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 This paper considers factors that contribute to poor identification of unsteady 
aerodynamics from wind tunnel data for an airliner configuration. One approach to 
modeling a wing-tail configuration is considered and applied to both steady and large-
amplitude forced pitch oscillation wind tunnel data taken over a wide range of angles of 
attack but a limited range of amplitude and frequencies. The identified models fit the 
measured data well but in some cases with inaccurate parameters. Only limited conclusions 
can be drawn from analysis of the current data set until further experiments can be 
performed to resolve the identification issues. The analysis of measured and simulated data 
provides some insights and guidance on how an effective experiment may be designed for 
wing-tail configurations with nonlinear unsteady aerodynamics. 

 

Nomenclature 
Cm = non-dimensional pitching moment coefficient 
CN = non-dimensional normal force coefficient 
c  = mean aerodynamic chord, m 
f = frequency, Hz 

tl  = distance between aircraft c.g. and a.c. of the tail, m 
q = pitch rate, rad/sec 
S = reference area, m2 
t = time, sec 
V = velocity, m/s 
xW = wing center-of-pressure position, fraction of c  
α = angle of attack, rad 
αd = dynamic angle of attack, rad 
α0 = mean angle of attack, rad 
αA = amplitude of angle of attack, rad 
ε = downwash angle, rad 
φ = tail setting angle, rad 
σ̂  = estimated standard error 
τΝ, τx, τε = time constants for normal force, center of pressure, and downwash angle 
v = residuals 
ω = angular frequency, rad/sec 
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I. Introduction 
ne of the first attempts to formulate aerodynamic model equations with unsteady terms based on wind tunnel 
data was reported in Ref. 1 and later in Ref. 2. The experimental data were in the form of forced oscillations in 

pitch with fixed amplitude and varied mean angle of attack and frequency. The test article was a simple delta wing. 
Later in the same decade, several reports and papers appeared with experiments including oscillations in roll and 
yaw, and with varied amplitudes3,4. Other planforms were also tested such as the F-16XL aircraft with cranked-delta 
wing5 and the X-31 aircraft with delta wing and canard6.  

Recently there has been increased interest in identification (model structure determination and parameter 
estimation) of a transport aircraft represented by a classical wing-tail configuration. The theoretical background for 
model formulation was given by Jones and Fehlner7,8 and Tobak9. Later, Klein10 developed linear aerodynamic 
equations for planar motion of an aircraft with a horizontal tail. Unsteady effects in these equations were expressed 
by linear indicial functions for wing and tail aerodynamics and for the downwash angle.  

A different model of the wing-tail combination was proposed by Khrabrov11 et. al. They assumed that the aircraft 
model can be represented by body, wing, and tail components and that the aerodynamic forces and moments are in 
general nonlinear and unsteady. The resulting model included algebraic and differential equations with parameters 
dependent upon the angle of attack. The model was used in the analysis of steady and unsteady wind tunnel data. 
The identified model was presented in several graphs comparing measured and estimated time histories. 
Unfortunately, no numerical values of estimated parameters and their accuracies were given.  

Wind tunnel data and postulated model equations of Ref. 11 were used again in model identification and the 
results are summarized in Ref. 12. The identified models for different configurations mostly fit the measured data 
quite well. Some of the estimated parameters, however, were estimated with low accuracy resulting in non-physical 
values. There were no a priori values of the parameters and no additional measured data which could be used for 
model validation.  

The purpose of this paper is to re-examine the results of previous data analysis addressing mainly measured data 
inconsistency, low accuracy and non-physical values of parameter estimates, and model adequacy. This will provide 
the groundwork and direction to investigate appropriate experiment designs that can allow identification of wing-tail 
configurations that exhibit nonlinear unsteady dynamics. In addition, a proposal for future experiment design for 
obtaining wind tunnel data with high accuracy and high information content will be outlined. The experiment should 
provide steady data for all configurations, small amplitude oscillatory data for estimating damping parameters, large 
amplitude oscillatory data for model identification, and specific data for checking model adequacy and prediction 
capability.  

II. Measured Data 
The measured data were obtained from static and dynamic testing of an airliner in the Central Aero-

Hydrodynamic Institute (TsAGI) low subsonic wind tunnel11. The steady data included the normal force and the 
pitching moment of four different configurations, i.e., body alone (B), body-tail (BT), body-wing (BW) and the 
complete model (BWT). These measurements cover the angles of attack from -10° up to 30°.  

