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Parametric Study of Flow Control Over a Hump Model Using
an Unsteady Reynolds-Averaged Navier-Stokes Code

Christopher L. Rumsey∗

NASA Langley Research Center, Hampton, VA 23681-2199, USA

David Greenblatt†

Berlin University of Technology, Berlin, Germany

This is an expanded version of a limited-length paper that appeared at the 5th International Symposium
on Turbulence and Shear Flow Phenomena by the same authors.1 A computational study was performed
for steady and oscillatory flow control over a hump model with flow separation to assess how well the steady
and unsteady Reynolds-averaged Navier-Stokes equations predict trends due to Reynolds number, control
magnitude, and control frequency. As demonstrated in earlier studies, the hump model case is useful because
it clearly demonstrates a failing in all known turbulence models: they under-predict the turbulent shear stress
in the separated region and consequently reattachment occurs too far downstream. In spite of this known
failing, three different turbulence models were employed to determine if trends can be captured even though
absolute levels are not. Overall the three turbulence models showed very similar trends as experiment for
steady suction, but only agreed qualitatively with some of the trends for oscillatory control.

I. Introduction

The effective control of flow separation promises substantial performance improvements for a wide variety of
air vehicles. Although the methods are well known, there is very little by way of theory or numerical models that
can adequately predict lift enhancements, drag reduction, etc. An attempt was made to address this problem by
conducting a CFD validation workshop (CFDVAL2004) for synthetic jets and turbulent separation control2 where
one case was dedicated to predicting the nominally two-dimensional flow over a hump. The baseline (uncontrolled)
case was considered in addition to control by means of steady suction3 and zero-net-mass flux (oscillatory) blowing.4

The workshop determined that CFD with steady or unsteady Reynolds-averaged Navier-Stokes (RANS or URANS)
consistently over-predicted the reattachment location, regardless of turbulence model or method. Within the separation
bubble, most computations predicted velocity profiles reasonably well but considerably under-predicted the magnitude
of turbulent shear stresses. This under-prediction of turbulence within the bubble caused delayed flow reattachment.
Large-eddy simulations and other computationally expensive methods appear capable of overcoming this deficiency.
See, e.g., Krishnan et al.,5 Morgan et al.,6 and Saric et al.7 The focus of the current study is on the more affordable
RANS and URANS methodologies.

Although the individual test cases from CFDVAL2004 were challenging to CFD codes, only single test cases were
considered for both steady suction and zero-net-mass flux blowing. In the earlier work of Rumsey,8 computational
results were evaluated against these workshop test cases, with a focus on the zero-net-mass flux blowing case. During
the course of the experimental investigation, however, steady and unsteady surface pressures were acquired for a wide
variety of control parameters, including Reynolds number, suction flow rate, and frequency and blowing amplitude in
the zero-net-mass flux case. By comparing trends of numerical results with experimental data, it should be possible
to draw more precise conclusions regarding CFD’s value for predictive purposes. Furthermore, a number of important
experimental observations were made and it is not known if CFD codes are capable of predicting them. For example,
by varying the suction flow rate and comparing these results to high Reynolds number data, the control effectiveness
was found to increase substantially with increasing Reynolds number. In addition, for the oscillatory case, the flow was
seen to be highly dependent on control frequency and peak blowing amplitude. Different, sometimes counteracting,

∗Senior Research Scientist, Computational Aerosciences Branch, Mail Stop 128, c.l.rumsey@nasa.gov.
†Senior Research Scientist, Institute of Fluid Dynamics and Engineering Acoustics, 8 Mueller-Breslau Street, david.greenblatt@pi.tu-berlin.de.
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mechanisms dominated the separated flowfield during different parts of the control cycle. To explore some of these
issues, a detailed parametric study using the URANS equations is described here.

II. Computational Method

The computer code CFL3D (Krist et al.9) solves the three-dimensional, time-dependent, Reynolds-averaged com-
pressible full Navier-Stokes equations with an upwind finite-volume formulation (it is exercised in two-dimensional
mode of operation for the 2-D cases in this study). The Navier-Stokes equations are averaged using Favre averaged
variables. Upwind-biased spatial differencing is used for the inviscid terms, and viscous terms are centrally differ-
enced. In time-accurate mode, CFL3D uses pseudo-time stepping with multigrid and achieves second order temporal
accuracy. With pseudo-time stepping, subiterations are used to reduce the linearization and factorization errors, and
advance the solution to the next physical time.

