
Testing for Software Safety

OSMA Software Assurance Symposium 2007

Ken Chen, JSC
Yann-Hang Lee, ASU

W. Eric Wong, UT-Dallas
Dianxiang Xu, North Dakota State University

September, 2007

2SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Objective
This research focuses on testing whether or not the hazardous conditions identified
by design-level fault tree analysis will occur in the target implementation.

– Part 1: Integrate fault tree models into functional specifications so as to identify testable
interactions between intended behaviors and hazardous conditions.

– Part 2: Develop a test generator that produces not only functional tests but also safety
tests for a target implementation in a cost-effective way

– Part 3: Develop a testing environment for executing generated functional and safety tests
and evaluating test results against expected behaviors or hazardous conditions. It includes
a test harness as well as an environment simulation of external events and conditions.

3SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Current Work
Goal

– Integration of results from hazard analysis in fault trees with functional specifications in
UML behavior state machines

Challenges
– Identify testable interactions between intended behaviors and hazardous conditions
– Resolve the mismatch between fault tree models and functional specifications

Some events or unsafe states in a fault tree model may not be found or may have
no relevant parts in the corresponding functional specifications

4SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

UML Behavioral State Machines
A UML behavioral state machine can be used to specify the sequences of states an
object goes through during its lifetime in response to events, together with its
responses to those events.

The behavioral state machine formalism described in UML is an object-based
variant of Harel statecharts

5SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Fault Tree Analysis (FTA)
Useful for reliability and safety analysis

– First used by Bell Telephone Laboratories in connection with the safety analysis of the
Minuteman missile launch control system in 1962

A top-down approach starting with an undesirable event called a top event and
then determining all the ways it can happen

– Identify all the top events to be analyzed
– Identify the events that directly contribute to the top level vent
– Continue this process until the lowest level defined or basic level is reached

Important because if there is a critical failure mode, then all possible ways that
mode could occur must be discovered

6SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Fault Tree (FT)
A fault tree is a graphical model of various parallel and sequential combinations of
faults that will result in the occurrence of the predefined undesired event

– The undesired event constitutes the top event in a fault tree constructed for the system,
and generally consists of a complete, or catastrophic failure

– The faults can be events that are associated with component hardware failures, human
errors, or any other pertinent events which can lead to the top event

A fault tree is composed of a number of “event” symbols and “gate” symbols

– An event symbol serves to represent an initiating fault event, an event that is normally
expected to occur, a condition or restriction, or a fault event which occurs because of one
or more antecedent causes acting through logic gates

– A gate serves to permit or inhibit the passage of fault logic up the tree, and shows the
relationships of events needed for the occurrence of a higher event

The higher event is the output of the gate
The lower events are the inputs to the gate

7SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Events of Fault Tree
Primary Event

– Basic event: An event does not require any further development in order to initiate a fault
Fault tree symbol:

– Conditioning event: An event describes specific conditions or restrictions that apply to any logic gate
Fault tree symbol:
Used primarily with PRIORITY AND and INHIBIT gates

– Undeveloped event: An event which is not further developed because it is of insufficient consequence
or because information is not available

Fault tree symbol:

– External event: An event which is normally expected to occur
Fault tree symbol:

Intermediate Event
– An event that occurs because of one or more antecedent causes acting through logic gates

Fault tree symbol:

8SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Gates of Fault Tree
AND-Gate

– Output fault occurs if all of the input faults occur
– Fault tree symbol:

OR-Gate
– Output fault occurs if at least one of the input faults occurs
– Fault tree symbol:

EXCLUSIVE OR-Gate
– Output fault occurs if exactly one of the input faults occurs
– Fault tree symbol:

PRIORITY AND-Gate
– Output fault occurs if all of the input faults occur in a specific sequence (the sequence is represented

by a CONDITIONING EVENT drawn to the right of the gate)
– Fault tree symbol:

INHIBIT-Gate
– Output fault occurs if the (single) input fault occurs in the presence of an enabling condition (the

enabling condition is represented by a CONDITIONING EVENT drawn to the right of the gate)
– Fault tree symbol:

9SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Examples of Gates (1)
AND-Gate relationship with dependency explicitly shown

Inhibit-Gate: event Q occurs only if input A occurs under the condition specified by input B

Q occurs

A occurs
B occurs given
the occurrence

of A
B occurs

A occurs given
the occurrence

of B

(event Q)

(conditional input B)

(input A)