The dynamic data were obtained from a forced oscillatory motion of the same model in the same tunnel using the 
same test rig. The experiment was executed at different initial values of angle of attack, α0, frequencies, and 
amplitudes, αA. For aircraft model identification, large amplitude (αA > 5°) time histories of CN and Cm for three 
configurations BT, BW, and BWT, at frequencies approximately equal to 0.4Hz, 0.8Hz, and 1.3Hz, were used. For 
large oscillation amplitudes of 15°, α0 was equal to 5° and 15°, and for oscillation amplitudes of 10°, α0 was equal 
to 5°, 10°, and 20°. Only one cycle of oscillation was given in each time history. 

O 

superscripts 
B,T,W =  body, tail, wing components 
BT, BW = body-tail, body-wing components 

abbreviations 
c.g.  =  center of gravity 
a.c.  =  aerodynamic center 

subscripts 
A = amplitude 
t = tail 
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III. Models for Steady Aerodynamics 
The aerodynamic forces and moments of the complete aircraft are assumed to be the sum of separate 

contributions from the body, tail, and wing11.  Then the corresponding models for the steady case have the form 

 ( ) ( ) ( ) ( )B W T
N N N t N tC C C S Cα α α α= + +  (1) 

 0( ) ( ) ( ) ( ) ( )B W W W T
m m m N t t N tC C C C x S Cα α α α α= + + − l  (2) 

where  ( )tα α φ ε α= + −  (3) 

/t tS S S= , /t t c=l l , and Wx  is the distance between the wing center of pressure and aircraft c.g. as a fraction of 
mean aerodynamic chord. The static values of CN and Cm for a complete model and its components are shown in Fig. 
1 and 2. 

 
In these plots B, BW, BT, and BWT indicate the values for the body, body-wing, body-tail, and the complete model. 
The values of W

NC and T
NC in Eq. (1) and Eq. (2) were obtained from the relations 

 W BW B
N N NC C C= −  (4) 

 T BT B
N N NC C C= −  (5) 

In Eqs. (1-3), 0
W
mC is equal to the wing pitching moment when W

NC is equal to zero, φ is the tail plane setting and ε is 

the downwash angle at the tail. From the geometry of the model tS = 0.26, tl = 4.62 and φ = -10° and from W
mC  the 

value of 0
W
mC = -0.13.  

The variable ( )Wx α can be computed by removing terms associated with the tail in Eq. (2) and using the 
corresponding BW measurements. The downwash angle follows from solving Eqs. (1-3) for tα  at selected α. The 

two variables, ( )Wx α  and ( )ε α , are plotted in Figs. 3 and 4 and compared with results from Ref. 11. The 
differences between the two pairs are small.  
 

Figure 1. Normal-force coefficient for four 
configurations (Ref. 11). 

Figure 2. Pitching-moment coefficient for four 
configurations (Ref. 11).
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In pitching-moment Eq. (2) the last term { ( )T

t t N tS C α−l } represents the tail contribution, ( )T
m tC α . In order to 

determine the best representation for this term, two evaluations of the consistency between the measured normal 

Figure 4. Downwash angle at the tail estimated from steady wind tunnel data.  
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Figure 3. Distance xw estimated from steady wind tunnel data.  
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Figure 5.  Tail length determined from aircraft 
geometry and from tail coefficient measurements.
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force and pitching moment were made. First, both ( )T
m tC α  and ( )T

t t N tS C α−l  terms were used to compute the tail 
length as  

 
T
m

t T
t N

C
S C

= −l  (6) 

and plotted against α in Fig. 5. Changes in tl  with respect to α should be relatively small. Large values of 

computed tl  around α = 15° are mainly caused by T
NC  approaching zero, see Fig 1. For α > 20°, the differences 

between tl  computed and its nominal value are larger than expected, indicating one contributor to data 

inconsistency may result from inaccuracies of measured T
mC  and T

NC .  
The second check of data consistency is based on a comparison of normal force and pitching moment of the 

complete aircraft with that computed from separate measurements of the body, body-tail, and body-wing. For 
complete consistency, the following relation applies.  

 BWT B T W
a a a aC C C C= + +  (7) 

where subscript a is either N or m. Using Eqs. (4) and (5) the relation in Eq. (7) can be written as 

 BWT BT BW B
a a a aC C C C= + −  (8) 

A check of the pitching moment equation can also be made by replacing T
mC  in Eq. (7) by T

t t NS C−l , giving  

 BWT BW T
m m t t NC C S C= − l  (9) 

Figure 6 shows the comparison of measured BWT
aC  with that computed using Eq. (8) for both normal force and 

pitching moment and Eq. (9) for pitching moment. Normal force comparisons demonstrate very good agreement 
between measured and computed data. Based on comparisons shown in Figs. 5 and 6, one can expect better accuracy 
of measured T

NC  than T
mC . Consequently, Eq. (2) is used in this study as stated.  