Three different turbulence models are used in the current study: the Spalart-Allmaras (SA) model,10 Menter’s k-
omega SST model,11 and the nonlinear explicit algebraic stress model in k-omega form (EASM-ko).12 The turbulence
models are implemented uncoupled from the mean-flow Navier-Stokes equations. They are solved using an implicit
approximate factorization approach (number of factors depends on dimensionality).

III. Results

A. Flowfield Conditions

The wall-mounted hump model had a chord ofc = 0.42 m, height of0.0538 m at its maximum thickness point,
and width of0.5842 m. The configuration was two-dimensional, and experimental results were demonstrated to be
nominally 2-D by means of stereoscopic PIV, surface pressure measurements, and wall shear stress measurements.
The flow control slot was located near 65%c; this was close to where the flow separated in its uncontrolled state. A
summary of the flowfield conditions studied is provided in Tables 1 and 2. A star appears next to the particular cases
used in the workshop in 2004. The Mach number for all computations wasM = 0.1. For the steady suction cases, the
steady mass transfer momentum coefficient is defined by:

cµ =
ρjhU2

j

cq
(1)

whereh = 0.00187c is the slot height,Uj is the total jet velocity, andq is the freestream dynamic pressure. Thecµ

corresponds with a steady mass flow rate (given byṁ) sucked through the slot. For the unsteady oscillatory cases, the
oscillatory flow momentum coefficient is defined by:

〈cµ〉 =
ρjh〈Uj〉2

cq
(2)

where〈Uj〉 is the root-mean-square of the total jet velocity. Thecµ and〈cµ〉 parameters are typically used in exper-
iments to characterize flow-control blowing levels and are cited as percentages throughout this paper. However, for
the purposes of CFD, it is much easier to characterize the levels usingṁ for steady suction and by maximum outflow
velocity Upeak for oscillatory control. Furthermore, for the oscillatory cases, the reduced excitation frequency is de-
fined asF+ = fX/U∞, whereX is the distance from the slot to flow reattachment point for no flow control. For the
purposes of CFD, it is easier to usef . A great deal of additional information concerning this case can be found on the
website for the validation workshop.a

B. Computational Details

A 2-D fine-level 4-zone grid was created with 208,320 cells. The jet slot and cavity were included in the hump model
computations. Many of the computations used a “medium level” version of the grid consisting of every other point
in each coordinate direction, or 52,080 cells. Several grid studies were performed, both here as well as in previous
work for the workshop cases.8 These studies indicated that there were only very small differences between mean flow
quantities (either long-time-averaged or phase-averaged) on the two grid levels for the 2004 workshop conditions, and
less than 5% difference in turbulence quantities. Time step studies were also performed for the oscillatory control case,

ahttp://cfdval2004.larc.nasa.gov, [cited 3/2007].
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Table 1. Steady suction cases.

Re ×106 cµ, % ṁ, kg/s

0.5574 0.24 0.0152

0.5574 0.73 0.0263

0.5574 2.59 0.0495

0.936 0.030 0.0053

0.936 0.076 0.0084

∗0.936 0.24 0.0152

0.936 0.47 0.0208

0.936 0.73 0.0263

2.0 0.03 0.0053

2.0 0.24 0.0152

2.0 0.47 0.0208

16.0 0.03 0.0053

16.0 0.24 0.0152

16.0 0.47 0.0208

32.0 0.03 0.0053

32.0 0.24 0.0152

andindicated that using at least 180 steps per period in conjunction with 20 subiterations per time step was sufficient
to yield little perceptible change in results. For all results to be shown here, 360 steps per period were used.

Two different grid families were used, depending on the Reynolds number. Both had the same number of points,
but the grid used forRe = 16 and 32 million had a finer minimum spacing at the wall,∆y/c = 1× 10−6 on the finest
level (compared with∆y/c = 8× 10−6 for the grid used at lowerRe). On the medium level, this spacing yielded an
average minimumy+ of 1.5 atRe = 32 million, and 0.8 at 16 million, wherey+ represents normal-distance wall units
y
√

(τw/ρ)/ν. At the various lowerRe employed, the average minimumy+ was at most 1.1 on the medium level. All
grids extended fromx/c = −6.39 upstream to 4.0 downstream. The top tunnel wall was included, although the shape
was slightly altered to account for blockage caused by the endplates.8 A view of the medium level grid (52,080 cells)
used forRe of 2 million or less is shown in Fig. 1, and a view of both grids near the region of the slot is shown Fig. 2.