Frozen
gasoline line

Existence of
low

temperature T

T < TCRITICAL

10SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Examples of Gates (2)
The INHIBIT-Gate is a special case of the AND-Gate. The output is caused by a single input, but some
qualifying condition must be satisfied before the input can produce the output

The EXCLUSIVE OR-Gate is a special case of the OR-Gate in which the output event occurs only if
exactly one of the input events occurs

The PRIORITY AND-Gate is a special case of the AND-Gate in which the output event occurs if all input
events occur in a specified ordered sequence

Q

A B

Q

A B

A and B occur
exclusively

11SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Construction of Fault Tree
A fault tree can be constructed based on the Failure Modes and Effects Analysis
(FMEA) and system block diagrams

Rules of thumb
– No Miracles Rule: If the normal functioning of a component propagates a fault sequence,

then it is assumed that the component functions normally.

– Complete-the-Gate Rule: All inputs to a particular gate should be completely defined
before further analysis of any of them is undertaken.

– No Gate-to-Gate Rule: Gate inputs should be properly defined fault events, and the gates
should not be directly connected to other gates.

12SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Boolean Algebra & Fault Tree Analysis
The OR-Gate is equivalent to the Boolean symbol “+”

The AND-Gate is equivalent to the Boolean symbol “•”

Rules of Boolean Algebra
 Mathematical Symbolism Engineering Symbolism Designation
(1a) =X Y Y XI I ⋅ = ⋅X Y Y X
(1b) =X Y Y XU U + = +X Y Y X

Commutative Law

(2a) () ()=X Y Z X Y ZI I I I () ()⋅ ⋅ = ⋅ ⋅X Y Z X Y Z
() ()=X YZ XY Z

(2b) () ()=X Y Z X Y ZU U U U () ()+ + = + +X Y Z X Y Z

Associative Law

(3a) () () ()=X Y Z X Y X ZI U I U I () () ()⋅ + = ⋅ + ⋅X Y Z X Y X Z
()+ = +X Y Z XY XZ

(3b) () () ()=X Y Z X Y X ZU I U I U () ()+ ⋅ = + ⋅ +X Y Z X Y X Z

Distributive Law

(4a) =X X XI ⋅ =X X X
(4b) =X X XU + =X X X

Idempotent Law

(5a) () =X X Y XI U ()⋅ + =X X Y X
(5b) () =X X Y XU I + ⋅ =X X Y X

Law of Absorption

(6a) φ′ =X XI φ′⋅ =X X
(6b) ′ = Ω =X X IU

* ′+ = Ω =X X I
(6c) ()′ ′ =X X ()′ ′ =X X

Complementation

(7a) ()′ ′ ′=X Y X YI U ()′ ′ ′⋅ = +X Y X Y
(7b) ()′ ′ ′=X Y X YU I ()′ ′ ′+ = ⋅X Y X Y

de Morgan’s Theorem

(8a) φ φ=XI φ φ⋅ =X
(8b) φ =X XU φ + =X X
(8c) Ω =X XI Ω⋅ =X X
(8d) Ω = ΩXU Ω+ = ΩX
(8e) φ′ = Ω φ′ = Ω
(8f) φ′Ω = φ′Ω =

Operations withφ andΩ

(9a) ()′ =X X Y X YU I U ′+ ⋅ = +X X Y X Y
(9b) () ()′ ′ ′ ′ ′= =X X Y X Y X YI U I U () ()′ ′ ′ ′ ′⋅ + = ⋅ = +X X Y X Y X Y

These relationships are
unnamed but are frequently
useful in the reduction process.

* The symbol I is often used instead ofΩ to designate the Universal Set. In engineering notationΩ is
often replaced by 1 andφ by 0.

13SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Examples of Fault Trees
Fault tree structure for D=A · (B+C)

An equivalent fault tree for D=A · (B+C)

D

A B or C

B C

14SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A cut set in a fault tree is a set of basic events whose simultaneous occurrence
ensures that the top event occurs.

A cut set is said to be minimal if the set cannot be reduced without losing its status
as a cut set.

– The combination is “smallest” in that all the events are needed for the top event to occur.
If one of the events in the cut set does not occur, then the top event will not occur (by this
combination).

A fault tree may consist of a finite number of minimal cut sets, which are unique
for that top event.