 
Figure 6.  Measured and computed coefficients 
for complete aircraft .
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IV. Analysis of Large Amplitude Oscillatory Data 
The aerodynamic model equations for modeling and data analysis are given in Refs. 11 and 12. They are repeated 
here for convenience.   

 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( )
2

B W T
N N N t N t Nq

cC t C C t S C t C t
V

α α α α α α= ∞ + + + ∞ &  (10) 

 0( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( )
2

B W W W T
m m m N t t N t mq

cC t C C C t x t S C t C t
V

α α α α α α α= ∞ + + − + ∞ &l  (11) 

where ( ; )t d tα α φ α ε α= + + −  (12) 

 t
d V

α
α =

&l
 (13) 

 ( ) ( ; )W W W
N NS NS NSC C Cτ α α+ = ∞&  (14) 

 ( ) ( ; )W W W
x x x xτ α α+ = ∞&  (15) 

 ( ) ( ; )ετ α ε ε ε α+ = ∞&  (16) 

The normal force coefficient due to the wing is partitioned as 

 W W W
N NA NSC C C= +  (17) 

where W
NAC  is the linear part (attached flow) and W

NSC  is the nonlinear part (separated flow). Symbol ∞ indicates a 
variable evaluated in steady flow. Unknown parameters in the model are the time constants, ,  ,  , N x ετ τ τ and two 
damping terms, ( ; )NqC α∞ and ( ; )mqC α∞ . In general, each of these parameters can be a function of α. Whenever 

necessary these equations were modified to allow estimation with better accuracy. 

A. BT Configuration 
The model equations for the BT configuration follow from Eqs (10-13) as  

 ( ) ( ) ( ) ( )
2

B T T
N N t N t Nq

cC t C S C C
V

αα α α= + +
&

 (18) 

 ( ) ( ) ( ) ( )
2

B T T
m m t t N t mq

cC t C S C C
V

αα α α= − +
&

l  (19) 

 .t dα α φ α= + +  (20) 

where αd reflects a tail angle-of-attack increment due to rotation given by Eq. (13).  
In these equations the only unknowns are the damping parameters, T

NqC and T
mqC . Using the data for α0 = 5°, α0 

= 5°, and f = 0.4 Hz, and assuming that the parameters are not α dependent, the following least squares estimates 
and their standard errors were obtained as 

6.5 1.7T
NqC = ± and 21 30T

mqC = − ±  
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with the coefficient of determination, R2, close to zero. These results suggest inaccurate measured data and/or 
modeling errors in Eqs. (18 or 19). 

To find the reason for such high parameter inaccuracy and low R2 values, the residuals Nν  and mν  were 
computed from Eqs. (18-19), respectively and examined. Plots of the residuals against time and α are presented in 
Figs. 7 and 8.  

 
From these plots the dependence of residuals on α is evident. For that reason additional terms were added to the 
model equations yielding 
 

 ( ) ( ) ( ) ( )
2

B T T
N N t N t N Nq

cC t C S C C
Vα

αα α α α= + + Δ +
&

 (21) 

 ( ) ( ) ( ) ( )
2

B T T
m m t t N t m mq

cC t C S C C
Vα

αα α α α= − + Δ +
&

l  (22) 

The new parameter estimates in Eqs. (21-22) were obtained as 
 

6.5 0.73T
NqC = ±  21 2.0T

mqC = − ±  

0.053 0.0022NαΔ = ±  1.006 0.0059mαΔ = − ±  
2 0.84R =  2 0.99R =  

 
A comparison of results indicates the following: 

a) The mean values of damping parameters remain the same because in harmonic motion α and q are 
orthogonal. 

b) The use of a new model resulted in a dramatic improvement of parameter accuracy and model adequacy.  
c) Estimated bias terms, NαΔ  and mαΔ , are close to a linear approximation of the slope for Nν  and mν , see 

Fig. 8.  
For the remaining discussion, the estimates will be based on Eqs. (21-22). 

Figure 7. Residuals for model Eqs. (18-19) 
as a function of time. 