The boundary conditions were as follows. At the floor and hump surfaces, as well as at the side walls inside
the cavity, solid wall adiabatic boundary conditions were applied. At the front of the grid, a far-field Riemann-type
boundary condition was applied. At the downstream boundary the pressure was set to approximately freestream, and
all other quantities were extrapolated from the interior of the domain. The top tunnel wall was treated as an inviscid
wall for all of the computations shown here. At the bottom of the cavity, the boundary condition for steady suction set
theu-velocity component to 0 andv-velocity such that the mass flow matched experiment. For the oscillatory cases
the velocity components were set withu = 0 andv = [(ρv)max/ρ]cos(2πft), wheref is the frequency andt is the
time, and(ρv)max was chosen in order to achieve a maximum outflow velocity magnitude at the exit plane near to the
targetUpeak from the experiment.

C. Results for Steady Suction

As mentioned in the Introduction, historically all RANS methods applied to this case have yielded results with too
long a separation bubble, because they under-predicted the magnitude of the turbulent shear stress in the separated
region. An example is shown in Fig. 3. Here, experimental streamlines for the steady suction case from the workshop
are compared with CFD results using the three turbulence models SA, SST, and EASM-ko. In the experiment, the
flow reattached nearx/c = 0.94, but in the CFD, the reattachment occurred atx/c = 1.10 for SA, 1.13 for SST, and
1.16 for EASM-ko.

For the current study, the effect of grid density on surface pressures for differentcµ is shown in Fig. 4 for the SA
model. There were almost no differences in results using the two different grids at the lowest blowing coefficient levels,
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Table 2. Unsteady oscillatory control cases.

Re ×106 〈cµ〉, % Upeak, m/s F+ f , Hz

0.936 0.11 27 0.46 83.1

0.936 0.013 8 0.77 138.5

∗0.936 0.11 27 0.77 138.5

0.936 0.354 48 0.77 138.5

0.936 0.11 27 1.39 249.3

0.936 0.11 27 2.00 360.1

16.0 0.11 27 0.77 138.5

andrelatively small differences at the higher levels. For example, at the highest blowing coefficient ofcµ = 0.76, the
fine grid bubble was longer than the medium grid bubble by about 7%.

Results using the three turbulence models tested are given in Fig. 5 for all five of the steady suction levels at
Re = 0.936 million. In every case, the SA model gave the best agreement with experiment and EASM-ko the worst,
but all three models were reasonably similar to each other. The computed pressures in the region betweenx/c = 0.65
and1.2 were all quite different from experiment. At the higher blowing coefficients, the differences between the
turbulence models were smaller than the differences between CFD and experiment.

In spite of the fact that we know that CFD using RANS is incapable of obtaining the same quantitative result as
experiment in terms of reattachment position, we turn to the question of whether it is capable of predicting trends.
Fig. 6 gives surface pressure coefficients atRe = 0.936 million for a range of differentcµ coefficients (0.030%,
0.076%, 0.24%, 0.47%, and 0.73%). Using the SA model, the CFD exhibited a similar trend as experiment, but the
physical details were clearly not correctly modeled. Ascµ increased, the separation extent decreased similarly for
CFD and experiment, but the CFD predicted a pressure drop downstream of the slot instead of a steeper pressure
recovery observed in the experiment. Thecp levels over the forward portion of the hump agreed extremely well with
experiment at allcµ conditions. Fig. 7 shows the same type of plot for the other two turbulence models. Here, the
agreement with experiment was worse than the agreement using SA, but the general trend of decreasing separation
with increasingcµ was similar. Thecp levels over the forward portion of the hump were not in as good agreement
with experiment as seen with the SA model.

A different way of looking at the data is shown in Fig. 8 for the SA model. Here,∆cp is plotted, showing the
change in surface pressure coefficient of the controlled flow relative to baseline (no control). Both CFD and experiment
predicted increasing pressures in the bubble relative to baseline ascµ was increased, but CFD yielded smaller∆cp

levels and its peaks were further downstream. The smaller levels indicate that the CFD predicted smaller influence than
experiment for any given level of suction applied (relative to baseline). The peaks were further downstream because
CFD predicted a longer bubble than experiment. Fig. 9 shows the same type of plot for the other two turbulence
models. As before, the absolute agreement between SST or EASM-ko with experiment was worse, but the trends were
similar. The predicted levels were very close between the three models (with EASM-ko only slightly higher than the
others), but SST and EASM-ko predicted longer bubbles, so the peaks in the∆cp curves were further downstream.

