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ABSTRACT

The “Requirements-to-Design-to-Code” (R2D2C) project at NASA’s Goddard Space Flight Center is based on deriv-

ing a formal specification expressed in Communicating Sequential Processes (CSP) notation from system require-

ments supplied in the form of CSP traces. The traces, in turn, are to be extracted from scenarios, a user-friendly

medium often used to describe the required behavior of computer systems under development. This work, called

Mise en Scene, defines a new scenario medium (Scenario Notation Language, SNL) suitable for control-dominated

systems, coupled with a two-stage process for automatic translation of scenarios to a new trace medium (Trace Nota-

tion Language, TNL) that encompasses CSP traces. Mise en Scene is offered as an initial solution to the problem of

the scenarios-to-traces “D2” phase of R2D2C. A survey of the “scenario” concept and some case studies are also pro-

vided.

1.  INTRODUCTION

Requirements to Design to Code (R2D2C), originated by

NASA’s Software Engineering Laboratory (Goddard Space

Flight Center), is a requirements-based approach to system

engineering. It can also be considered a “model-driven” or

“model-based” methodology, but with the distinction that the

model is derived automatically from the requirements instead

of being created by a human designer. The goal is to make

requirements the chief documentary artifact, and to derive a

suitable implementation via several automated and semi-auto-

mated phases. Another distinctive feature is that the derived

model is defined using a formal notation. This is useful for

proving properties about the system and for guaranteeing that

the derived implementation is functionally equivalent to the

original requirements, i.e., the implementation is “correct by

construction.” In order that users having no special training in

formal methods may freely use R2D2C, the formal model is

intentionally kept “under the hood” of this methodology.

R2D2C’s concepts have been described previously

[HRR05b, HRR05a, HRR05c], and work is underway to

specify and prototype the various phases of the design flow.

An overview of the five-phase process is pictured in Figure 1.

The work described in this Technical Memorandum, called

Mise en Scene [Car06], is a prototype for phase D2, Traces

Generator. To place this work in context, we first give an

overview of R2D2C in Section 2 followed by a problem state-

ment in Section 3. Section 4 is a survey of related work on

scenarios. Section 5 describes Mise en Scene in detail, with

case studies following in Sections 6 and 7. The last two sec-

tions contain future work and conclusions.

2.  OVERVIEW OF R2D2C

In Figure 1, the R2D2C design flow begins with a set of

requirements documents expressed in some manner of textual

medium. From this set of requirements documents, the D1

phase, Scenarios Capture—in practice, a project-specific

translator—creates a set of scenarios in a generic form not

specific to any project. With the requirements having been

massaged into a machine-readable, canonical form, the pur-

pose of the next two phases is to convert them into an equiva-

lent formal model.

The formal language used is Communicating Sequential

Processes (CSP), a process algebra often used for modeling

interprocess synchronization and communication for concur-

rent systems [Hoa78, Hoa83, Sch00]. The conversion of sce-

narios to a CSP specification is done in two phases: First, the

D2 phase (the focus of this memorandum) creates a set of

CSP traces that express the scenarios in a form compatible

Fig. 1. Overview of the Requirements-to-Design-to-Code Design Flow
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with CSP. In normal practice, traces would be derived from a

CSP specification. However, in this case the D3 phase carries

out the reverse derivation—inferring a specification from the

given set of traces. This specification is the intermediate goal

of the R2D2C design flow.

The D4 Model Analysis phase is provided to allow the

specification to be formally analyzed, transformed, and/or

optimized under a user’s guidance. Finally, the D5 Code Gen-

eration phase synthesizes compilable source code from the

CSP specification, or produces an implementation in some

other suitable project-specific form.