Figure 8. Residuals for model Eqs. (18-19) 
as a function of angle of attack. 
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For an assessment of frequency dependence, the measured CN and Cm for three frequencies were plotted in Fig. 

9. In this figure a minor effect of frequency can be seen. Its significance was evaluated by a comparison of two sets 
of estimates containing:  

a) Average values of damping parameters estimated from three sets of data each with a single frequency, 
5.9 0.42T

NqC = ± , 18.7 1.2T
mqC = − ±  

b) Estimated parameters from a combined set of data with all three frequencies included, 
5.5 0.18T

NqC = ± , 17.6 0.53T
mqC = − ±  

Because of statistically insignificant differences in the two sets considered it was decided to use the combined data 
including all three frequencies. The final estimates and standard errors for five different test conditions are 
summarized in Table I.  
 

Table I. Estimated damping parameters from wind tunnel data for BT configuration 
CN Cm α0 

(deg) 
αA 

(deg) T
NqC  σ̂  R2 T

mqC  σ̂  R2 
5 15 5.5 0.18 0.86 -17.6 0.53 0.99 

15 15 5.4 0.22 0.78 -15.5 1.30 0.96 
5 10 5.4 0.23 0.70 -15.4 0.60 0.99 

10 10 4.7 0.26 0.83 -13.7 0.85 0.99 
20 10 4.7 0.37 0.30 -16.6 0.85 0.86 

 
Damping parameters in Table I are compared to the out-of-phase components of small amplitude (αA=3°) 

oscillatory data presented in Figs. 10 and 11. These components are expressed as 

                 or a a aq qC C C a N mα= + =&  (23) 

where NC α&  and mC α&  are constants for data without frequency effect or they equate to their unsteady counterparts 
when frequency dependence is present5. In the given experiment, frequency dependence is noticeable for aqC  where 

α0 > 10°. 
Assuming that the tail is the main contributor to damping, the out-of-phase components can be formulated13 as 

Figure 9.  Measured normal-force and pitching moment 
coefficients for three frequencies at α0 = 5° and αA = 15°.  
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 (1 )               or a aq qC C a N mε
α

∂
= + =

∂
 (24) 

From Fig. 4, /ε α∂ ∂ ≈ 0.5, is representative of the slope of ( )ε α  near α0 = 0. Furthermore, from Fig. 10 and 11, 

NqC =12.9 and mqC = -37.9, for -4° < α < 4° and all frequencies.  Therefore from Eq. (24) the damping parameters 

can be obtained as NqC = 8.6 and mqC  = -25.3. Both values are higher than those in Table I. The reason for these 

differences could be due to a comparison of results from small and large amplitude oscillatory data and partly due to 
Table I values not containing any contribution to damping from the wing.  
 

 
 

Rigorous estimation of the out-of-phase components at different α0 can be obtained from small amplitude 
oscillatory data at more than five carefully selected frequencies5. These results can provide first indication of the 
damping magnitude and its variation with angle of attack.  

B. BW Configuration 
The BW model equations follow from the general model in Eqs. (10-15) as 

 ( ) ( ; ) ( ; ) ( ; )
2

B W BW
N N N Nq

cC t C C t C
V

αα α α= ∞ + + ∞
&

 (25) 

 0( ) ( ; ) ( ; ) ( ) ( ; )
2

B W W W BW
m m m N mq

cC t C C C t x C
V

αα α α α= ∞ + + + ∞
&

 (26) 

As in the complete model, the normal force coefficient was partitioned as 

 W W W
N NA NSC C C= +  (27) 

then a time delay due to flow separation can be estimated from 

 ( ) ( ; )W W W
N NS NS NSC C Cτ α α+ = ∞&  (28) 

Figure 10. Estimated normal-force damping 
coefficients due to pitch rate from oscillatory 
data for BT and BWT configurations. 

Figure 11. Estimated pitch damping coefficients 
from oscillatory data for BT and BWT 
configurations. 
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Similarly, for identification of the pitching-moment model, the coordinate of the wing center of pressure can be 
estimated from 

 ( ) ( ; )W W W
x x x xτ α α+ = ∞&  (29) 

Now the estimation problem for the NC  model parameters can be formulated as follows: given time histories of 

( )NC t , ( )tα , and ( )tα& , and analytical functions ( ; )W
NSC α∞ , ( ; )W

NAC α∞ , and ( ; )B
NC α∞ , estimate unknown 

constants Nτ  and BW
NqC . Using simplified notation, W

NSCη = , 1 Nθ τ= , 2 2
BW
Nq

c C
V

θ = , ( ; )W
NSu C α= ∞ , 

( ) ( ; ) ( ; )B W
N N NAy C t C Cα α= − ∞ − ∞ , then 

 1 uθ η η+ =&  (30) 

