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A technique is presented for the analysis of measured data obtained from a rotating

microphone rake system. The system is designed to measure the interaction modes of

ducted fans. A Fourier analysis of the data from the rotating system results in a set of

circumferential mode levels at each radial location of a microphone inside the duct. Radial

basis functions are then least-squares fit to this data to obtain the radial mode amplitudes.

For ducts with soft walls and mean flow, the radial basis functions must be numerically

computed. The linear companion matrix method is used to obtain both the eigenvalues of

interest, without an initial guess, and the radial basis functions. The governing equations

allow for the mean flow to have a boundary layer at the wall. In addition, a nonlinear least-

squares method is used to adjust the wall impedance to best fit the data in an attempt

to use the rotating system as an in-duct wall impedance measurement tool. Simulated

and measured data are used to show the effects of wall impedance and mean flow on the

computed results.

I. Introduction

A diagnostic tool was needed to measure the interaction modes of ducted fans in order to develop fan
tone noise reduction techniques. Cicon et al.1 proposed a concept for a continuously rotating microphone
rake that would be able to obtain all modal amplitudes in a reasonable data acquisition time. The key
concept is that by slowly rotating the microphone rake in a manner locked to the fan shaft, a Doppler
shift is imparted to the duct spinning modes that is uniquely based on the mode physics. The resulting
rotating microphone rake system developed by the NASA Glenn Research Center (called the Rotating Rake
Mode Measurement System or just the Rotating Rake) has made several advances in the understanding of
turbofan mode generation.2 Hall et al.3 developed the original data analysis scheme for the Rotating Rake
using closed form solutions that were readily obtained for hard wall, circular ducts with no mean flow. The
Rotating Rake has been very successful in measuring the modal content propagating in hard wall ducts. The
data analysis was extended by Sutliff2 in an attempt to include the effects of a constant mean flow in a soft
wall duct, whether circular or annular in cross-section. For a constant area duct, the basis functions were
again obtained using closed form analytical solutions.

The initial processing of the data obtained from the Rotating Rake follows two basic steps: (1) The
signals streaming from the microphones in the rake are digitized and a Fourier transform is applied. The
Fourier coefficients represent the complex amplitudes of the circumferential modes of the measured acoustic
pressure field in the duct. (2) Each circumferential mode is further decomposed into a series of radial basis
or mode functions. This series of radial basis functions takes the form of a weighted sum of Bessel functions
that are the closed formed solution to the governing wave equation in a circular or annular duct for the
following conditions: (a) the walls of the duct are hard and there is no mean flow, (b) the walls of the duct
are hard and there is a uniform mean flow, and (c) the walls of the duct are lined with a locally reacting
impedance and there is no mean flow. For these cases, the orthogonal properties of the Bessel functions
allow the complex amplitudes of the radial basis functions to be easily obtained from an integration of the
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pressure disturbance across the area of the duct. These radial basis functions are linearly combined to fit
the measured circumferential mode data in a least-squares sense. In addition, there is a closed form relation
between the radial eigenvalue that is part of the argument of the Bessel function and the axial wave number,
which determines the propagation and/or decay of the mode in the axial direction of the duct. The data
analysis for constant mean flow in a soft wall duct proposed by Sutliff2 simplified the analysis by applying the
orthogonality principle to the radial basis functions in that case, even though the principle did not strictly
apply.

For the general duct flow case where a boundary layer exists at the wall whether the wall is hard or soft,
the previous data analysis using closed form solutions may not be sufficiently accurate. Example radial basis
functions are shown in Figure 1 for hard wall and soft wall boundary conditions where the flow is varied
from no flow to plug flow to using a flow profile. The no-flow and plug-flow cases have identical radial basis
functions for the hard-wall boundary condition and small changes are seen in the radial basis functions for
the soft wall case. For these soft-wall conditions, it is possible to use the no-flow radial basis functions for
fitting rotating rake measured data in a soft wall duct within some error, hopefully small. When a mean flow
profile is included when computing the radial basis functions (See Figure 9 for plots of the flow profile.), the
results in Figure 1 show a definite change especially for the soft wall conditions. The MAvg = −0.25 profile
results represent approach conditions for a jet engine of the size typically used on business jets. The plot
shows about a 1.4 dB peak mode amplitude change from the non-flow-profile case which would then effect the
level of acoustic power contained in that mode. The desire to be accurate in determining the mode power in
a soft wall duct with flow gives sufficient reason to further study the effects of shear flow on the data analysis
where the governing equations do not have closed form solutions. A more general approach is proposed in
this paper to the data analysis technique for the rotating rake system by developing a numerical approach
to obtain the radial basis functions. The technique includes wall impedance boundary conditions and allows
shear flow conditions to exist in the duct. In addition, the analysis provides for the possibility that the wall
impedance is unknown in the least-square fit of the basis functions to the data. Since the impedance affects
all the basis functions nonlinearly, the least-squares fit, in this case, is performed iteratively.
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Figure 1. Comparison of radial basis functions computed using m = 4, n = 1, η = 10.8 with no flow, plug flow, and flow
profile conditions. (a) Hard wall. (b) Soft wall with Z = 1.7 − 2.2i. Flow profiles used for calculations are shown in
Figure 9.