In the experiment, Greenblatt et al.3 noted a clear Reynolds number effect both atcµ = 0.24 andcµ = 0.47, despite
the small Reynolds number range tested (fromRe = 0.557 million to 1.1 million). Comparisons with a similar hump
model13 at a much higher Reynolds number of 16 million showed a continuing Reynolds number effect, which was
most evident when comparing form-drag on the respective models (see discussion below). In the CFD results, there
was also a clear trend of increasing effectiveness with increasing Reynolds number, as shown in Fig. 10 for the SA
model on the fine grid. The largest differences occurred below aRe of 16 million. Similar results are shown in Fig. 11
for all three models on the medium grid (only two different Reynolds numbers were tested for the SST and EASM-ko
models). The trend with Reynolds number is similar.

This trend is further elucidated in Fig. 12, which summarizes the effect ofcµ andRe on bubble length (XB/c) for
the SA model on the fine grid. Here, the general trend of decreasing bubble length with increasingcµ is evident. The
only experimental data available were at the lowestRe of 557,400 and 936,000. The experimental results appeared
roughly linear on this log plot. The CFD results were also fairly linear at the lowercµ, but they tended to drop down
at the highercµ. Overall, CFD produced a slightly shallower slope than experiment, along with a significantly longer
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bubble at the sameRe. The change betweenRe of 557,400 and 936,000 was similar for CFD as experiment. The most
dramatic shortening of the bubble, as predicted by the CFD, occurred belowRe = 16 million; the shortening was
small betweenRe = 16 million and 32 million. Coincidentally, theXB levels from CFD at the highestRe matched
fairly well with the experimental levels at the lowestRe.

Fig. 13 shows a plot of the same quantity for all three turbulence models on the medium grid, for two different
Reynolds numbers. The experimental results atRe = 936,000 are also shown for reference. In this figure, the solid
lines represent CFD results atRe = 936,000 and the dashed linesRe = 16 million. The results for SA are the square
symbols, for SST the triangles, and for EASM-ko the inverted the inverted triangles. Here, the trend of longer bubble
lengths for the SST and EASM-ko models compared with SA is evident.

Fig. 14 shows the effect ofcµ on pressure drag coefficient. Here, experimental results from Seifert and Pack13

at a higher Reynolds number of 16 million are also shown. It should be noted, however, that there were geometric
differences in the slot region of this earlier experiment that may have resulted in different baselinecdp levels. As noted
in Greenblatt et al.,3 in spite of these differences, overall there was a clear trend of increasing control effectiveness
with increasingRe. A similar trend was also evident in the CFD results using SA on the fine grid, although thecdp

levels were lower than in the experiments. Fig. 15 shows a plot of the same quantity for all three turbulence models
on the medium grid, for two different Reynolds numbers. The SST model consistently yielded the highestcdp levels
and SA the lowest. The experimental results atRe = 936,000 are also shown for reference.

To better compare the trends, suction results are shown relative to results with no control forRe = 0.936 million
in Fig. 16. Here, the computedcdp trend relative to baseline for all three turbulence models is in good agreement with
experiment relative to its baseline, and computed bubble length trend relative to baseline is of correct magnitude but
shallower slope than experiment. This figure indicates that, given a known baseline performance, the RANS tools
using the current turbulence models can predict integral trends for suction reasonably well.

D. Results for Oscillatory Control

Average streamlines for the oscillatory workshop case are shown in Fig. 17 for the three turbulence models compared
with experiment. Again, the long-time-averaged bubble size was always over-predicted using RANS. (In the experi-
ment, the mean flow reattached nearx/c = 0.99, but in the CFD, the mean reattachment occurred atx/c = 1.22 for
SA, 1.19 for SST, and 1.19 for EASM-ko.) However, as discussed in Rumsey,8 the relative motion of the large-scale
convected vortical flow structures caused by the pulsed jet/suction were predicted fairly well compared with exper-
iment for the workshop case. Figs. 18 - 21 show comparisons of phase-averagedcp at four different phases in the
cycle for different〈cµ〉 and differentF+. Similar to for the workshop case, overall the three turbulence models gave
results in reasonable qualitative agreement with experiment for all conditions. However, EASM-ko tended to maintain
stronger vortices and yield larger peaks in pressure (particularly forF+ = 0.46). All of the oscillatory computations
used the medium grid. As mentioned earlier, grid and time step studies for the oscillatory control case were performed
in Rumsey.8