 2y η θ α= + &  (31) 

A similar formulation can be made for mC  where the unknown parameters to be estimated are xτ  and BW
mqC . The 

unknown parameters in the state-space models were estimated by an output error method explained in Ref. 4.  
Parameter estimates and their standard errors are given in Table II. Both time constant and damping parameters 

were considered independent of α for each data set analyzed. The average value of Nτ  ≈ 13 for all five cases agrees 
with limited previous experience. The estimates of the second time constant exhibit an increase with increased angle 
of attack. These values could not be verified because no a priori information on them existed.  

 
 

Table II. Estimated damping parameters and non-dimensional time constants  
from large-amplitude oscillatory data, BW configuration. 

α0, deg αA, deg Nτ  BW
NqC  xτ  BW

mqC  

  ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  
5 15 12.5   (1.2)  4.8   (2.2) 50.0   (3.2)   5.1  (.63) 

15 15   9.6   (1.4)  8.8   (3.7) 40.6   (2.6)   7.4  (.78) 
5 10 14.4   (1.9)  5.8   (2.9) 25.6   (1.7)   3.8  (.71) 

10 10 12.7   (1.6) 10.5   (4.0) 34.0   (1.6) 10.5  (.69) 
20 10 16.6   (1.4) 13.7   (4.4) 56.2   (.67)   0.2  (.67) 

 
 
Damping parameters in Table II were compared in Figs. 12 and 13 with the estimates from small amplitude 

oscillatory data. For the low α region, the out-of-phase components are approximately 5BW
NqC ≅  and 3BW

mqC ≅ − . 

This implies that BW
NqC  estimates in Table II are very high and that BW

mqC  estimates are incorrect due to their non-

physical values. The reason for these discrepancies was found in the low sensitivity of responses ( )NC t  and ( )mC t  
to both damping parameters. This insensitivity was demonstrated computing these responses and their residuals 
using estimated Nτ  and xτ  values along with appropriately specified values of BW

NqC  and BW
mqC . The results, in each 

case, indicated almost no change in the responses and residuals.  
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Measured and computed time histories of CN and Cm using parameter values from Table II are plotted in Figs. 14 

and 15. Although forced-oscillation experiments were performed separately for each frequency, time history plots 
show all 3 frequency cases stacked into one plot for analysis. In general, there is good agreement between these 
plots. Some effect of uncorrected model error in Cm is visible in part of the data with f = 0.4Hz. Figs. 16 and 17 
show both coefficients plotted against α with f = 0.8 Hz. Included in both figures are also steady values of both 
coefficients. Part of the ( )NC α  curve for 10° < α < 20° with pronounced unsteady effect is captured quite well by 
identified model despite inaccuracies in both damping parameters. Unexplained differences, however, are apparent 
in the linear part of ( )NC α . The agreement between measured and computed ( )mC α is poor. Finding an 
explanation for this requires additional study.  

 

Figure 12. Estimated normal-force damping 
coefficients due to pitch rate from oscillatory 
data for BW configuration. 

Figure 13. Estimated pitch damping coefficients 
from oscillatory data for BW configuration. 
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Figure 14. Measured and computed time 
histories of normal force for BW configuration, 
α0=5°, and αA = 15°. 

Figure 15. Measured and computed time 
histories of pitching moment for BW 
configuration, α0=5°, and αA = 15°. 
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C. BWT Configuration 
As in the preceding section, model Eqs. (10-11) can be written with simplified notation giving 

 
1

21 1

32 2

( )
( ) 2

u
y h c
y h V

θ η η
θη α
θη

+ =

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

&  (32) 

where  

 

1 2 3

1

2

                    

             ( )
( ) ( ; )

( ) ( ; )

N mq q

t N t

t t N t

C C

u
h S C t

h S C t

εθ τ θ θ

η ε ε
η α

η α

= = =

= = ∞

=

= −l

 (33) 

and outputs are defined as 

 1

2 0

( ; ) ( ; ) ( ; )

( ; ) ( ; ) ( ; ) ( ; )

B W
N N N

B W W W
m m m N

y C t C C t

y C t C C C t x t

α α α

α α α α

= − ∞ −

= − ∞ − −
 (34) 

Nonlinear functions 1( )h η  and 1( )h η  are computed by integrating differential equations, Eqs.(28-29), using values 
of Nτ  and xτ  estimated from BW forced oscillation data. As in the previous cases for this study, it was assumed 
that the unknown parameters are independent of α.  