In the next section, we present the governing equations for the propagation of sound in a cylindrical or
annular duct while allowing for the presence of a general parallel mean flow. Using both hard and soft wall
boundary conditions, an eigenvalue problem is formed that when solved produces both the complex axial
wave numbers, the eigenvalues, and their associated radial basis functions, the eigen-functions. Since the
eigenvalue appears nonlinearly in the governing equation, we use the linear companion matrix method to
directly solve the eigenvalue problem. The method is globally convergent with no need for any initial guess
eigenvalues unlike alternative approaches that use local iteration. Example results show the utility of the
method. This is followed by a description of the least-squares procedures for solving for both the radial mode
amplitudes and the wall impedance. The procedures are designed to accommodate the changing behavior
of mode shapes and radial-mode order as the wall impedance changes. Finally, results are shown for fitting
numerically generated radial basis functions to both simulated and measured data. For the latter, both plug
flow and mean profile flow are used in the calculations.
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II. Numerical Solution

The goal of analyzing the Rotating Rake data is to obtain the amplitude of the measured modes in the
duct and, if desired, deduce the impedance of the installed duct wall acoustic treatment. Once the mode
amplitudes are found, the acoustic power in each mode can be computed and compared to far field radiated
power levels. For that to occur, two basic processes are followed: 1) determine the radial basis functions by
numerically solving the eigenvalue problem presented by the governing equation and 2) determine the mode
amplitudes by a least-squares fit and if the impedance is to be found, use an iteration approach.

II.A. Eigenvalue Problem

The numerical analysis of the eigenvalue problem is based on a discretization of the third order equation
for the acoustic pressure p derived from combining the linearized momentum and energy equations, and
assuming the static pressure is constant.

D3p

Dt3
+ c2

[
2

∂(cM)

∂r

∂2p

∂x ∂r
− 1

c2

∂c2

∂r

D

Dt

∂p

∂r
− D

Dt
∇2p

]
= 0 (1)

where
D

Dt
=

∂

∂t
+ cM

∂

∂x

and ∇2 is the Laplace operator in cylindrical coordinates. This equation accounts for the compressibility
of the flow and allows both the Mach number M and the speed of sound c to be functions of the radial
direction. For subsonic flow in a duct, the conditions are such that the speed of sound is about constant.
Hence, equation (1) reduces to that given by Eversman4 (equation 13) in cylindrical coordinates.

For a circular or annular duct, the soft wall boundary condition for a locally reacting impedance is found
by using the continuity of particle displacement. The general form of the boundary condition in terms of
acoustic pressure at r = Ro, the outer wall, is

∂2p

∂t ∂r
= −ρÂ∗

ow

[
∂

∂t
+ cM

∂

∂x

]2

p (2)

where Â∗
ow is the outer wall admittance and ρ is the mean flow density. (The wall impedance is related to

the the wall admittance by Z∗ = 1/Â∗.) This condition reduces to the pure admittance boundary condition
when M = 0 at the wall for a boundary layer flow and reduces to the hard wall boundary condition when
Â∗

ow = 0. For a circular duct, the boundary condition at the duct centerline, r = 0, is given by

∂p

∂r
= 0 m = 0

p = 0 m 6= 0 (3)

where m is the circumferential mode number. An annular duct may also have a soft wall boundary condition
at the inner wall, r = Ri.

∂2p

∂t ∂r
= ρÂ∗

iw

[
∂

∂t
+ cM

∂

∂x

]2

p (4)

The sign difference between equations (2) and (4) follows from the convention that in the definition of the
wall impedance, the particle velocity is defined as positive into the locally reacting impedance.

The analysis of equation (1) starts by using the separation of variables solution form for the acoustic
pressure

p(x, θ, r, t) = pmnEmn(r)ei(ωt+mθ−kxx) (5)

where we let Emn be a general function of r that forms the basis function for the least-squares fit, ω is the
radian frequency, and kx is the axial wave number which also depends on m and n. Equation (5) represents
one term in a double summation over all circumferential mode numbers m and radial mode numbers n. Since
equation (1) is linear, it can be solved using one mode at a time. Substitute into equation (1) and divide
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out the exponential functions and the amplitude coefficient to obtain an equation that is used to determine
the shape of the radial basis function E for each pair of (m, n) mode numbers.

[
1 − cM

kx

ω

]3

E +
c2

ω2

(
2

kx

ω

∂(cM)

∂r

∂E

∂r
+

1

c2

∂c2

∂r

[
1 − cM

kx

ω

]
∂E

∂r

+

[
1 − cM

kx

ω

] [
∂2E

∂r2
+

1

r

∂E

∂r
− m2

r2
E − k2

xE

])
= 0 (6)

With boundary conditions defined by equations (2) to (4), the resulting equation becomes an eigenvalue
problem where the eigenvalue is the complex axial wave number and the eigen-functions no longer have
the form of Bessel functions that were found for the previous closed form solutions. Using finite difference
approximations, equation (6) is discretized using N + 1 nodes resulting in a matrix equation that, including
the appropriate boundary conditions, is written as

D3(kx)E = 0 (7)

where D3(kx) is a lambda matrix of degree three representing a scalar polynomial with matrix coefficients

D3(kx) = C0k
3
x + C1k

2
x + C2kx + C3 (8)

and E is the vector of acoustic pressure basis function values at each node point.
The eigenvalues of equation (7) are easily found using the linear companion matrix method. Following

Bridges & Morris,5 we assemble the companion matrix. The C matrices in equation (8) are populated by
values obtained from the discretization of equation (6) and its boundary conditions. The computational grid
has uniform grid spacing after any necessary grid stretching in the physical domain to allow more grid points
within the boundary layer, if it exists, of a flow. Since C0 multiplies the highest powered eigenvalue k3

x, it is
found that the boundary points give a zero value on the main diagonal of C0 resulting in a singular matrix.
To avoid the singular matrix and allow the technique to succeed, a transformation of the form

