Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

M. Y. Kim, H. Nikjoo, J. F. Dickello, V. Pisacane, F. A. Cucinotta

1 Wyle Laboratories Inc., Houston, TX, USA
2 Universities Space Research Association, Houston, TX, USA
3 U.S. Naval Academy, Annapolis, MD, USA
4 NASA Lyndon B. Johnson Space Center, Houston, TX, USA

Introduction

- The quality factor used in radiation protection is defined as a function of LET, Q(Q(LET))
- TEPCs measure the average quality factors as a function of linear energy (y, Q(LET))
- A model of the TEPC response for charged particles:
 - energy deposition as a function of impact parameter from the ion's path to the volume
 - the escape of energy out of sensitive volume by ė-rays
 - the entry of ė-rays from the high-density wall into the low-density gas-volume
- TEPC response for broad spectrum of HZE particles:
 - the weighted function of discrete Monte-Carlo simulation data of the energy deposition

Approach to Radiation Evaluation

- Transport properties of spacecraft:
 - NASA BRYNTRN/HZETRN code system
 - Nuclear interaction model: Quantum Multiple Scattering Fragmentation (OMSFRG)
- TEPC detector response function:
 - Analytic model for frequent event spectra for trapped protons
 - Monte-Carlo track simulation for frequent event spectra for HZE particles

Analytic Model for Track Structure

Frequency Distribution for Energy Imparted by Ions

\[
\frac{df}{dt} = 2 \pi \int d \phi \, d \theta \, dE_x \, dE_y \, dE_z \, dE_{\text{kin}} \left(f_x(t) + f_y(t) \right)
\]

where \(n_x(t) \) is the number of events as a function of impact parameter \(t \)
\(f_x(t) \) is ions through the volume
\(f_y(t) \) is ions outside the volume
\(\Phi(t) \) is the radial dose distribution
\(\delta(t) \) is the frequency average of the distribution at \(t \)

Dependence of Frequency Distribution on \(t \)

\[
L \sim 2 \pi \int d \phi \, d \theta \, \left(\frac{df_x}{dt} + \frac{df_y}{dt} \right)
\]

where \(D_r \) is the radial dose from primary or secondary electrons
\(D_{\text{esc}} \) is the radial dose from excitation

\(f_{\text{esc}} \) is Mean and Variance Correction for ė-ray Diffusion

For example, the variance is

\[
\sigma^2(t) = \int dE_x \, dE_y \, dE_z \, dE_{\text{kin}} \, \sigma^2(t)
\]

where \(\delta(t) \) is the quotient of the second by the 1st moment

Event Spectra for an Ion of E MeVamu

TEPC Response Function

\(f_x(t), f_y(t) = f_x(t) + f_y(t) \)

The Linear Energy Distribution behind Shielding

\(f_x(t) = \int dE_x \, dE_y \, dE_z \, dE_{\text{kin}} \left(f_x(t) + f_y(t) \right) \)

where \(d_x \) is the directional weighting coefficients for spacecraft shielding
\(d_x \) is the directional weighting coefficient for instrument
\(\phi \) is flux from BRYNTRN or HZETRN

Monte-Carlo Simulation of Walled TEPC in 1-μm Tissue Site for Oxygen Ions

Shuttle Tissue Equivalent Proportional Counter (STS-89, January 1998)

Event Distributions

\(Q(\text{LET}) \) and \(Q(y) \) for Trapped Radiation as a Function of Aluminum Thickness

Quality Factors of LET and Lineal Energy for Various Ions

Concluding Remarks and Future Works

Trapped protons:
- The model calculation of integral flux is very close to the TEPC measured data except above 100 keV/μm
- Target fragmentation to be included in the model
- \(1.98 \leq Q_{\text{d(LET)}}(y) \leq 2.58 \) as measured by the TEPC
- \(1.65 \leq Q_{\text{d(LET)}}(y) \leq 1.65 \) as calculated from LET distribution using BRYNTRN
- \(2.07 \leq Q_{\text{d(LET)}}(y) \leq 2.07 \) as calculated from \(y \) distribution determined from TEPC response function and BRYNTRN

HZE particles of GCR:
- \(Q(y) < Q(\text{LET}) \) for HZE particles in the major interval of \(y \) or LET
- TEPCs underestimate the average quality factor for GCR
- Monte-Carlo simulation to be made for broad spectrum of ion types and energies extended to 1000's MeV/μm, and low y components with better statistic
- Radiation transport calculation of TEPC response will be compared with the TEPC measured data of GCR for the code validation effort and interpretation of radiation monitoring

<table>
<thead>
<tr>
<th>Sphere Thickness g/cm²</th>
<th>(Q_{\text{avg}}(\text{LET}))</th>
<th>(Q_{\text{avg}}(y))</th>
<th>Measured (Q_{\text{avg}}(\text{LET}))</th>
<th>Measured (Q_{\text{avg}}(y))</th>
<th>(Q_{\text{avg}}(\text{LET})/Q_{\text{avg}}(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0"</td>
<td>1.50</td>
<td>2.07</td>
<td>2.66</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>5"</td>
<td>1.57</td>
<td>2.18</td>
<td>1.99</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>7"</td>
<td>1.61</td>
<td>2.28</td>
<td>2.26</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>9"</td>
<td>1.66</td>
<td>2.32</td>
<td>2.58</td>
<td>1.41</td>
<td></td>
</tr>
</tbody>
</table>