Unknown parameters, [   ]N mq qC Cεθ τ= , were estimated by stacking three sets of oscillatory data for each 

case defined by [α0 , αA ]. Each set in the stack represented only one cycle of data at a single frequency.  From the 
stacked data,  ετ  was estimated with an average value of 27 and a relatively high standard error of 5.6. Estimates 

Figure 16. Variation of measured and computed 
normal force with α for BW configuration, 
α0=5°, and αA = 15°. 

Figure 17. Variation of measured and computed 
pitching moment with α for BW configuration, 
α0=5°, and αA = 15°. 
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for NqC varied from -5 to 4, and for mqC  values ranged from 14 to 24. Negative values for NqC  and positive 

values for mqC  are unacceptable as follows from the previous discussions and physics of the problem.  

Figures 18 and 19 compare measured and computed coefficients ( )NC t  and ( )mC t . The measured data were 
taken from three cycles at 0α  = 20° and Aα  = 10°. The computed coefficients were based on parameter estimates 

ετ  = 26, NqC  = -5, and mqC  = 14. The agreement between measured and computed coefficients is very good.  

 
 

 
The residuals plotted in Figs. 20 and 21 against α indicate deterministic errors in the data unexplained by the 

model equations. Ideally residuals should be zero mean and normally distributed. Strong insensitivity between 
model damping parameters, and total force and moment coefficient was also found in this case.  

After parameter estimation for BWT configuration, an attempt was made to assess the prediction capabilities of 
the final model. The parameters in this model were selected as shown in the following table. 
 

Figure 20. Residuals from measured and 
computed normal-force coefficient for BWT 
configuration, α0=20°, and αA = 10°. 

Figure 21. Residuals from measured and 
computed pitching moment coefficient for BWT 
configuration, α0=20°, and αA = 10°. 
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Figure 18. Measured and computed time 
histories of normal force for BWT configuration, 
α0=20°, and αA = 10°. 

Figure 19. Measured and computed time 
histories of pitching moment for BWT 
configuration, α0=20°, and αA = 10°. 
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Parameter Specifications for Simulation Configuration 

5.1NqC =  15.2mqC = −  BT 

13Nτ =  26xτ =  BW 

27ετ =  ------ BWT 

 
The coefficients ( )NC t  and ( )mC t  were computed for three frequencies, at 0α  = 20° and Aα  = 10°, and compared 
with measured data. As in the previous case where ( )NC t  and ( )mC t were estimated under the same conditions, the 
agreement between prediction and measurement was very good and the residuals were similar to those in Figs. 20 
and 21.  

It is important to note that accurate assessment of model prediction must be based on data sets not used in 
parameter estimation. Validation data sets were not available in this case.  

V. Simulation Results 
Simulation results were used first, to ensure that all estimation algorithms were working properly and second, to 

assess a few experiment design issues that likely produced the strong insensitivity between parameter estimates and 
measurement data in this study. For brevity, only results from using the BW model given in Eqs. (25-29) and a 
limited number of test conditions are provided as examples. Test conditions demonstrate the effect of measurement 
noise, number of oscillation cycles, and model structure error in the form of measurement bias. A number of other 
experiment design factors are important for system identification of nonlinear unsteady systems but these are not 
considered in this paper. Discussion of frequency selection and other test design issues can be found in Refs. 4 and 
14.  

Model parameters were chosen to reflect a realistic set of values that are supported by the model identified in this 
paper. All simulation results are shown for a forced-oscillation experiment at α0 = 15 degrees and αA = 15 degrees. 
Two polynomial cases are demonstrated for the non-dimensional time constant, Nτ , shown in Table III. In all 
simulation examples the starting values for parameter estimation are chosen to be 10% in error. This is a small 
starting error, but it is sufficient to demonstrate the estimation algorithms and specific test conditions of interest.  
 

Table III. Simulation model parameters applied to BW configuration at α0 = 15 deg and αA = 15 deg. 

Model Parameters Oscillation 
Frequency Nτ  BW

NqC  xτ  BW
mqC  

Parameter Structure f (Hz) 0 1c c α+  0c  0c  0c  

Case 1 (constant) 0.8 15 0α+   0.5 20 -2 
Case 2 (linear poly) 1.6 5 19.0986α+  0.5 20 -2 

 
Case 1, with all parameters equal to constants, is an example demonstrating the efficacy of the estimation algorithms 
and the relative magnitude of the steady flow damping term, BW

NqC . Figure 22 shows the results of using simulated 
measured data to estimate the normal force coefficient and predict its response against angle of attack. Model 
parameters were estimated exactly using only 1 oscillation cycle of data at 0.8 Hz, providing some confidence in the 
estimation algorithms.  