The scope of this approach is limited to systems whose

requirements are expressible as “scenarios,” because the

transformation path from scenarios via traces to a CSP speci-

fication is theoretically feasible. Before the work described

herein was commenced, no precise definition of scenarios had

been set down, nor any specific scenario medium defined for

R2D2C. The contribution of this work is to present a narrative

scenario medium inspired by existing scenario-based

approaches that is suitable for bridging the gap between

phases D1 and D3. The range of interpretations and

approaches surveyed in the course of creating this solution is

summarized in Section 4.

This new scenario-based approach, dubbed Mise en Scene

(name explained below), specifically answers two questions:

• What is the working definition of “scenario” for the
R2D2C project?

• How shall such scenarios be mechanically converted to a
set of CSP traces?
The specifics of Mise en Scene’s scenario medium, and

the mechanics of its scenario-to-traces conversion method,

will be described after a more precise explanation of the prob-

lem is given in the next section.

3.  PROBLEM STATEMENT

The essential problem of designing the D2 phase is that of

converting scenarios, which admit of a flexible definition,

into CSP traces, which, in contrast, have a well-established

definition. Thus, the input and output of the D2 phase can pre-

liminarily be characterized as follows:

• A scenario is a sequence of steps that a system is required

to carry out.

• A trace is a sequence of events that would be performed by

a CSP specification during system execution.

In CSP, an event is an abstract name that can stand for any

action the system takes or any stimulus that occurs in its envi-

ronment. Data may optionally be communicated in conjunc-

tion with the event, in which case it is called a channel.
Superficially, the conversion of “steps” to “events” should

be feasible, depending on what the steps encompass and how

they are expressed. As for the input, R2D2C literature claims

that the approach is applicable to systems specifiable by sce-

narios, yet is silent as to a preferred definition of scenarios.

An important aspect of this work is to provide one.

Considering the target output, traces in CSP are repre-

sented as a list of events separated by commas, enclosed

within a set of angle brackets (< >). A single trace, say <a, b,

c>, meaning the sequence of the three named events, defines

one permitted execution of a specification; all permitted exe-

cutions are given as a set of traces. That set is represented as

one or more comma-separated traces, enclosed within braces,

e.g., { <>, <a>, <a,b> }. If a specification is viewed as a state

machine, its set of traces represents all possible state transi-

tions. Depending on the specification, an individual trace can

be an infinite sequence, and the full set of traces may be infi-

nite in size.

Trace events provide a kind of “black box” view of system

execution. For example, CSP processes may specify input or

output on named channels. Channels are used for interprocess

communication, and, in an implementation, interface the sys-

tem with its environment. Specifications may include channel

I/O events such as sensor?degrees, meaning “read the

channel named ‘sensor’ into a variable named ‘degrees’,” and

sensor!32, meaning “output 32 on the sensor channel.”

The corresponding trace event that records the sensor commu-

nication event where the 32 is stored into degrees would be

written in the form channel.data: sensor.32.

A side effect of CSP trace notation is that the direction of

communication is lost. This is natural, because, while abstract

processes (which engage in communication and synchroniza-

tion amongst themselves) are an essential ingredient of CSP

specifications, process identity disappears at the “black box”

observation level; all an observer sees is the record of exe-

cuted events and not the underlying process architecture.

Stated another way, process specifications may provide clues

about a possible implementation’s architecture, but traces

contain no such clues.

For R2D2C’s design flow, this means that any architec-

tural clues inherent in the scenarios are, in principle, dis-

carded in the phase of converting to traces. Furthermore, the

process architecture inferred by phase D3, and in turn synthe-

sized into an implementation by D5, may bear no relation to

an architecture suggested by the input scenarios. On the one

hand, this may be of no consequence to the R2D2C user, since

the entire formal model—CSP traces and equivalent specifi-

cations—is, as mentioned earlier, intentionally kept for inter-

nal use. On the other hand, throwing away useful data may

serve to make the job of inferring specifications that much

harder, and may incline the model inference phase to create

process architectures that lead to unintuitive implementations.