Minimal Cut Set (1)

15SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

The one-event minimal cut sets represent those single events which will cause the
top event to occur

The two-event minimal cut sets represent those pairs of events which together will
cause the top event to occur

Similarly, for an n-event minimal cut set, all n events in the cut set must occur in
order for the top event to occur

The minimal cut set for the top-event can be written in the following general form
– TOP = M1 + M2 + ··· + Mm where TOP is the top event and Mi (1 ≤ i ≤ m) is a minimal cut

set
– Mi = X1 • X2 • ··· • Xn where Xk (1 ≤ k ≤ n) is a basic event in the fault tree

Minimal Cut Set (2)

16SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Examples of Minimal Cut Sets
The top event can be expressed as
a Boolean function of the basic events

E1 = T + E2
= T + (K2 + E3)
= T + K2 + (S · E4)
= T + K2 + (S · (S1 + E5))
= T + K2 + (S · S1) + (S · E5)
= T + K2 + (S · S1) + S · (K1 + R)
= T + K2 + (S · S1) + S · K1 + S · R

The above expression of the top event
in terms of the basic events to the tree
can be viewed as a Boolean algebraic
equivalent of the tree itself.

In this example, we have five minimal
cut sets ― two singles and three doubles

– K2

– T
– S · S1

– S · K1

– S · R

E1

T E2

E3 K2

S E4

S1 E5

K1 R

Top Event

Intermediate Event

Intermediate
Event

Intermediate Event

Intermediate
Event

Basic Event

17SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Construction of Minimal Cut Set
The tree is first translated to its equivalent Boolean equations and then either the
“top-down” or “bottom-up” substitution method is used.

– Both methods involve substituting and expanding Boolean expressions.
– Two Boolean laws, the distributive law and the law of absorption, are used to remove the

redundancies.
[Reference 3]

Tools are available for computing the minimal cut sets of a fault tree

18SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

The occurrence of basic events in a minimal cut set M will lead to the occurrence
of an undesired event and finally cause a transition from a normal state to a fault
state. We define such a transition as a minimal cut set transition.

Given a fault tree T and a minimal cut set M, we can obtain a subtree, whose root
is the top event of the fault tree, and whose leaves are the basic events in M and
some other primary events (e.g., external events) that cause the top event.

– The subtree contains
all the basic events in M (the given minimal cut set)
all the other necessary “occurring” primary events (undeveloped, external, and conditioning
events)
all the necessary “occurring” intermediate events
the top event

A subtree therefore describes a minimal cut set transition in the behavioral state
machine

Minimal Cut Set Transition

19SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

How to simplify a fault tree by deleting all the infeasible and non-causal events
and gates?

– A fault tree may be constructed independently from the construction of the UML
behavior state machine for the target system. Some constraints, which are defined
implicitly or explicitly on the system or on the machine, may affect the occurrence of the
primary and/or non-primary events in the fault tree. How to use these constraints to
simplify the fault tree in order to reduce the complexity of the machine after
combination?

– Proposed Solution

Given a minimal cut set of a fault tree, how to construct a corresponding subtree
which covers all necessary events leading to the top event?

– Proposed Solution

How to transform a subtree to a minimal cut set transition?
– Proposed Solution

How to add the minimal cut set transitions to a UML behavior state machine?
– Proposed Solution

Research Issues

20SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Research Issue I

Simplify a fault tree by deleting all the infeasible
and non-causal events and gates

Back to Research Issues

21SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Infeasible Minimal Cut Set (Transition)
Theoretically, we can transform the subtrees for the minimal cut sets to minimal
cut set transitions, and then extend the UML behavior state machine to describe the
possibilities of the occurrence of undesired events by adding all minimal cut set
transitions to the machine.

A minimal cut set transition can be infeasible because of the restrictions on a
specific system. These restrictions are implicitly or explicitly defined, which make
the transition impossible to traverse. We call such a transition an “infeasible”
minimal cut set transition, and the corresponding minimal cut set is an “infeasible”
minimal cut set.

– On the contrary, we have “feasible” minimal cut sets and “feasible” minimal cut set
transitions.