Because the steady flow damping coefficient, BW
NqC , has a small value the damping term contributes relatively 

little to the response and consequently requires careful testing for successful model identification. For comparison, 
Fig. 23 shows the same model prediction as in Fig. 22 except only the steady flow damping term is present. The 
difference of the predicted response from the static curve is not easily visible demonstrating the very small 
contribution of the steady flow damping term. If BW

NqC  is the sole term used to explain the response during model 
identification a very large and unrealistic value results indicating that this particular response can only be explained 
by a model with unsteady dynamics.  
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The predicted response shown in Fig. 23 uses measured data for initial conditions to solve BW Eqns. (25-29), 
consequently the predicted response exhibits a small transient at α = 15 degrees. This response reflects the transition 
from the measured initial condition to the predicted steady harmonic motion.   

 

 
 

To increase the realism of the estimation problem, possibly reflecting a change from steady to unsteady regions 
between low and high angle of attack, the unsteady time constant is allowed to vary with angle of attack. This is 
labeled as Case 2 in Table III. In this case the time constant is defined linearly from 5 to 15 over a range of angle of 
attack from 0° to 30°. Initially only 1 cycle of oscillation data is used to simulate the real data case investigated in 
this paper. Two runs are made, one without noise and one with a very modest level of noise so that the signal to 
noise ratio is approximately 60. Measured and computed normal force coefficients are shown in Figs. 24 and 25 for 
this example. In both cases the estimated model predicts the response well. In the case with noise the parameters are 
estimated with extremely poor accuracy as shown in Table IV.  

 
Table IV. Estimated damping parameter and non-dimensional time constants  

from simulated large-amplitude, 1-cycle oscillatory data, BW configuration at f=1.6Hz, α0=15, αA = 15 deg. 
Parameter true values: 0 10.5, 5, 19.0986, BW

NqC c c= = = where 0 1N c cτ α= +  

Signal/noise Fit error # cycles ˆ ˆ BW
NqCθ =  0

ˆ cθ =  1
ˆ cθ =  

   ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  ˆ ˆ      ( )θ σ  
∞ 3.9e-06 1  0.4997  (0.0004) 4.9995  (0.0004) 19.1001  (0.0010) 
60 0.017466 1 1.8424  (1.8094) 4.9343  (1.6240) 15.1883  (4.6112) 

 
The modest amount of noise masked the limited information content of the data and caused large parameter 

insensitivity. This is especially a problem for the very small steady flow damping term, BW
NqC , in this case. To 

improve the model estimation in the presence of noise, the number of cycles of oscillation analyzed is increased and 
varied from 6 to 14 cycles. The parameter estimation results, shown in Table V, demonstrate, as expected, that 
increasing the number of oscillation cycles improves both parameter estimates and their standard errors. However, 
unexpectedly, the number of cycles required to improve parameter accuracy is relatively large compared to 
conventional practices.  

 

Figure 22. Variation of measured and computed 
normal force for BW configuration, at α0=15°, 
and αA = 15°. 

Figure 23. Variation of measured and computed 
normal force without unsteady model component 
for BW configuration, at α0=15°, and αA = 15°. 
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Table V. Estimated damping parameter and non-dimensional time constants  
from simulated large-amplitude oscillatory data, BW configuration at f=1.6Hz, α0=15, αA = 15 deg. 

Parameter true values: 0 10.5, 5, 19.0986, BW
NqC c c= = = where 0 1N c cτ α= +  

Signal/noise Fit error # cycles ˆ ˆ BW
NqCθ =  0

ˆ cθ =  1
ˆ cθ =  

   ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  ˆ ˆ      ( )θ σ  
∞ 1.0e-06 6  0.50  (0.0001) 4.999  (0.0001) 19.099  (0.0002) 
60 0.0158 6 0.3  (0.68) 4.5  (0.62) 20.7  (1.75) 
60 0.0158 9 0.6  (0.55) 4.6  (0.50) 20.0  (1.43) 
60 0.0155 14 0.5  (0.43) 4.8  (0.40) 19.7  (1.12) 

 
 