λ = (z1 + kx)/(z2 − kx)

is applied to equation (8) leading to the modified equation

[
A0λ

3 + A1λ
2 + A2λ + A3

]
E = 0 (9)

where

A0 = C0z
3
2 + C1z

2
2 + C2z2 + C3

A1 = −3C0z1z
2
2 + C1(z

2
2 − 2z1z2) + C2(2z2 − z1) + 3C3

A2 = 3C0z
2
1z2 + C1(z

2
1 − 2z1z2) + C2(z2 − 2z1) + 3C3

A3 = −C0z
3
1 + C1z

2
1 − C2z1 + C3

In the transformation, z2 cannot be equal to an eigenvalue kx. Otherwise, we use the values z1 = z2 = 1.
With this transformation, the A0 matrix is no longer singular. We can now left multiply equation (9) by
A−1

0 , define the vectors E1 = λE and E2 = λE1, and rearrange the system of equations to obtain

[A − λI] Ẽ = 0 (10)

where

A =



−A−1

0 A1 −A−1
0 A2 −A−1

0 A3

I 0 0

0 I 0




is the companion matrix of order 3N + 3 and

Ẽ =
[
E2 E1 E

]T
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is the eigen-vector for the companion matrix. The axial eigenvalues kx and their associated eigen-functions
are found from using the QR algorithm on the companion matrix A to obtain λ and applying the inverse
transform. The eigen-functions E are obtained from the last third of the eigen-vector Ẽ and renormalized
such that the L2-norm of E equals 1. More specifically, the eigenvalues kx are written as kxmn where m
is the circumferential mode number that is fixed for each solution of equation (6). The eigenvalues, for a
fixed m, are ordered by the index n representing the radial mode order of the eigenvalue. Thus for a given
mean flow profile, frequency, wall admittances, and circumferential mode number, we obtain all the axial
eigenvalues and eigen-functions for each radial mode in the duct to some order of the discretization. The
eigenvalues for higher modes become very inaccurate. The axial eigenvalues with the smaller magnitudes
are of the most interest since they are associated with the lower order radial eigen-functions for which the
Rotating Rake is designed to measure.

The eigenvalues produced by the companion matrix method are associated with all the modes that can
propagate and/or decay in both directions in the duct. Since the current technique assumes that modes can
propagate and decay only in one direction, the appropriate eigenvalues must be identified from the global
set produced. Using the sign convention used for the exponential functions in equation (5), the following
definitions are used to identify the appropriate eigenvalues. If kx is complex, then the eigenvalues of physical
interest are those that decay in the direction of propagation. These are identified by evaluating the imaginary
part of kx using the conditions

ℑ{kx} < 0 decay in +x direction

ℑ{kx} > 0 decay in −x direction (11)

If kx is real, then the group velocity cg = ∂ω/∂kx is computed to indicate the direction of propagation.

cg > 0 propagation in +x direction

cg < 0 propagation in −x direction (12)

Using cg to determine the propagation direction takes into account the effect that a mean flow has on the
propagation. A subset of lower-ordered eigenvalues representing modes propagating and/or decaying in the
+x direction is identified from the global set obtained and stored for use in the least-squares process.

Mode Vo et al.6 N = 200

1 -1.5459i -1.5459i

2 -5.2368i -5.2368i

3 -8.4775i -8.4775i

4 -11.6632i -11.6632i

5 -14.8299i -14.8299i

6 -17.9877i -17.9877i

7 -21.1407i -21.1407i

8 -24.2908i -24.2907i

9 -27.4388i -27.4387i

10 -30.5856i -30.5853i

Hard wall, m = 1, η = 1.0, M = 0.0

Table 1. Comparison of kx eigenvalues for modes
propagating in the +x direction.

Mode Vo et al.6 N = 200

1 1.880 - 0.845i 1.8797 - 0.8450i

2 0.278 - 3.414i 0.2783 - 3.4141i

3 0.145 - 6.798i 0.1451 - 6.7979i

4 0.099 - 10.025i 0.0991 - 10.0248i

5 0.075 - 13.211i 0.0754 - 13.2106i

6 0.061 - 16.379i 0.0609 - 16.3793i

7 0.051 - 19.539i 0.0511 - 19.5392i

8 0.044 - 22.694i 0.0440 - 22.6940i

9 0.039 - 25.846i 0.0387 - 25.8456i

10 0.034 - 28.995i 0.0345 - 28.9949i

Soft wall, Âow = 1.0+1.0i, m = 0, η = 1.0, M = 0.0

Table 2. Comparison of kx eigenvalues for modes propa-
gating in the +x direction.

II.B. Example Eigenvalue Problem Solutions

The computation of the eigenvalues and eigen-functions using the linear companion matrix method was
performed with 5-point discretization at all interior and boundary points. This gives a fourth-order accurate
solution. To validate the solution, test cases were run with increasing complexity. First, the eigenvalues
were computed for a hard wall, cylindrical duct with no mean flow. The results are shown in Table (1) for
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the m = 1 circumferential mode with η = 1.0, where η = ωRo/cr is a nondimensional frequency and cr is
a reference speed of sound. The comparison results are given from the fourth-order Runge-Kutta solution
of Vo & Eversman.6 The eigenvalues are identical to at least 3 decimal places. Next, the outer wall is
made soft with a specific acoustic admittance Âow = ρrcrÂ

∗
ow = 1.0 + 1.0i where ρr is a reference density.

The computed eigenvalues are identical to those from Vo & Eversman as shown in Table (2) for the m = 0
circumferential mode.