Figs. 22 - 25 show color vorticity contours for the workshop conditions ofF+ = 0.77, 〈cµ〉 = 0.11% at four times
during the cycle. During each cycle, a vortex forms and convects downstream. The SA model diffused the shed vortex
the most, in generally good agreement with experiment, whereas both SST and EASM-ko preserved the vortex strength
farther downstream. All three models predicted reasonably well the general position of the vortex immediately after it
had been shed, but the vortex in the experiment appeared to convect more rapidly than the computations when it was
located pastx/c ≈ 1.1.

Additional color vorticity contours for different oscillatory conditions are shown next. However, because PIV data
were only taken at the workshop conditions, experimental results were not available for comparison. Figs. 26 - 29
show computed results at the lower blowing condition of〈cµ〉 = 0.013%. The main differences between these results
and those at the workshop conditions are that the vortices are weaker in strength, and they convect somewhat further
for the same time in the cycle. Figs. 30 - 33 show computed results at the higher blowing condition of〈cµ〉 = 0.354%.
At this condition, the individual vortices appear to form or split away from the wall region earlier. After convecting
downstream, the SST and EASM-ko results indicate more rapid diffusion of the vortical structures than for results
using the same models at the workshop conditions, whereas SA results indicate the opposite. Figs. 34 - 37 show
computed results at the same blowing strength as the workshop conditions, but at the lower frequency ofF+ = 0.46.
Figs. 38 - 41 are at the higher frequency ofF+ = 2.00. At the lower frequency, the vortical blobs of fluid tend to be
larger in size, and exhibit a larger range of motion and extent. At the higher frequency, the vortices are tighter and are
constrained to travel within a narrower band.

The effect of Reynolds number on long-time-averagedcp is shown in Fig. 42 for the SA model. Here, the exper-
imental results atRe = 16 million are from Seifert and Pack,13 so small geometric and setup differences may have
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caused some of the differences in experimental results. BetweenRe = 0.936 million and 16 million, CFD exhibited a
small increase of control effectiveness: the bubble length decreased fromXB/c = 0.601 to 0.536 andcdp decreased
slightly from 0.023 to 0.022. Results using SST and EASM-ko, shown in Fig. 43, were qualitatively similar to SA.
Compared to the steady suction results of Fig. 10, the computed oscillatory results indicate a much weaker Reynolds
number effect betweenRe = 0.936 million and 16 million. This finding appears to be consistent with the results
of Greenblatt et al.,3,4 who noted a definite Reynolds number influence over a limited Reynolds number range (0.58
million to 1.1 million) for steady suction, but no influence for oscillatory blowing, possibly due to saturation of control
authority.

The effect of〈cµ〉 oncp is shown in Fig. 44, using the SA model. The experiment showed a lowering of the pressure
downstream of the slot, accompanied by a shortening of the bubble with increasing〈cµ〉, but the CFD exhibited
almost no difference at all at the two lowest blowing conditions tested. Because of this, a higher blowing velocity not
corresponding with any experiment was run (Upeak = 63 m/s) in order to better establish the trend in the CFD. (This
condition is not listed in Table 2 because the precise oscillatory momentum coefficient corresponding toUpeak = 63
m/s is not known; however, it is estimated to be near〈cµ〉 ≈ 0.65%.) With this additional run included, it is clear that
CFD followed a similar trend as experiment at the higher blowing coefficients. The experiment also indicated that the
flowfield “saturated” in terms of giving its most negative minimumcp in the separated region when〈cµ〉 = 0.11%. In
the CFD, there was also a pressure drop in the bubble, but it was more gradual than the experiment and minimumcp

occurred for both〈cµ〉 = 0.013% and0.11%. Then higher〈cµ〉 produced higher pressure levels in the bubble. Results
using SST and EASM-ko, shown in Fig. 45, indicated more of an effect due to〈cµ〉 at the lowest blowing conditions,
but other than this, the trends were similar. The SST and EASM models were not run at the higherUpeak = 63 m/s
condition.

Figs. 46 and 47 show∆cp, the change in surface pressure coefficient of the controlled flow relative to baseline
(no control). In this case, the SST and EASM-ko models yielded better qualitative results than SA compared to
experiment, although the peak levels at the highest two〈cµ〉 values were underpredicted. For SA, only the artificially
high Upeak = 63 m/s began to yield significant positive∆cp peak levels. Furthermore, at the lowest two control
conditions the∆cp remained negative throughout the “bubble” region for SA, contrary to experiment.