Identification of “infeasible” minimal cut sets beforehand can
– reduce the complexity of the UML behavior state machine after combination
– help the derivation of traversable test sequences and generation of effective test cases

from the combined machine

22SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Bottom-Up Path
We define a bottom-up path p = <x1, x2, …, xn>
from x1 to xn, where xi (1≤ i ≤ n) is an event or
a gate in the fault tree

The path needs to satisfy the following:
– The adjacent events/gates on the path are

connected by a line in the fault tree
– If xi is a gate, xi-1 is an input event of xi

or a conditioning event applied to xi,
and xi+1 is the output event of xi

– If xi is an event, xi+1 can be the successive
event of xi or a gate receiving xi as its input

A bottom-up path gives the order of
the occurrence of the events

RUPTURE OF PRESSURE TANK
AFTER THE START OF PUMPING

TANK RUPTURE
(SECONDARY

FAILURE)TANK
RUPTURE

TANK RUPTURE DUE TO
IMPROPER SELECTION OF

INSTALLATION
(WRONG TANK)

TANK RUPTURE DUE TO INTERNAL OVER-
PRESSURE CAUSED BY CONTINUOUS PUMP

OPERATION FOR t>60 SEC SECONDARY TANK FAILURE
FROM OTHER OUT-OF-

TOLERANCE CONDITIONS (e.g.,
MECHANICAL, THERMAL)

IF PUMP RUNS FOR t>60
SECS, TANK WILL RUPTURE

WITH PROBABILITY = 1

PUMP OPERATES
CONTINUOUSLY

FOR t>60 SEC

K2 RELAY CONTACTS
REMAIN CLOSED FOR t>60

SEC

K2 RELAY
(SECONDARY

FAILURE)

K2 RELAY
CONTACTS

FAIL TO OPEN

EMF APPLIED TO K2
RELAY COIL FOR t>60

SEC

23SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Identification of Infeasible Events & Gates (1)
A primary/non-primary event with unrealistic constraints is infeasible

– Example: an event “a sportsman jumps for a distance of ten meters” can be regarded as
an infeasible event because a human being cannot jump that far

A conditioning event is infeasible if the condition specified in the event can never
be reached or the probability specified in the event is 0

A gate is infeasible if it cannot be passed through based on the combinations of all
its input events

– Example: an AND-Gate I = E1 • E2 but events E1 and E2 cannot occur simultaneously
because they contradict each other

– Example: an OR-Gate I = E1 + E2 but neither E1 nor E2 can occur

24SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Identification of Infeasible Events & Gates (2)
If any of the input events of an AND-Gate is infeasible, then the AND-gate is
infeasible

If all the input events of an OR-Gate are infeasible, then the OR-Gate is infeasible

A gate is infeasible if its conditioning event is infeasible

The output event of an infeasible gate is infeasible

The successive event of an infeasible event is infeasible

25SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Identification of Non-Causal Events & Gates
A non-causal event/gate does not contribute to the occurrence of the top event

– The Boolean equations for the following tree are TOP = I1• I2; I1 = E1 • I3; I2 = E2 • I4; I3 = E2 • E3 • E4;
I4=[C1] (E6 • E7 • E8). Suppose the conditioning event C1 is infeasible (cannot occur), the
corresponding AND-gate is infeasible which makes the intermediate event I4 infeasible. Although the
top event can still occur if E1 and E5 occur. Basic events E6, E7, and E8 have no impact on the
occurrence of the top event. They are defined as “non-causal” events.

– If there does not exist a bottom-up path from an event E (or a gate G) to the top event, on
which all the events/gates are feasible, then E (or G) is a non-causal event (or gate) for
the top event.

C1 is an infeasible conditioning event

E6, E7, and E8 are non-causal events

X
X X

26SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A fault tree can be simplified by removing all the infeasible and non-causal events
and gates

– In the following tree, events E3, I4, and C1 are infeasible and events E6, E7, and E8 are non-causal

If the top event is infeasible, the fault tree can be excluded from further
consideration.

Simplification of a Fault Tree

Back to Research Issues

• X: the event/gate is infeasible according to
some constraints on the system

•X: the event/gate is infeasible according to
some deduction rules

•X: the event/gate is a non-causal event/gate.X
X

X X XX
X

27SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Research Issue 2

Construct a subtree based on a given minimal cut set

Back to Research Issues

28SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Construction of a Subtree for a Given Minimal Cut Set (1)

A subtree for a minimal cut set M can be obtained by simulating the occurrence
of all the basic events in M
– Step 0: Assuming each event in a simplified fault tree can be classified as “occurring”

or “non-occurring”, and each gate can be classified as “passed through” or
“not-passed through”

– Step 1: Initially, mark all the events in the fault tree as “non-occurring” and all the
gates as “not-passed through”

– Step 2: Mark a “non-occurring” basic event as “occurring” if it belongs to M

29SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Construction of a Subtree for a Given Minimal Cut Set (2)