The problem complexity is increased by adding a constant mean flow to the soft wall circular duct. To
represent the case of flow entering an inlet, the x-axis of the problem points out of the inlet while the flow
enters in the opposite direction. Hence, the flow Mach number is set at a negative value, M = −0.5. The
eigenvalues are shown in Table (3). The results are again identical to those from Vo & Eversman. (Note
that the 10th mode from Vo & Eversman is actually the 14th mode. This was verified by observing the
eigen-functions.)

+Mode Vo et al.6 N = 200 -Mode Vo et al.6 N = 200

1 0.620 - 5.014i 0.6195 - 5.0139i 1 0.410 + 1.290i 0.4101 + 1.2904i

2 -5.820 - 3.897i -5.8195 - 3.8968i 2 1.259 + 6.085i 1.2595 + 6.0852i

3 0.445 - 9.187i 0.4453 - 9.1868i 3 1.146 + 9.668i 1.1457 + 9.6679i

4 0.453 - 13.062i 0.4539 - 13.0615i 4 1.022 + 13.315i 1.0218 + 13.3150i

5 0.480 - 16.822i 0.4795 - 16.8217i 5 0.943 + 16.977i 0.9425 + 16.9768i

6 0.503 - 20.531i 0.5029 - 20.5307i 6 0.891 + 20.635i 0.8907 + 20.6353i

7 0.522 - 24.213i 0.5220 - 24.2131i 7 0.855 + 24.288i 0.8549 + 24.2884i

8 0.538 - 27.880i 0.5376 - 27.8799i 8 0.829 + 27.937i 0.8288 + 27.9368i

9 0.550 - 31.537i 0.5503 - 31.5370i 9 0.809 + 31.581i 0.8089 + 31.5814i

10 0.589 - 49.754i 0.5608 - 35.1875i 10 0.755 + 49.772i 0.7933 + 35.2232i

14 0.5891 - 49.7539i 14 0.7546 + 49.7717i

Soft wall, Âow = 0.72 + 0.42i, m = 2, η = 1.0, M = −0.5

Table 3. Comparison of kx eigenvalues. +Mode indicates mode propagating in the +x direction against the flow. -Mode
indicates mode propagating in the -x direction with the flow.

The possibility of including a shear flow in a duct is the advantage of the above numerical solution
compared to the previous closed-formed, analytical solutions. This case was tested next. Previous eigenvalue
results were available in Kousen7 for a hard wall duct with a mean flow having a 1/7th power law profile.

M(r) = M(1 − r)(1/7)

The computed eigenvalues are shown in Table (4) compared to the results from Kousen. The real eigenvalues
and the imaginary parts of the complex eigenvalues are identical to 3 decimal places. The real parts of the
complex eigenvalues are the same to 2 to 3 decimal places.

II.C. Least-Squares Fit

The microphone data from the Rotating Rake is Fourier analyzed to obtain complex values pm(ri, ω) that
represent the separation of the acoustic pressure by frequency and circumferential mode order at each radial
location, ri, of the microphone. These values are expected to be functions of the radial mode content in the
duct following

pm(ri, ω) ≈
Nmax−1∑

n=0

Pmn(ω)Emn(ri; Â
∗
ow, Â∗

iw, ω), i = 1, 2, . . . , Nmeas (13)

Equation (13) represents the attempt to further decompose the measured circumferential mode data into an
approximate series of weighted radial basis functions computed using the linear companion matrix method
as discussed above. These functions are not only functions of radial position and frequency, but are also
functions of the outer duct wall admittance Â∗

ow and, in the case of an annular duct, the inner duct wall
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Mode Kousen7 N = 200

1 0.81547 0.81527

2 0.76952 0.76948

3 0.72763 0.72758

4 0.65346 0.65339

5 0.54051 0.54043

6 0.36975 0.36966

7 0.06477 0.06481

8 -0.28277 + 0.48650i -0.28309 + 0.48624i

9 -0.28328 + 0.80439i -0.28366 + 0.80420i

10 -0.28368 + 1.0539i -0.28415 + 1.05367i

11 -0.28403 + 1.2756i -0.28459 + 1.27546i

Hard wall, m = 0, η = 20.0, M = 0.3

Table 4. Comparison of kx/η eigenvalues for modes propagating in a duct containing a shear flow.

admittance Â∗
iw. To solve equation (13) for the complex radial mode amplitudes Pmn(ω), we use the least-

squares method. For fixed admittances, the solution is to minimize the residual sum of squares

s = ‖p− BP‖2
2 (14)

where

p =
[
ℜ{pm(r1)} . . . ℜ{pm(rNmeas

)} ℑ{pm(r1)} . . . ℑ{pm(rNmeas
)}

]T

is a real vector comprised of the real and imaginary parts of the measured complex circumferential mode
data of length np = 2Nmeas,

B =




ℜ{Em0(r1)} −ℑ{Em0(r1)} . . . ℜ{Em(Nmax−1)(r1)} −ℑ{Em(Nmax−1)(r1)}
...

... . . .
...

...

ℜ{Em0(rNmeas
)} −ℑ{Em0(rNmeas

)} . . . ℜ{Em(Nmax−1)(rNmeas
)} −ℑ{Em(Nmax−1)(rNmeas

)}
ℑ{Em0(r1)} ℜ{Em0(r1)} . . . ℑ{Em(Nmax−1)(r1)} ℜ{Em(Nmax−1)(r1)}

...
... . . .

...
...