It is common practice in the aerodynamics field to apply one-factor at a time (OFAT) procedures when 

performing wind tunnel experiments. For example, typically, angle of attack is adjusted systematically over some 
range of interest. This lack of randomization can introduce systematic or bias errors into an experiment. To assess 
this issue simulated data was generated for 2 values of measurement bias error on the normal force coefficient. The 
bias errors were computed as a percentage of the maximum value of the normal force coefficient time history and 
the percentages were selected as 0.1% and 1%. Table VI shows the estimation results when bias error is included for 
the same simulation considered in Table V. For each case with bias, 14 cycles of oscillation are used in the analysis. 
Estimation results using a model with bias error but without measurement noise are shown in the first three rows of 
Table VI. The results are revealing and indicate that even a very modest bias error can degrade estimation accuracy 
while a bias of 1% of maximum signal value confounds the estimation process, producing a non-physical mean 
value for the steady flow damping term. Estimates in the last 3 rows show that the modest bias error in combination 
with measurement noise significantly degrades the estimation accuracy and the 1% bias completely defeats the 
estimation process by preventing any convergence of the estimation algorithm. These results are similar to problems 
encountered with the real wind tunnel data in this study.  
 

 

Figure 24. Variation of measured and computed 
normal force for BW configuration, at α0=15°, 
and αA = 15°. Normal force time constant varies 
linearly with angle of attack. No noise is present. 
 

Figure 25. Variation of measured and computed 
normal force for BW configuration, at α0=15°, 
and αA = 15°. Normal force time constant varies 
linearly with angle of attack. Signal/noise ratio 
=60. 
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Table VI. Estimated damping parameter and non-dimensional time constants  
from simulated large-amplitude oscillatory data, BW configuration at f=1.6Hz, α0=15, αA = 15 deg. 

Parameter true values: 0 10.5, 5, 19.0986, BW
NqC c c= = = where 0 1N c cτ α= +  

Signal/noise Bias error Fit error ˆ ˆ BW
NqCθ =  0

ˆ cθ =  1
ˆ cθ =  

 (% max)  ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  ˆ ˆ      ( )θ σ  
∞ 0 1.0e-06   0.50  (0.0001) 4.999  (0.0001) 19.099  (0.0002) 
∞ 0.1 0.0013 0.46  (0.036) 4.8  (0.03) 19.8  (0.094) 
∞ 1.0 0.0129 -0.1  (0.36 ) 2.9  (0.33) 26.5  (0.94) 
60 0 0.0155 0.5  (0.43) 4.8  (0.40) 19.7  (1.12) 
60 0.1 0.0154 0.4  (0.43) 4.7  (0.40) 20.6  (1.11) 
60 1.0 ~ ~ ~ ~ 

“~” indicates estimation algorithm did not converge. 
 

VI. Concluding Remarks 
This paper first examines aircraft model identification from wind tunnel data of an airliner and its components: 

body, body-tail, body-wing, and the complete model. A mathematical model of an aircraft with structure sufficiently 
general to model nonlinear unsteady behaviors is considered. The measurement data included results from 
conventional static and one degree-of-freedom in pitch oscillatory tests over a wide range of angle of attack but 
limited frequencies and amplitudes.  

All models with estimated parameters fit the measured data quite well. Damping parameters estimated from BT 
large-amplitude oscillation data were consistent with small-amplitude out-of-phase measurements and after 
including an α-correlated term to correct for an inconsistency between normal force and pitch moment 
measurements, a very large percentage of the variation in the data was explained by the model. Damping parameters 
for the BW and BWT configurations were poor, however, the values were explained by a lack of parameter 
sensitivity or information content of the data.  

Conventional forced-oscillation experiments generally focus on obtaining averaged single-cycle data at a limited 
number of frequencies. This approach facilitates a straightforward (sometimes graphical) approach for estimating 
out-of-phase damping in steady-flow linear regions. Identification of more complex models that capture nonlinear 
unsteady behaviors is not well suited for use with conventionally designed experiments as demonstrated by the very 
limited success of the BW and BWT model identification in this study. Simulated data were used to confirm the lack 
of parameter sensitivity in a conventional experiment and to demonstrate the potential severity of estimation error 
due to measurement noise and bias error. Although, theoretically, certain harmonic information is fully contained in 
a single cycle of data, both the actual and simulated results of this study support the need for a much greater number 
of cycles of data to overcome the effect of measurement error. This is especially true for situations where it is 
necessary to estimate model terms with relatively small magnitudes compared to the total aerodynamic force or 
moment.  
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