– Step 3: Repeat steps 3.1 to 3.4 until no events in the fault tree can be marked as
“occurring” and no gates can be marked as “passed through”

Step 3.1: Mark an external/undeveloped event E as “occurring” if E is an input of an
AND-Gate G and all other basic events and intermediate events received by G are “occurring”

Step 3.2: Mark the conditioning event C applied to a gate G as “occurring” if the “occurring”
input events can satisfy the conditions indicated in C

occurring events

occurring events

30SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Construction of a Subtree for a Given Minimal Cut Set (3)

Step 3.3: Mark a non-primary event E as “occurring” if E is the output of a “passed through” gate
G or E is the successive event of an “occurring” event

Step 3.4: Mark a “not-passed through” gate G as “passed through” if
G is an OR-Gate, and at least one of its input events is “occurring”, and the applied conditioning event, if it
exists, is also “occurring”
G is an AND-Gate, and all of its input events are “occurring”, and the applied conditioning event, if it exists,
is also “occurring”

– Step 4: Identify additional non-causal events and gates with respect to the given
minimal cut set which are not removed during the simplification of the fault
tree (as discussed earlier)

31SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Construction of a Subtree for a Given Minimal Cut Set (4)

Change an “occurring” event to “non-causal” and a “passed through” gate to “non-causal” if there
does not exist a bottom-up path from the event/gate to the top event, on which all events are
marked as “occurring” and all gates are marked as “passed through”

– Step 5: Remove all “non-occurring”/“non-causal” events and all “not-passed through”/
“non-causal” gates from the fault tree

Let the minimal cut set M = {E1, E2}
When basic events E1 and E2 occur,
intermediate events I1 and I3 will occur.
Since basic event E3 is not in M,
it will not be included in the subtree for M.
That is, E3 is regarded as “infeasible” with respect
to this subtree.
As a result, I2 cannot occur which makes E1 and
E2 in the right part of the tree as “non-causal”.

It is better to represent such E1 and E2 as the
mirror blocks of the E1 and E2 in the left part of
the fault tree. Note that an event may appear
multiple times at different places in a fault tree
and affect different parts of the tree. [Reference 1]

occurring non-occurring

occurring

occurringoccurring non-
occurring

occurring occurring

occurring

non-causal non-causal

non-causal

32SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

The subtree constructed at step 5 contains
– all the basic events in M (the given minimal cut set)
– all the other necessary “occurring” primary events (undeveloped, external, and conditioning events)
– all the necessary “occurring” intermediate events
– the top event

Subtree-events (M) = M ∪ {other necessary “occurring” primary events} ∪
{necessary “occurring” intermediate events} ∪ {top event}

– The subtree for a given M does not contain any basic events that are not in M
– The top event of a fault tree must be included in the subtree

Characteristics of the Subtree

33SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Examples of Two Subtrees
The equivalent Boolean equations for the
fault tree to the right is

– TOP = I1 + I2

– I1 = E1 • E2

– I2 = E3 • E4

Let minimal cut set M1 = {E1, E2}
– Subtree-events (M1) = M1∪{I1} ∪{TOP}
– The equivalent Boolean equations for subtree 1

T = I1
I1 = E1 • E2

Let minimal cut set M2 = {E3, E4}
– Subtree-events (M2) = M2∪{I2} ∪{TOP}
– The equivalent Boolean equations for subtree 2

T = I2
I2 = E3 • E4

Subtree for the minimal cut set M1

Subtree for the minimal cut set M2

Back to Research Issues

34SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Research Issue 3

Transform a subtree to a minimal cut set transition

Back to Research Issues

35SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Run-to-Completion Assumption
The semantics of event occurrence processing in UML is based on the run-to-
completion assumption, interpreted as run-to-completion processing.

– Run-to-completion processing means that an event occurrence can only be taken from the
event pool and dispatched if the processing of the previous occurrence is fully completed.
[Reference 2]

Assume that the event occurrence processing in a fault tree is also based on the
run-to-completion assumption.

36SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A primary event of a fault tree can be transformed to a trigger or a guard
condition for a transition in a UML behavioral state machine.