The effect ofF+ oncp is shown in Fig. 48. In the experiment, increasingF+ produced slightly smaller separation
bubbles up toF+ near 1.39, but then the trend reversed at higherF+. In the CFD, no such trend was seen. Instead,
if anything, the bubble lengths increased slightly with increasingF+, but the differences were generally very small.
Another noticeable trend in the CFD was a pronounced peak in the minimum bubble pressure atF+ = 0.46, and
flatter levels at higherF+. This peak was even more pronounced for the SST and EASM-ko results, as seen in Fig. 49.

Fig. 50 showscdp as a function of〈cµ〉 for two differentF+ using all three turbulence models. As with the
steady suction case, the CFD under-predicted the absolutecdp levels, but the general trend of relatively flatcdp for
〈cµ〉 < 0.11% appears to be similar to experiment. (Compare this plot with Fig. 14, which indicates a negative slope
over all of thecµ range.) In the experiment, this apparent ineffectiveness at low〈cµ〉 was due to offsetting effects of
shortening bubble and increasing pressure drop immediately downstream of the slot, but in the CFD the trend was due
to the fact that〈cµ〉 had little effect on the average pressure distribution. At higherF+, the CFD predicted lowercdp

(like experiment), but the difference was nearly half that seen in the experiment. The three turbulence models differed
by as much as 17%, with SST predicting the highest drag levels and SA the lowest. Plottingcdp relative to baseline
(Fig. 51) brings CFD results closer to experiment, but levels are still off by as much as 0.005 – 0.007. Therefore, the
statement made in the last section for steady suction cases – that RANS can predict integral trends reasonably well
given a known baseline performance – cannot be confidently asserted for the oscillatory cases.

IV. Summary and Conclusions

An extensive computational study was conducted with RANS and URANS and three different turbulence models
in application to the hump model case from a flow control validation workshop held in 2004. This paper is an ex-
panded version of a limited-length paper that summarized results from the study and appeared at the 5th International
Symposium on Turbulence and Shear Flow Phenomena by the same authors.1 The current paper contains additional
plotted results that could not be shown in the shorter version. Many of the cases from this study were not part of
the workshop itself, but were included in the experiment. They included investigations into the effects of Reynolds
number, control magnitude, and control frequency. The purpose of this study was to investigate the effectiveness of
RANS and URANS CFD for predicting trends in this type of flow control application.

In summary, all three turbulence models performed similarly, in the sense that differences between the models
were generally less than differences between CFD and experiment. However, the SA model was usually superior to
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the others. For steady suction, CFD appeared capable of predicting the trends due to Reynolds number andcµ, and
this was clearly evident by comparing bubble length and form-drag changes. Nevertheless, absolute levels, such as the
pressure recovery details, were not correctly predicted. The fact that both experiment and CFD showed a strongRe
effect is important because the majority of experiments are performed at low Reynolds number laboratory conditions
(Re ≤ 1, 000, 000) and are assumed to remain valid under typical flight conditions withRe at several tens of millions.

For oscillatory control, the CFD indicated increasing effectiveness in the mean with increasingRe, but the effect
was not nearly as pronounced as with steady suction. This was consistent with the data of Greenblatt et al.3,4 When
comparing with data of Seifert and Pack,13 trends due to increasingRe were only crudely captured in the sense that
mean bubble length decreased betweenRe = 0.936 million and 16 million, but it was difficult to draw firm conclu-
sions because of slot geometry differences. CFD did not appear to mimic the mean effect of increasing oscillatory
momentum coefficient very well. In particular, at levels less than about〈cµ〉 = 0.35, CFD results showed little im-
provement over no flow control at all. At〈cµ〉 > 0.35, CFD started to show pronounced influence due to higher
amplitude blowing/suction. Some effects due to changes in control frequency were captured qualitatively by CFD in
the phase-averaged results, but trends in the mean were missed.
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Figure 1. View of medium-level grid (52,080 cells).