ℑ{Em0(rNmeas
)} ℜ{Em0(rNmeas

)} . . . ℑ{Em(Nmax−1)(rNmeas
)} ℜ{Em(Nmax−1)(rNmeas

)}




is a real matrix of coefficients derived from the radial basis functions of size np × nc, nc = 2Nmax, and

P =
[
ℜ{Pm0} ℑ{Pm0} . . . ℜ{Pm(Nmax−1)} ℑ{Pm(Nmax−1)}

]T

is the real solution vector for the complex radial mode amplitudes of length nc. By ensuring that the number
of measurement points Nmeas is greater than the number of radial basis functions Nmax, the problem is
overdetermined, np > nc, and a solution to this linear problem is easily computed using the singular value
decomposition method. This method provides the best approximation to solving the linear least-squares
problem for over-determined systems and it is robust, handling problems where B is close to being singular.
(See Lawson & Hanson8 for details.)

II.D. Process for Nonlinear Least-Squares Fitting

In addition to the process of obtaining the complex modal amplitudes given the radial basis functions, it is
desirable to deduce the wall admittance from the rotating rake measurements. There are cases where the
wall admittance is not known or not known precisely where measurements could provide those values. At
other times, a check of the installed wall admittance is required. To determine the wall admittance from
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rotating rake data requires more extensive calculations than the linear least-squares fit to determine the
mode amplitudes. The admittance (or its inverse, the impedance) appears in the boundary conditions of the
governing equations. As such, the admittance affects the computed mode shapes, which are themselves, in
essence, power series representations. Thus, the effect of varying the wall admittance appears nonlinearly in
the mode solution. What was a linear least-squares solution to obtaining the mode amplitudes becomes a
nonlinear, least-squares iterative solution. However, since only the admittances appear as nonlinear param-
eters, we can use conditional linearity to separate the fitting of the linear (the amplitude coefficients) and
the nonlinear parameters.9 This means that the iterative process required to solve a nonlinear least-squares
problem is only applied to the nonlinear parameters.

Let fi be the expectation function defined by the right hand side of equation (13). Using conditional

linearity, we expand fi into a Taylor’s series about the current admittance values β̂ (a vector of length nz)

given the current amplitude values P̂

f(P̂, β̂ + δ) = f(P̂, β̂) + B̃(P̂, β̂)δ (15)

where

B̃ij =
∂fi

∂βj

∣∣∣∣
P̂,β̂

i = 1, 2, . . . , np j = 1, 2, . . . , nz. (16)

In these equations, f(P̂, β̂) is determined from the linear least-squares solution outlined above for the current

β̂ resulting in the current P̂, the best-fit amplitude coefficients for β̂. Thus, the amplitude coefficients are
not held constant, but change to the best-fit values as β changes. Since equation (16) must be computed
using numerical derivatives, additional calculations of f are required at incremental changes of each element
of β, all with the appropriate linear least-squares solution for f . Once f and B̃ are computed, the system
of equations is solved for the change δ in the admittance values using least squares, computing the residual
error at the new admittance values, and repeating until the error is minimized. While this iteration process is
straight forward, in nonlinear least-squares problems it can be unstable and not converge to a minimum error
solution. For instance, the computed δ can be too large, sending f outside the local region of convergence.
Thus, means are required to control the process.

Lawson & Hanson8 detail using the method of Marquardt to solve this nonlinear least-squares problem
and control the size of the steps that δ can take. The equations are transformed and amended into the form

[
GB̃D−1

√
ξI

]
(Dδ) =

[
G (p− f)

0

]
(17)

where G is a diagonal matrix used for weighting the data. For example, it is common to give a relatively
larger weight to terms in (p− f) that are considered more accurate. The diagonal matrix D is computed

from the square root of the diagonal terms in B̃TGTGB̃. This matrix rescales the matrix B̃ to prevent
erratic behavior in the convergence due to the possibility that B̃ may be nearly singular and causing large
changes in δ. The ξ parameter moderates the step size taken by the impedance parameter β from the current
parameters β̂ to the new parameters β = β̂ + δ.

Singular value decomposition is again used to solve for δ. Decompose the matrix GB̃D−1 as

GB̃D−1 = UΣVT

where U contains the left singular vectors, V contains the right singular vectors, and Σ is a diagonal matrix
containing the singular values σi. The step size vector δ is then solved using the following three equations.

ĉ1 = UTG (p − f)

y
(ξ)
i =

nz∑

j=1

Vij ĉ1j
σj

σ2
j + ξ

i = 1, 2, . . . , nz

δi =
y
(ξ)
i

dii

As ξ is increased, the step size δ is reduced to prevent divergence of the iteration. Alternatively, ξ can be
reduced to promote faster convergence when possible. Thus, with appropriate choices for ξ as the iteration
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progresses, systematic adjustments are made in both the nonlinear admittance parameters and the linear
amplitude coefficients in order to reduce the error of the fit. Convergence to a solution is achieved when
either ∣∣∣∣

s − ŝ

ŝ

∣∣∣∣ < ǫ,

the relative change in the residual sum of square errors, or

∣∣∣∣
δi

βi

∣∣∣∣ < ǫ for all i,

the relative change in all the nonlinear parameters, is less than some chosen convergence tolerance ǫ.
This procedure for nonlinear least-squares fitting is based on the fact that the measured data is to be fit