– The occurrence of a basic/undeveloped/external event in a fault tree is semantically
equivalent to triggering a transition in a UML behavior state machine

– Event E may be prevented from occurring or its effect can be eliminated

A Primary Event in a UML Behavior State Machine (1)

Idle

invoke E

• • • • •

Idle

E is invoked
processing E

Effect of E is not eliminated

Effect of E is eliminated
E is prevented from occurring

invoke E

37SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Primary Event in a UML Behavior State Machine (2)

– A conditioning event can be transformed to a transition guard
Example:

Fault Tree: T < T_CRITICAL
UML behavior state machine: [T < T_CRITICAL]

38SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

An Intermediate Event in a UML Behavior State Machine (1)

An intermediate event of a fault tree can be transformed to an action in a UML
behavior state machine

Event E may be prevented from occurring or its effect can be eliminated

Processing lower level events Processing E

lower level events occur

/ invoke E

Processing lower level events Idle

Processing E

lower level events occur

/ invoke E

E is invoked

Effect of E is not eliminated

Effect of E is eliminated

E is prevented from occurring

39SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

An Intermediate Event in a UML Behavior State Machine (2)

Example: I = I1 • I2

Processing IIdle_I

Processing I1 and I2

Idle_I2 Processing I2Idle_I2 Processing I2

/ invoke I
I is invoked

Effect of I is not eliminatedEffect of I is eliminated

I1 is invoked

Effect of I1 is not eliminated

I2 is invoked

Effect of I2 is not eliminated

I1 is prevented from occurring

Idle_I1 Processing I1

Effect of I1 is eliminated
I is prevented from occurring

I2 is prevented from occurring

Effect of I2 is eliminated

invoke I1

invoke I2

40SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

An Intermediate Event in a UML Behavior State Machine (3)

Example 2: I = I1 + I2

Processing I1 and I2

Idle_I2
Processing I2

Idle_I2
Processing I2

Processing IIdle_I

I is invoked

Effect of I is not eliminated

Effect of I is eliminated

I1 is invoked

I2 is invoked

I1 is prevented from occurring

Idle_I1 Processing I1

Effect of I1 is eliminated I is prevented from occurring

I2 is prevented from occurring

Effect of I2 is eliminated

Effect of I1 is not eliminated

Effect of I2 is not eliminated

/ invoke I

invoke I1

invoke I2

41SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

An Intermediate Event in a UML Behavior State Machine (4)

Example 3: I = [C] I1 /* if (I1 occurs under the condition C) {I occurs} */

Processing I1

Idle_I1 Processing I1Idle_I1 Processing I1

Processing IIdle_I

[C] / invoke I

I is invoked

Effect of I is not eliminatedEffect of I is eliminated

I1 is invoked

Effect of I1 is not eliminated
I1 is prevented from occurring

Effect of I1 is eliminated

I is prevented from occurring

invoke I1

42SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

An Intermediate Event in a UML Behavior State Machine (5)

Example 4: I = [C] (I1 • I2) /* if (I1 and I2 occur under the condition C) {I occurs} */

Processing IIdle_I

Processing I1 and I2

Idle_I2 Processing I2Idle_I2 Processing I2

[C] / invoke I
I is invoked

Effect of I is not eliminatedEffect of I is eliminated

I1 is invoked

Effect of I1 is not eliminated

I2 is invoked

Effect of I2 is not eliminated

I1 is prevented from occurring

Idle_I1 Processing I1

Effect of I1 is eliminated
I is prevented from occurring

I2 is prevented from occurring

Effect of I2 is eliminated

invoke I1

invoke I2

43SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

An Intermediate Event in a UML Behavior State Machine (6)

Example 5: I = [C] (I1 + I2) /* if (I1 or I2 occur under the condition C) {I occurs} */

Processing I1 and I2

Idle_I2
Processing I2

Idle_I2
Processing I2

Processing IIdle_I

I is invoked

Effect of I is not eliminated

Effect of I is eliminated

I1 is invoked

I2 is invoked

I1 is prevented from occurring

Idle_I1 Processing I1

Effect of I1 is eliminated I is prevented from occurring

I2 is prevented from occurring

Effect of I2 is eliminated

Effect of I1 is not eliminated

Effect of I2 is not eliminated

[C] / invoke I

invoke I1

invoke I2

44SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Minimal Cut Set Transition: Example 1
A subtree for a given minimal cut set M can be transformed to a minimal cut set transition

The Boolean equations for the following subtree are I = I1 · I2; I1 = E1 · E2; I2 = E3 · E4