Figure 2. View of both fine and medium grids near slot region.
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Figure 3. Streamlines for steady suction case,Re = 0.936 million, cµ = 0.24, medium grid.
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Figure 4. Effect of grid density on surface pressures for steady suction case,Re = 0.936 million, cµ ranging from 0.03 to 0.76; SA model.
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Figure 5. Surface pressure coefficients for steady suction case,Re = 0.936 million, medium grid.
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Figure 6. Effect of cµ on surface pressure coefficients for steady suction,Re = 0.936 million, SA model on fine grid.

Figure 7. Effect of cµ on surface pressure coefficients for steady suction,Re = 0.936 million, SST (left) and EASM-ko (right) models on
medium grid.
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Figure 8. Effect of cµ on surface pressure coefficients for steady suction relative to baseline (no control),Re = 0.936 million, SA model on
medium grid.

Figure 9. Effect of cµ on surface pressure coefficients for steady suction relative to baseline (no control),Re = 0.936 million, SST (left)
and EASM-ko (right) models on medium grid.
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Figure 10. Effect of Reynolds number on surface pressure coefficients for steady suction,cµ = 0.24; CFD only, SA model on fine grid.
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Figure 11. Effect of Reynolds number on surface pressure coefficients for steady suction,cµ = 0.24; CFD only, all three turbulence models
on medium grid.
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Figure 12. Bubble length as a function ofcµ for steady suction; CFD shows results using SA model, fine grid.
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Figure 13. Bubble length as a function ofcµ for steady suction; comparison of different turbulence models, medium grid.
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Figure 14. Pressure drag coefficient as a function ofcµ for steady suction; CFD shows results using SA model, fine grid.

18 of 43



Figure 15. Pressure drag coefficient as a function ofcµ for steady suction; comparison of different turbulence models, medium grid.
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Figure 16. Bubble length and pressure drag coefficient relative to baseline (no control) as a function ofcµ for steady suction,Re = 0.936
million.
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Figure 17. Streamlines for oscillatory control,Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.11%, medium grid.
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Figure 18. Phase-averaged surface pressure coefficients behind the hump at phase =80◦ (cycle changing from suction to blowing) for
oscillatory control; Re = 0.936 million, medium grid.
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Figure 19. Phase-averaged surface pressure coefficients behind the hump at phase =170◦ (maximum blowing phase of the cycle) for
oscillatory control; Re = 0.936 million, medium grid.
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Figure 20. Phase-averaged surface pressure coefficients behind the hump at phase =260◦ (cycle changing from blowing to suction) for
oscillatory control; Re = 0.936 million, medium grid.
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Figure 21. Phase-averaged surface pressure coefficients behind the hump at phase =350◦ (maximum suction phase of the cycle) for
oscillatory control; Re = 0.936 million, medium grid.
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Figure 22. Vorticity contours (in 1/s) at phase =80◦ (cycle changing from suction to blowing) for oscillatory control;Re = 0.936 million,
F+ = 0.77, 〈cµ〉 = 0.11%, medium grid.
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Figure 23. Vorticity contours (in 1/s) at phase =170◦ (maximum blowing phase of the cycle) for oscillatory control;Re = 0.936 million,
F+ = 0.77, 〈cµ〉 = 0.11%, medium grid.
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Figure 24. Vorticity contours (in 1/s) at phase =260◦ (cycle changing from blowing to suction) for oscillatory control;Re = 0.936 million,
F+ = 0.77, 〈cµ〉 = 0.11%, medium grid.
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Figure 25. Vorticity contours (in 1/s) at phase =350◦ (maximum suction phase of the cycle) for oscillatory control;Re = 0.936 million,
F+ = 0.77, 〈cµ〉 = 0.11%, medium grid.
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Figure 26. Vorticity contours (in 1/s) for lower 〈cµ〉 than workshop case, at phase =80◦ (cycle changing from suction to blowing) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.013%, medium grid.

Figure 27. Vorticity contours (in 1/s) for lower 〈cµ〉 than workshop case, at phase =170◦ (maximum blowing phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.013%, medium grid.
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Figure 28. Vorticity contours (in 1/s) for lower 〈cµ〉 than workshop case, at phase =260◦ (cycle changing from blowing to suction) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.013%, medium grid.

Figure 29. Vorticity contours (in 1/s) for lower 〈cµ〉 than workshop case, at phase =350◦ (maximum suction phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.013%, medium grid.
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Figure 30. Vorticity contours (in 1/s) for higher 〈cµ〉 than workshop case, at phase =80◦ (cycle changing from suction to blowing) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.354%, medium grid.