by a series of radial basis functions. As the conditions change in the duct, such as the mean flow and/or
the wall admittance, the radial basis functions must be recomputed. Oftentimes, one can easily compute
eigenvalues and eigen-functions by starting with a good initial guess eigenvalue and then tracking it through
small changes in the duct conditions to the final desired condition. This could be easily accomplished by
using the shooting or matrix method to solve the eigenvalue problem based on a reduced form of equation
(6). The inverse power method would then be used to obtain the associated eigen-function. One could easily
follow one or more modes using this approach with much less calculations then are performed here. However,
such an approach often fails when the wall admittance is near ‘optimum’ where the theoretical maximum
attenuation occurs for a particular frequency, geometry and input model content.10
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Figure 2. Trajectories of eigenvalues kx for the 2 lowest radial modes as a function of the wall admittance Âow where
ℑ{Âow} is held constant. Black: ℑ{Âow} = 0.5, Red: ℑ{Âow} = 0.45, Blue: ℑ{Âow} = 0.22; m = 2, η = 3.6, M = 0.0. The

region where a double eigenvalue exists is marked with an ‘X’ bounded by ℜ{Âow} = 1.53 and ℑ{Âow} = 0.45 to 0.50.
Side plots are radial basis functions at selected kx values. Solid lines are magnitude. Dashed lines are phase.

The near-optimum admittance case is a test of the numerical methodology where conditions are changing
rapidly. This is illustrated in Figure 2 where trajectories of the eigenvalue kx are shown as a function of
the wall admittance. In a manner following Zorumski & Mason,11 the imaginary part of the admittance
is held constant along the trajectory and every dot represents a 0.015 increment in the real part from
the previous dot. Starting from ℜ{Âow} = 0, the basis functions labeled (2, 0) have a real kx, representing
propagating duct modes. As ℜ{Âow} increases, the kx trajectories leave the real axis with increasing amounts
of damping. The basis functions labeled (2, 1) begin with an imaginary kx, indicating that the duct modes are
cut off. Their eigenvalues kx move toward larger real parts as ℜ{Âow} increases. The condition for optimum
admittance corresponds to the location of a double eigenvalue shown in the figure. As can be seen in this
region, the eigenvalues change rapidly with small changes in admittance. Furthermore, the shapes of the
basis function convert from one radial order to another as the trajectory passes near the double eigenvalue
point.12 In this example, the (2, 0) basis functions shown in black convert to (2, 1) basis functions as the
black trajectory passes on the right side, larger ℜ{kx} values, of the double eigenvalue. Conversely, on the
left side, lower ℜ{kx} values, the basis functions convert from a (2, 1) to a (2, 0) type of basis function. The
consequence of this is that the eigenvalues and eigen-functions can change abruptly around near-optimum
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admittance causing unstable conditions to occur in the nonlinear least-squares iteration. In the fitting
process, it is the form of the radial basis functions that are fit to the data. It is the linear companion matrix
method that produces these functions. Since we are not specifically concerned with what order the basis
functions are listed, we can avoid the potential issue of ‘mode-switching’ by computing both the eigenvalues
and the eigen-functions at each new admittance condition. The best fit of the basis functions to the data
is then obtained by starting with one best fit basis function and then including additional best fit basis
functions one at a time until the desired best fit overall is achieved. This process is illustrated in Figure 3
where data from measurements taken by the Rotating Rake in a hard wall duct are fit by computed radial
basis functions. In Figure 3a, the first five radial basis functions are shown in the order computed by the
linear companion matrix method. The third basis function has the lowest residual sum of square errors,
s = 197, and is shown fit to the data on the right side with mode amplitude labeled P4,0. Next, Figure 3b
shows the remaining four basis functions. We now fit each of these functions to the data along with the part
(a) function. The addition of the first basis function provides the smallest error, s = 0.326, and this mode
amplitude is labeled P4,1. The resulting total fit for the sum of the two modes is shown on the right side.
Finally, part (c) shows the process repeated for the addition of a third basis function. For the fixed hard-wall
boundary condition, this illustration is a repeated application of linear least-squares fitting of the computed
basis functions as each additional basis function is included in the fit equation. In the nonlinear least-squares
fitting, this process is performed at each iteration step as the wall impedance is varied to achieve best fit.
While the mode amplitudes that gave minimum error were found directly, finding the best fit impedance
through iteration requires a reasonable initial starting value.

III. Numerical Results

We next show two sets of numerical results for fitting computed radial basis functions to data. First,
simulated data is used to test the fit process illustrated in Figure 3 for soft wall conditions. Second, data
taken in the NASA Glenn Advanced Noise Control Fan (ANCF)13 is used for fitting computed radial basis
functions. The nonlinear least-squares fit process is used to find the best fit impedance for both constant,
plug flow conditions and for mean flow profile conditions.

III.A. Simulated Data

The Eversman Inlet Radiation code14 was used to generate mode propagation data along a treated section
in a cylindrical duct. A (2,0) mode with a given amplitude was specified at the input plane of the duct.
The duct initially had a hard wall followed by the treated section then reverting to a hard wall before
the exit of the duct. The code computes the behavior of the initial mode as it propagates through the
duct including scattering, reflection, and absorption. The magnitudes and phases of the pressures were
extracted from the numerical data at the duct cross-section equal distance from the two ends of the treated
section. Nine radial locations were selected to simulate microphone measurement points and the analysis
was conducted for the m = 2 circumferential mode with η = 3.6 and M = 0.0. Two cases were computed:
one non-optimum impedance, Z = 2.16−2.88i, and one near-optimum impedance, Z = 0.6−0.2i. Both wall
impedance conditions used in the Eversman duct code calculations are indicated in Figure 2. Obviously, the
non-optimum impedance is not near the double eigenvalue condition.