Processing I1 and I2

Processing E1 and E2

Processing E1

Processing E2

Processing I1

Processing E1 and E2

Processing E1

Processing E2

Processing E1

Processing E2

Processing I1

Processing E3 and E4

Processing E3

Processing E4

Processing E3

Processing E4

Processing I/ invoke I

/ invoke I2 Processing I2

/ invoke I1

45SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Minimal Cut Set Transition: Example 1 (cont’d)
P rocessing I1 and I2

P rocessing E1 and E2

P rocessing E1

Idel_E1 P rocessing E1

P rocessing E2

Idle_E2
Processing E2

P rocessing E3 and E4

P rocessing E3

Idle_E3 P rocessing E3

P rocessing E4

Idle_E4 P rocessing E4

Processing I1

Idle_I1 P rocessing I1

P rocessing I2

Idle_I2 P rocessing I2

P rocessing E1 and E2

P rocessing E1

Idel_E1 P rocessing E1

P rocessing E2

Idle_E2
Processing E2

P rocessing E1

Idel_E1 P rocessing E1Idel_E1 P rocessing E1

P rocessing E2

Idle_E2
Processing E2

Idle_E2
Processing E2

P rocessing E3 and E4

P rocessing E3

Idle_E3 P rocessing E3

P rocessing E4

Idle_E4 P rocessing E4

P rocessing E3

Idle_E3 P rocessing E3Idle_E3 P rocessing E3

P rocessing E4

Idle_E4 P rocessing E4Idle_E4 P rocessing E4

Processing I1

Idle_I1 P rocessing I1Idle_I1 P rocessing I1

P rocessing I2

Idle_I2 P rocessing I2Idle_I2 P rocessing I2

P rocessing I

Idle_I Processing IIdle_I Processing I
/ Invoke I

/ Invoke I2

/ Invoked I1

E1 is invoked
Effect of E1 is not eliminated

E2 is invoked
Effect of E2 is not eliminated

E3 is invoked

Effect of E3 is not eliminated

E4 is invoked
Effect of E4 is not eliminated

I1 is invoked

Effect of I1 is not eliminated

I2 is invoked

Effect of I2 is not eliminated

I is invoked

Effect of I is not eliminat ed

Effect of E1 is eliminated

Effect of I1 is eliminated

Effect of E2 is eliminated

Effect of E3 is eliminated

Effect of E4 is eliminat ed

Effect of I2 is eliminated

Effect of I is eliminated

E1 is prevented from occurring

E2 is prevented from occurring

I1 is prevented from occurring

E3 is prevented from occurring

E4 is prevented from occurring

I2 is prevented from occurring

I is prevented from occurring

invoke E1

invoke E2

Invoke E3

invoke E4

46SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Minimal Cut Set Transition: Example 2
The Boolean equations for the following subtree are I = I1 · I2; I1 = E1 · E2; I2 = E1 · E3

Processing I1 and I2

Processing E1 and E2

Processing E1

Processing E2

Processing I1

Processing E1 and E2

Processing E1

Processing E2

Processing E1

Processing E2

Processing I1

Processing E1 and E3

Processing E1

Processing E3

Processing E1

Processing E3

Processing I/ invoke I

/ invoke I2 Processing I2

/ invoke I1Region 1
Region 2

Region 3
Region 4

Event E1 appears twice – once in Region 1 and once in Region 3

Back to Research Issues

47SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Research Issue 4

Add minimal cut set transitions to
a UML behavior state machine

Back to Research Issues

48SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

System

Processing events

Processing events

Processing events

Processing TOP

Processing TOP

Processing TOP

Processing events

Processing events

Processing events

Processing TOP

Processing TOP

Processing TOP

fault state

/ invoke TOPevents in M1 are invoked

/ invoke TOPevents in M2 are invoked

/ invoke TOPevents in Mk are invoked

Original UML behavioral state machine

Suppose a system has one undesired failure represented by the top event of a corresponding fault
tree

Suppose the top event TOP = M1 + M2 + ··· + Mk where Mi (1 ≤ i ≤ k) is a minimal cut set for the top
event and Si is the corresponding subtree (as discussed before) for Mi

We combine the original UML behavioral state machine and the fault tree by adding fault regions to
the original machine, each of which contains a minimal cut set transition to a fault state

Combination of UML Machines & Fault Trees (1)

normal behavior

undesired behavior

49SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Combination of UML Machines & Fault Trees (2)
All regions work in parallel. If any of the undesired regions reaches the fault state
before the system terminates normally, then the system is not safe.

If the system keeps running (i.e., never stops), then the system is not safe if the
fault state can be reached from any of the fault regions.

