ——k—2— = 27rw‘nn +7T(1—'w )Qa s
a 1.b .c1.d
/dqﬁw = 2nwin®nbncnd
k4
+6mw? (1 —w?) Qlnnd
+%7£ (1 - U)2)2 Q(ab ch)‘

So the next integrals will differ in their § dependence,
contained in the powers of w above. The 8 integrals will
contain the following basic types:

+1 inh
gola) = /1 dwe®™ :2sma a, (A5)
+1 ;
sinha cosha
= d 2 _aw =9 _
ga(a) B ww” e A 2z
sinha
+ = (A6)
+1 :
sinha cosha
= dww*e®™ =2 - ,
ga(a) B ww* e . o
inl h inh
oa sm31a 48 cos4 a 448 sm5 a- (A7)
a a a

Now I%? and I9%¢? can be written as the linear combi-
nations:

Iab — anb_%Qab)K} ,

-

(A8)

1
2
Iabcd — ’:(na nb 7'Lc7ld

+ [(3 Qb nend
3
2 (ab ned)
rg e,
I here can be expressed in terms of go(a) above:
;= / dw Pk (w/k)? .
) @emE ) 27 kP —(w+ie)?

_ dw 2 —iwT * 1
= /<2w>3“ ¢ /_md’”kt

dw 2 —twT
= /(2—71')3_w [ Jo.

3
Q(abnc nd) + 'S'Q(abQCd)> L}

Q(&bQCd) }

-

T

(A9)

ikr cos—iwT

(lufi_ i 6)2 go (2 k T)

(A10)




The 1/2 factor is because we moved to integrating k over
the whole real line instead of the positive half-line (this
is permissible as g, (a) is an even function of a). K and L
are defined analogously to I, but with extra even powers
of cosf = w:

— dw dSE (w/k)z ikr cos@—iwT 2
K = /(27r)3 /E;r_k2-(w+ie)ze cos™0
_ dw o et [T, 1/2 ,
= /(27r)3w e [wdkkz_(w+ie)2g2(zkr)
= /—-———-(Qd::)g wieteT gy (Al1)
— dw | dgi{’: (w/k)z ikr cos8—iwT 4
L= e | mE e ot
_ W 5 _iwr /oo 1/2 :
= /(27T>3w e _oodka—(w+ie)294(ZkT>
dw 5 T
_ / 5o Ja. (A12)
2. Momentum integration
Now we address the k integrals, defined as:
o0 >0 oo
gz [Tk = [ degio+ [ degi),

where we collect the positive exponents in the g, in the
integrand of £, (k), and the negative exponents in f (k):

gn (1KkT)/2

N ga(ikr)/2 N
f:(k) 2 f"(k>=k2—~(w+i6)2.

Tk (wtie)

We calculate this as the sum of contour integrals of the
“plus” and “minus” integrands (necessary, as the oppo-
site signs require different contours). Each of these has
polesat k=0, k=kr=w-+icandk=k_ = —w—1e¢
(the first of these is from the g, ). We integrate the “plus”
integrands anticlockwise around the contour C; (blue),
and the “minus” integrands anticlockwise around the
contour Cy (red) (see Fig. 6); taking the limit k] — oo,
the contribution from the curved segments vanishes, and
the residue theorem gives us:

Jo = 2miRes[fT, k] — 2miRes|f, k-]

+miRes[f;F,0] — miRes[f;,0]. (A13)

Calculating the residues, we find the values of each of
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FIG. 6: Contours needed to complete integration over k (top)
and w (bottom).

the Jp:
Weir(w-{-ie) T
Jo = — Al4
0 rw+ie)? r(w+ie)?’ (A14)
7 = 7re”(“’+“)+7re”(“’+“) [—2+2ir{w+tie)
2T T(wtie)? 3 (w+ie)t
2m
L Al5
3 (w+ie)t’ (A15)
et (wtie) AT eir(w+i €) :
Jy = 6—61 ]
4 rlw+ie)?  rd(w-+ie)l [ ir(wie)
=372 (w+ie)? +ir® (w+ie)?]
247
— e Al6
5 (w4 i¢)8 (A16)

3. Frequency integration

Now we perform the w integration. Inserting the re-
sults (A14-A16) into (A10-A12) respectively, we see that
each of I, K and L contains a delta function, which we




can extract:

' BT =) = 8T,

—TE€ dw
dxr T-r+e /(277)3

K = -——5(
dw —tw
(27)3 et Fon(w2)

1 [ dw
L = m5(T—7">+6 /(271_)3

+/(%d%§6~inF4b(w)>

e—iw (T—r) Fga(w)

+

e—iw (T'—7r) F4a (w)

where the new terms on the RHS come from the Js above,
grouped by exponential, as that is what determines the
contours chosen during integration (see Fig. 6):

Fyp(w) = ;3_(%7:_’_&%—1)4,

Fia(w) = 5@7%—6)‘5 (24— 24ir (w+i€)
—127% (wHie) +4ir® (w+ie)],

Fyp(w) = —%-

Now the residues are as follows (taking the e — 0 limit):

) 2miT
Res [e"“’(T_T) Fga(w),—ie} - 7;32 ,
. 2miT
Res [e““"Tng(w),—z'e] = — 7;; ,
S 3
Res[ —iw (T— 'r)F4 ZE} _ 47T25T ,
T
4miT3
Res[ “"TF@ ze] = — WTZS .

i = {:ninj (Zl%é(T—r)—@(T) (r—T) 5oy 7~3>+ 0 <_

ikl = [n n? nk l([—}—%(S(T—T)—@(T)@(T—

3 glis kD <_
8
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The only pole is at w = —i¢, so if we can close in the
upper half-plane, we'll get zero.

e For T < 0, both the “a” and “b” integrals can be
closed in ;. Result; zero contribution.

e For 0 < T < r, the “a” integrals can be closed
in Cy, but the “b” integrals must be closed in Cs.
Result: “b” contribution.

e For T > r, both the “a” and “b” integrals must be
closed in C’g But then the “a” and “b” residues
cancel out. Result: zero contrlbutlon.

Thus the only interesting contribution happens in the
interval 0 < T <7 &t —r(7r) < 7 < t. In this case, the
final integrals yield

dw —iw (T'—7) _ T
/ )3 Fovw) = 2mrs’
2
3
2d:)3 eI Fy(w) = _%’
leading to the final result for K and L:
I = 2 6(T—r)— ——&T)
- 47rr d7r '
T
L= L sr_n_emer-1) L
T dnr r " 7 rd

We use these to calculate the I*7 and I*75L

~§(T) +O(T) Or

QWTTS)L(Am

7g> _ 30U k) O(T)O(r — T) <2_:_7§ - %)
4_%5(7?)+@(T)@(T~T) <—T- Ii)ﬂ

(A18)

rr3  wrd

4. Time integration

The final integrations will be over the source time 7. The “crossing times” for the two © functions are 7 =t and
7 =t", where t is the present field time, and " the corresponding retarded time defined by (23). Now taking a general




function y(7), we find that

12

/_ZdTIAy(T) - 47‘7§A(2)§ )~ 47ry7EtA)(t)’
[T et = [ 220 - [Ger H] - [ ar (3miymy — ) L22)
A A
/_o;dflzjkly(ﬂ = [n%nﬁnf;nﬂl 4y7$:)AL=tr - {2 G QA 4_2/7%);}
+/t; dr (—3 QY7 nA+ Q(” kl)) —“27(:;2)3 y(7)
+/t; dr ( n’y nAnA+3Q(” ng—% f;j Z1)> ——————ST;(?; y(7).

These can now be substituted into the general integral (A1). We write the result as a sum of terms at the present

field-point time ¢, the retarded time 7,

and interval terms between them,

HYp 4[0) = Higp lidst] + Hyh 4[880) + Hep [T 65 — ¢,
Ny 4G T w2l 1 s U W] 1 g s
HY 1) = — R I e e A i L Xk
twatit = i (=50 <[5, 290 [, 5
1 1 ik Uk UL 3 (15 ~k
. ) (1] 1 i)k [,L_E] BINCE I T))
{Zuku t QQA + 2 Jp 874 TA
y 4G ‘ u? u? o Uk Uy .
Hid ) = i d 2 §U =z . [_____ k lé"bj
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— [2 U u(i] nf} n'} + {——-uk ul} ni; nf;l nﬁ nlA}
A 2 e
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