The duct code numerical data represents a simulation of the processed output from a rotating rake
measurement, that is the complex pressures for one circumferential mode, the left side of equation (13). To
illustrate the possibility of using the process for nonlinear least-squares iteration to determine a best fit wall
impedance for the measured data, least-squares errors were computed as a function of the wall impedance.
Figure 4 shows contour plots for the fit error using the non-optimum wall impedance data generated by the
duct code. It is implicit in these results that the mode amplitudes, the Pmn(ω) factors in equation (13), are
the best fit values for each wall impedance. At each impedance point used for computation on the grid, the
process shown in Figure 3 is followed: first for one basis function, then two basis functions, and finally, three
basis functions. All three cases show the same distinct minimum error region. Hence, these results show
that the best fit wall impedance should be found in a straight forward manner using an iterative process
where the error at each step is computed by a linear least-squares code using the most recent impedance. In
this case, the best fit impedance would only change slightly whether 1, 2, or 3 radial basis functions were
used in the fit.
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Figure 3. Process of fitting radial basis functions Emn to data from Rotating Rake measurements in a hard wall duct.
m = 4, η = 10.8, and M = −0.115. (a) Best fit one function. (b) Best fit second function given first function. (c) Best fit
third function given first two functions. All basis functions are real. Mode amplitudes are complex.
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Figure 4. Contours of minimum least-squares fit error as a function of the wall impedance Z for 1, 2, or 3 radial basis
functions (modes). Data was generated using input mode (2,0), wall impedance Z = 2.16 − 2.88i, η = 3.6, and M = 0.0.

Figure 5 shows the fit error contour plots using the duct code numerical data with the near-optimum
wall impedance. In this case, more than one basis function is required to obtain a best fit wall impedance
that has better agreement to the impedance used in the duct code. This result also illustrates that the fit
process in the vicinity of the near-optimum impedance works well without regard to the ‘mode-switching’
behavior shown in Figure 2. The error contours are smooth indicating that the iterative process should not
have problems progressing through to minimum error. Figure 5a may show the effects of ‘mode-switching’
as one basis function is fit in the impedance plane surrounding the double eigenvalue location, but this was
not studied in detail at this time. For two or more basis functions, the effects of ‘mode-switching’ are not
noticeable since the two basis functions are always present to balance each other to achieve the best fit.
Thus, the results in Figures 5b and 5c behave more like the results in Figure 4 where adding more basis
functions does not change the best fit impedance.
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Figure 5. Contours of minimum least-squares fit error as a function of the wall impedance Z for 1, 2, or 3 radial basis
functions (modes). Data was generated using input mode (2,0), wall impedance Z = 0.6 − 0.2i, η = 3.6, and M = 0.0.

III.B. Measured Data

The set of contour plots, shown in Figure 6, are computed fit errors resulting from using measured Rotating
Rake data taken in the NASA Glenn Advanced Noise Control Fan (ANCF).13 The wall treatment was a
linear, single-degree-of-freedom liner with a screen mesh on a 34 percent open area perforate. For a fan speed
of 1800 RPM, the duct plug flow Mach number was −0.115 and the design wall impedance was Z = 1.7−2.4i
for a normalized frequency of η = 10.8 corresponding to the second harmonic of the blade passage frequency.
The m = −8 circumferential mode was used in this analysis. Unlike the previous results using computed
simulated data, these results show significant changes in the error contour plots as the number of radial basis
functions changes in the fit equation. For one basis function, the minimum error is in the vicinity of the
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Figure 6. Contours of minimum least-squares fit error as a function of the wall impedance Z for 1, 2, or 3 radial basis
functions (modes). Data from rotating rake measurements, m = −8, nominal wall impedance Z = 1.7 − 2.4i, η = 10.8,
and M = −0.115.

nominal design impedance. Adding a second basis function to the fit gives rise to a second local minimum
for best fit wall impedance within the search grid. With a third basis function, the two local minimum
regions are smaller and distinct. While the color contours visually show the regions of minimum error, the
range of actual error values is decreasing as more basis functions are added to the fit equation. Thus, given
that each impedance point in Figure 6c has the best fit amplitudes for that impedance, then practically
any point ‘fits’ the data even though there are two local minimum error regions since all the fit errors are
reasonably small. To illustrate, the radial basis functions and the best fit modes amplitudes and shapes for
these two conditions are shown in Figures 7a and 7b. In part (a), the (−8, 0) mode fits the data very well by
itself. (It should be noted that of the seven microphones the one microphone at r/R = 0.943 was determined
after the testing to be not working properly. Hence, that data point was weighted such that it was set to
zero.) Whereas in Figure 7b the addition of the (−8, 1) mode is required to achieve a comparable level of
fit. This results in a small 8 percent change, 0.7 dB, in the the dominant (−8, 0) mode amplitude but the
best fit impedance has changed about 36 percent. The small changes in mode amplitudes were enough to
compensate for the changes in the radial basis functions due to the large change in the wall impedance to
achieve a minimum fit error.