The same approach applies to a system with multiple undesired failures

50SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Gas Burner System (1)
It consists of the following

– an on/off valve to feed air
– an on/off valve to feed fuel
– a flame igniter
– a flame detector
– a controller

The objectives of the control system for the burner are to
– start it up
– maintain it with an ignited flame
– shut it down when requested
– deal with abnormal and emergency conditions that may arise during operation

51SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Gas Burner System (2)
Original UML behavioral state machine

52SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Gas Burner System (3)
Boolean equations for the fault tree
TOP = I1 + E5; I1 = E1 · I2 · E4; I2 = E2 · E3

Minimal cut set M1={E5}
– Events in subtree S1= M1∪ {TOP}
– Boolean equations for S1: T=E5

Minimal cut set M2={E2, E3}
– Events in subtree S2= M2∪{E1, E4}

∪{I1, I2} ∪{TOP}
– Boolean equations for S2:

T = I1
I1 = E1 · I2 · E4
I2 = E2 · E3

TOP: Fire
occurs

I1: Gas
explodes

I2: Excess of
gas present

E2: Gas
leaks for

more than 4
secs

E3:
Observation
interval less
than 30 secs

E5:
Electricity

short in
cables

E1: Air
present

E4:
Ignition

attempted

TOP: Fire
occurs

I1: Gas
explodes

I2: Excess of
gas present

E2: Gas
leaks for

more than 4
secs

E3:
Observation
interval less
than 30 secs

E5:
Electricity

short in
cables

E1: Air
present

E4:
Ignition

attempted

53SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Gas Burner System (4)
Transform subtree S1 (for M1) to its corresponding minimal cut set transition

Processing TOP

Idle_TOP Processing_TOPIdle_TOP Processing_TOP

Processing E5

Idle_E5 Processing_E5Idle_E5 Processing_E5

/ invoke TOP

E5 is invoked

Effect of E5 is not eliminated

TOP is invoked

Effect of TOP is not eliminated

E5 is prevented from occurring

Effect of E5 is eliminated

TOP is prevented from occurring

Effect of TOP is eliminated

E5 is invoked

54SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Gas Burner System (5)
Transform subtree S2 (for M2) to its corresponding minimal cut set transition

Processing I1

Processing I1

Idle_I1 Processing_I1

Processing I1

Idle_I1 Processing_I1Idle_I1 Processing_I1

Processing E1, I1 and E4

Idle_E1 Processing_E1

Idle_E4 Processing_E4

Process ing E2 and E3

Idle_E2
Processing_E2

Idle_E3 Process ing_E3

Process ing I2

Processing_I2Idle_I2

Idle_E1 Processing_E1

Idle_E4 Processing_E4

Process ing E2 and E3

Idle_E2
Processing_E2

Idle_E3 Process ing_E3

Idle_E2
Processing_E2

Idle_E3 Process ing_E3

Process ing I2

Processing_I2Idle_I2 Processing_I2Idle_I2

/ invoke I1

E1 is invoked
Effect of E1 is not eliminated

I1 is invoked

effect of I1 is not eliminated

E1 is prevented from occurring

Effect of E1 is eliminated

I1 is prevented from occurring

effect of I1 is eliminated

E4 is prevented from occurring

Effect of E4 is not eliminated

E4 is invoked

Effect of E4 is eliminated

I2 is invoked

Effect of I2 is eliminated

Effect of I2 is not eliminated

I2 is prevented from occurring

Processing TOP

Idle_TOP Process ing_TOPIdle_TOP Process ing_TOP

TOP is invoked

Effect of TOP is not eliminated

TOP is prevented from occurring

Effect of TOP is eliminated

E2 is invoked

E3 is invoked

effect of E2 is not eliminated

Effect of E3 is not eliminated

/ Invoke I2
Effect of E2 is eliminated

Effect of E3 is eliminated

E2 is prevented from occurring

E3 is prevented from occurring

/ Invoke TOP

invoke E4

invoke E3

invoke E1

invoke E2

55SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

A Gas Burner System (6)
Add feasible minimal cut set transitions to the original behavioral state machine.

Minimal cut set transition for M1

Minimal cut set transition for M2 Fault state

undesired behavior

normal behavior

56SAS_07_Testing_for_Software_Safety_Chen_Lee_Wong_Xu

Conclusion
Successfully developed a solution to integrate functional specifications in UML
behavior state machines and hazard analysis in fault trees

Writing a comprehensive report due on 12/31/2007

