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Introduction 
 
The flow over the two-dimensional hump model is computed by solving the RANS equations 
with k-ω (SST) model.  

Solution Methodology 
 
The governing equations, the flow equations and the turbulent equations, are solved using the 5th 
order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and 
using explicit third order total-variation-diminishing (TVD)  Runge-Kutta scheme for time 
integration. The WENO and the TVD methods and the formulas are explained in [1] and the 
application of ENO method to N-S equations is given in  [2].  The solution method implemented 
in this computation is described in detail in [3]. 
 
Model used 
 
Standard k-ω (SST) model is used and the equations and the model coefficients are described in 
[4, 5, 6]. 
 
Implementation and Details 
 
The computational domain extends from x/c=-10. to 4. in the streamwise direction and extends 
from the splitter plate to the upper tunnel wall in the normal direction. The leading edge of the 
splitter plate is modeled as a super ellipse with 0.25 in.  half thickness and an aspect ratio of 2. 
The leading edge is located at x/c=-5.9.  C-Type grid is used around the splitter plate and a 
rectangular grid is added upstream of the leading edge as shown in Fig. 1. This grid overlaps the 
C grid and 5th order central interpolation is used to transfer the flow variables from one grid to 
the other at the boundaries. (651*151) grid size is used around the splitter plate and the hump 
and (101*51) grid size is used in the rectangular region. 
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Figure 1: Overlapping grid near the leading edge of the splitter plate. 

 
 
Following boundary conditions are implemented at different boundaries: 
 

1. At the upper wall inviscid conditions are applied. 
∂ρ
∂y

= ∂u

∂y
= ∂E

∂y
= v = 0.        (1) 

2. At the lower wall viscous conditions are used. 
u = v = 0,

T = Tw = Tfreestream,
        (2) 

and ρ is computed from the continuity equations. 
3. From the leading edge of the splitter plate to the inflow boundary symmetric conditions 

are used. 
4. At the inflow boundary stagnation pressure, one Riemann variable and normal velocity 

v=0 are prescribed and the second Riemann variable is solved for to obtain the other flow 
quantity. 

5. At the outflow boundary the pressure is specified to obtain the required Mach number 
and characteristic-type boundary conditions are implemented similar to as described in 
[7] to obtain other flow variables. 

6. In the suction case, boundary conditions are applied on the surface of the hump across the 
suction slot. The suction slot extends from x/c=.6541 to .6584 and across the slot normal 
mass flow rate is specified to the experimental value. A suction distribution of the form  

(ρv)n = fmax sin2 π (x − xstart )
(xend − xstart )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (3) 

is used. Other forms have been tried and all of them yield the same results for a fixed 
total suction rate. The other flow quantities are obtained using the characteristic type 
boundary conditions [7]. 

  
Following boundary conditions are implemented for the turbulent quantities at different 
boundaries. 
 

1. At the inflow boundary small values are prescribed for k and µT . 
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k

U∞
2 =10−7,

µT

µ∞

= .009.
         (4) 

2. At the outflow boundary k and ω are solved for from the governing equations. Higher 
order extrapolation condition is also tried and it gives the same results. 

3. At the lower viscous wall k=0 condition is used and following exact boundary condition 
is derived for ω. 

4. In the suction case, across the suction slot linear extrapolation is used to obtain the 
turbulent quantities on the surface.  

 
Since the variable ω becomes singular near a viscous wall, in practice a large approximate value 
is prescribed at the wall. 

ωwall = 60µw

ρwβdw
2

,      (5) 

 
where dw is the distance to the first grid point from the wall. This is an approximate boundary 
condition and when it is implemented in the higher order scheme, oscillations and convergence 
problems are encountered and the following exact condition is derived for ωwall . By realizing 

that 1
y 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  type singularity for the variable ω arises because of the balance between the 

dissipation term and the viscous diffusion term in the ω equation, the singularity is removed by 
rewriting the variable ω as 

               ω = C

yn
2
ω1,       (6) 

where yn is the normal distance to the wall, C is a constant and ω1 is the new variable which is 
now regular near the wall. When this is substituted into the ω equation the following equation is 
obtained for ω1, which is similar to the ω equation except for the source term. 
 

∂
∂t

(ρω1) + ∂
∂x j

(ρu jω1) = γρΩ2yn
2 Re + 1

Re
∂

∂x j

µ + µT

σ w

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂ω1

∂x j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

− ω1

Re
1
yn

2
βρω1 − 6 µ + µT

σ w

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂yn

∂x j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

− 2
yn Re

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ µ + µT

σ w

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂ω1

∂x j

∂yn

∂x j

+ ∂
∂x j

µ + µT

σ w

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ω1

∂yn

∂x j

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

+ 2
yn

u jρω1

∂yn

∂x j

+ 2(1− F1)σω 2

ρ
ω1

∂k

∂x j

Re yn

∂ω1

∂x j

yn − 2
∂yn

∂x j

ω1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .

  (7) 
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The value of ω1 at the wall becomes 

ω1wall = 6µ
βρ

∂yn

∂x j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

.      (8) 

 
Here the variable ω is nondimensionalised by  
 

ω = ω*

U0
2

ν 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 and C = 1
Re2

.     (9) 

 
Hence the procedure is to use the ω1 equation for the first few points near the wall and switch to 
the ω equation away from the wall. In these computations ω1 equation is solved for the first ten 
points near the wall. Figure 2 shows the distribution of k, ω and ω1 near the wall and it is seen 
that this technique resolves the viscous layer smoothly even though ω is infinite at the wall. 
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Figure 2: Variation of k, ω and ω1 near the wall at x/c=0.4. 

 
Figure 3 shows the contours of the U velocity near the leading edge region and for the entire 
computational domain. Near the leading edge region the flow separates and forms a small 
separation bubble. In the no flow case, the solution converged for the flow equations and the 
turbulent equations very well. In the suction case, the maximum residual in the ω equation near 
the suction slot edges converged only by three orders. This may be due to the boundary 
conditions used for the turbulent quantities near the suction slot. 
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Figure 3: Contours of U velocity near the leading edge and over the hump. 
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