The same set of measured Rotating Rake data was analyzed again using a measured mean flow profile
instead of plug flow. The flow profile is shown in Figure 9 with an average Mach number MAvg = −0.115
(recalling that the flow is in the opposite direction of the positive x-axis.) The set of fit error contour plots
are shown in Figure 8 and are contrasted to the equivalent set for plug flow conditions in Figure 6. Clearly
for this condition the mean flow has affected the conditions for best fit wall impedance. Though it should be
noted that the range of errors over the grid of impedances again becomes very small when two or more radial
basis functions are used in the fit. Even though the contour plots can show dramatically different locations
for best fit impedance, there is actually little change in the basic fit to the data. This is also illustrated in
Figure 7. By adding only the effect of the mean flow profile at a constant wall impedance, we go from part
(a) to part (c). The change in the shape of the basis functions is shown and the amplitudes of the modes
have increased, a 2.5 dB increase for the (−8, 0) mode, but the data is fit quite well. To achieve that last
10 percent reduction in error to get to the minimum error/best-fit-impedance condition required the real
part of the impedance to increase 67 percent from 1.42 to 2.37. Thus, while the presence of the mean flow
profile effects the shape of the radial basis functions, the limited amount of data included in the fit does
not provide sufficient constraint allowing a large range of amplitude and impedance combinations to provide
minimal fit errors. Other conditions were run to see if these kinds of changes occurred. The results for best
fit impedance at three conditions are shown in Figure 10 compared to results from ANCF measured data
analyzed using closed form basis functions and other measured and computed results previously presented in
Sutliff.13 Results are plotted at 747 Hz (at 1400 RPM, M = −0.085, η = 8.4, and m = −4), 853 Hz (at 1600
RPM, M = −0.1, η = 9.6, and m = −8), and 960 Hz (at 1800 RPM, M = −0.115, η = 10.8, and m = −8)
for both the plug flow case and the flow profile case. For the two lower speed cases, the differences in the
best fit impedance between the plug flow case and the flow profile case is much less than in the highest speed
case. Also in both cases, the minimum error location was distinct as a function of the wall impedance. It is
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Figure 7. Changes in radial basis functions and mode fits with changes in wall impedance and flow conditions using
data from Rotating Rake measurements in a soft wall duct. (a) Plug flow M = −0.115, best fit Z = 1.42 − 2.32i near
nominal wall impedance, s = 0.0371. (b) Plug flow M = −0.115, best fit Z = 1.93−1.47i, s = 0.0372. (c) Flow profile shown
in Figure 9 with MAvg = −0.115, wall impedance Z = 1.42 − 2.32i, s = 0.0416. (d) Flow profile shown in Figure 9 with
MAvg = −0.115, best fit Z = 2.37 − 2.35i, s = 0.0373.
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Figure 8. Contours of minimum least-squares fit error as a function of the wall impedance Z for 1, 2, or 3 radial basis
functions (modes). Data from rotating rake measurements, m = −8, nominal wall impedance Z = 1.7 − 2.4i, η = 10.8,
and MAvg = −0.115 with mean flow profile shown in Figure 9.

not known if this is due to the lower flow speed or that the lower flow speed profiles are flatter as shown in
Figure 9 for the MAvg = 0.085 profile compared to the higher speed profile. More measurements at different
frequencies and higher flow speeds are required. For these three in-duct, rotating rake measurements, the
effect of the change in the flow profile, from plug flow to measured flow profile, and the effect of this flow on
the boundary condition, equation (2), results in an increase in the measured wall resistance and an absolute
increase in the measured wall reactance. Overall, the variability we see for the best fit impedances produced
in this study is shown in Figure 10 to often be within the variability of the impedances measured by other
techniques.

IV. Discussion

A numerical technique has been developed to compute the eigenvalues and eigen-functions for the duct
solution with soft walls and a general mean flow. It uses the linear companion matrix method based on
a discretization of the third-order governing equation and its boundary conditions. This method does not
require an initial guess in order to solve the eigenvalue problem producing both the axial wave numbers, the
eigenvalues, and their associated eigen-functions. The latter formed the basis functions that were used in the
least-squares fit of the data. The results in this paper show that these basis functions can easily be used in a
least-squares fit to determine the radial mode amplitudes as done in previous studies where closed form basis
function solutions were used. With the numerically computed basis functions, the mean flow can be correctly
accounted for whether it is a plug flow or a mean flow profile. It was shown in an example case using rotating
rake measured data that when the mean flow profile is included, the mode amplitude increased 2.5 dB. This
potential for changes in the mode amplitude has not yet been verified by measurements. It was mentioned
above that once the mode amplitude is determined, the mode power can be calculated. Then assuming that
the least attenuated modes are propagating out the duct, the in-duct mode power can be compared to far
field radiated power. Thus, a check on the mode amplitude can be made with these measurements. This
data could also provide a constraint on fitting the data to find the wall impedance.

While radiating mode power is useful, an issue of importance is that the results for best fit impedance
assume that the modes are propagating in the direction out of the duct which is the same assumption used
when duct radiating power is computed. When in-duct, rotating rake measurements are made over acoustic
treatment, modes may exist in the local vicinity that are propagating in both directions due to reflections in
the duct. Currently, these are all lumped together in the measured data. The analysis cannot separate modes
propagating in opposite directions. It only computes mode amplitudes that best fits the basis functions given
and it can have free reign to adjust the impedance as necessary to further improve the fit. This could be a
reason why the fit error versus impedance grid search has such a low variability in the size of the error leading
to the situation in Figure 7 where multiple fit solutions were found for the same data. A way to separate
the direction of propagating modes is to take measurements at separate axial locations simultaneously.

Another issue to consider is that the expectation function for computing the residual sum of squares
only used data from one circumferential m-order. Additional m-order equations can be included in equation
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(14) each with their own circumferential mode data from rotating rake measurements and with their radial
basis functions individually computed at the same frequency, wall admittance, and mean flow profile. With
multiple radial basis functions competing to fit multiple sets of measured data all with the same impedance
boundary condition (neglecting any effects of mode amplitude on the impedance), then perhaps the minimum
error might be more definitive with errors away from minimum error being much larger than currently found
in this study. Providing more data for the fit in that manner would be easier to do than, say, adding more
microphones to the rotating rake. But, adding more microphones is still important for resolving higher
orders of radial modes.
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