Figure 31. Vorticity contours (in 1/s) for higher 〈cµ〉 than workshop case, at phase =170◦ (maximum blowing phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.354%, medium grid.
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Figure 32. Vorticity contours (in 1/s) for higher 〈cµ〉 than workshop case, at phase =260◦ (cycle changing from blowing to suction) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.354%, medium grid.

Figure 33. Vorticity contours (in 1/s) for higher 〈cµ〉 than workshop case, at phase =350◦ (maximum suction phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 0.77, 〈cµ〉 = 0.354%, medium grid.
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Figure 34. Vorticity contours (in 1/s) for lower F+ than workshop case, at phase =80◦ (cycle changing from suction to blowing) for
oscillatory control; Re = 0.936 million, F+ = 0.46, 〈cµ〉 = 0.11%, medium grid.

Figure 35. Vorticity contours (in 1/s) for lower F+ than workshop case, at phase =170◦ (maximum blowing phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 0.46, 〈cµ〉 = 0.11%, medium grid.
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Figure 36. Vorticity contours (in 1/s) for lower F+ than workshop case, at phase =260◦ (cycle changing from blowing to suction) for
oscillatory control; Re = 0.936 million, F+ = 0.46, 〈cµ〉 = 0.11%, medium grid.

Figure 37. Vorticity contours (in 1/s) for lower F+ than workshop case, at phase =350◦ (maximum suction phase of the cycle) for oscillatory
control; Re = 0.936 million, F+ = 0.46, 〈cµ〉 = 0.11%, medium grid.
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Figure 38. Vorticity contours (in 1/s) for higher F+ than workshop case, at phase =80◦ (cycle changing from suction to blowing) for
oscillatory control; Re = 0.936 million, F+ = 2.00, 〈cµ〉 = 0.11%, medium grid.

Figure 39. Vorticity contours (in 1/s) for higher F+ than workshop case, at phase =170◦ (maximum blowing phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 2.00, 〈cµ〉 = 0.11%, medium grid.
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Figure 40. Vorticity contours (in 1/s) for higher F+ than workshop case, at phase =260◦ (cycle changing from blowing to suction) for
oscillatory control; Re = 0.936 million, F+ = 2.00, 〈cµ〉 = 0.11%, medium grid.

Figure 41. Vorticity contours (in 1/s) for higher F+ than workshop case, at phase =350◦ (maximum suction phase of the cycle) for
oscillatory control; Re = 0.936 million, F+ = 2.00, 〈cµ〉 = 0.11%, medium grid.
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Figure 42. Effect of Reynolds number on long-time-averaged surface pressure coefficients for oscillatory control;F+ = 0.77, 〈cµ〉 =
0.11%, SA model on medium grid.

Figure 43. Effect of Reynolds number on long-time-averaged surface pressure coefficients for oscillatory control;F+ = 0.77, 〈cµ〉 =
0.11%, SST (left) and EASM-ko (right) models on medium grid.
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Figure 44. Effect of〈cµ〉 on long-time-averaged surface pressure coefficients for oscillatory control;Re = 0.936 million, F+ = 0.77, SA
model on medium grid.

Figure 45. Effect of〈cµ〉 on long-time-averaged surface pressure coefficients for oscillatory control;Re = 0.936 million, F+ = 0.77, SST
(left) and EASM-ko (right) models on medium grid.
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Figure 46. Effect of〈cµ〉 on long-time-averaged surface pressure coefficients for oscillatory control relative to baseline (no control);Re =
0.936 million, F+ = 0.77, SA model on medium grid.

Figure 47. Effect of〈cµ〉 on long-time-averaged surface pressure coefficients for oscillatory control relative to baseline (no control);Re =
0.936 million, F+ = 0.77, SST (left) and EASM-ko (right) models on medium grid.
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Figure 48. Effect ofF+ on long-time-averaged surface pressure coefficients for oscillatory control;Re = 0.936 million, 〈cµ〉 = 0.11%,
SA model on medium grid.

Figure 49. Effect ofF+ on long-time-averaged surface pressure coefficients for oscillatory control;Re = 0.936 million, 〈cµ〉 = 0.11%,
SST (left) and EASM-ko (right) models on medium grid.
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Figure 50. Pressure drag coefficient as a function of〈cµ〉 for oscillatory control; Re = 0.936 million, medium grid.
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Figure 51. Pressure drag coefficient relative to baseline (no control) as a function of〈cµ〉 for oscillatory control; Re = 0.936 million,
medium grid.
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