Next, the assumptions about the D2 phase’s context are

stated: The D1 phase, Scenarios Capture, is likely to be appli-

cation specific. It is assumed that D1 will be capable of out-

putting “scenarios” using some specified syntax. For

prototyping work, it is sufficient to implement D1 as a simple

text editor.

The D3 Model Inference phase is the heart of the theoreti-
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cal work, and may face challenges of computational complex-

ity due to (a) the potentially enormous volume of traces

needed to record a non-trivial system’s behavioral require-

ments, and (b) the extensive processing required by D3’s pro-

spective theorem prover, ACL2 [KM07]. This work assumes

that D3 will accept input in the form of conventional CSP

trace notation, but anticipates there will be room for negotia-

tion with an eventual D3 design so as to reduce the volume of

trace input (i.e., notational shortcuts), and help D3 to infer

features of the target system’s requirements that would other-

wise be thrown away during their conversion to traces. There-

fore, this work is not overly concerned with producing a

definitive and final form of D2 output at this time, since

adjustments will likely be necessary as the requirements of

D3 processing are firmed up in future work.

To summarize the problem, on the “left” input end, the

output of the D1 phase wants to be in a form that software

practitioners can recognize as “scenarios.” On the “right” out-

put end are CSP traces, a highly constrained medium. It

would be useless to prescribe scenario constructs that cannot

be converted to traces, therefore this work has focused solely

on constructs that have a conceptual analog in trace notation.
A subset of those constructs commonly appearing in scenario-

based approaches, surveyed in the next section, have been

adopted.

4.  RELATED WORK ON SCENARIOS

The term scenario, as will be seen from the citations

below, is generally used to mean an expressed, exemplary

action of a proposed or existing system. Scenarios are

expressed in a range of mediums, with textual and graphic

being the most prevalent. Scenarios are narrative in form,

describing a sequence of actions taking place between a sys-

tem component and its environment. Actions or events in sce-

narios are fully or partially ordered. While these actions are

performed sequentially, scenarios often contain “if-else”-style

conditions and looping constructs. Scenarios have clearly

defined start and end points, which serve to place them within

the operational context of the entire system. Scenario end

points are usually related to a single goal, which may or may

not be achieved upon termination of the scenario. The sce-

nario goal may be further decomposed into lesser “sub-

goals,” achieved through intermediate actions contained

within the scenario.

A scenario-based approach is any software engineering or

requirements engineering methodology making use of scenar-

ios as a process artifact. Within software engineering, scenar-

ios arise as usage examples of a proposed system, as system

test cases, or to describe a design context into which the final

system must fit.

Scenarios are frequently used in requirements engineering

[Car99, FKV91, KS98, Mai98, McG97] as a bridge between

the realms of developer and customer. Scenarios provide a

requirements capture medium, often serving as concrete

examples to elicit further dialog about a proposed system, or

as a type of “pseudocode” readily understandable by custom-

ers, written in their language, using customer terminology.

Different approaches use scenarios to varying degrees,

ranging from relying on them as a primary design artifact, to

using them as part of a larger set of practices and techniques.

Within R2D2C, scenarios are used as a digestible intermedi-

ate form between diverse kinds of application-specific

requirements documentation and the rigid structure of formal

specifications.

For software and requirements engineering, as well as

human-computer interaction (HCI), the term is used fre-

quently, in a variety of contexts. Its exact meaning has been

the focus of many debates [Cam92a, Cam92b, KK92, Wri92,

YB92] and usage surveys [GC04, Mai98, RAC+98, Nar92,

WPJH98, YB87]. Most practitioners do not claim that their

meaning is “the one true meaning,” but rather an individual

interpretation that suits their task. Yet despite being a possible

source of confusion, the term scenario is common, and gener-

ally employed without any preamble specifying its meaning,

just as in the existing R2D2C literature. It is accurate to call

the term “vague in definition and scope” [WPJH98].

Fig. 2. General Overview of Mise en Scene and its Elements
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5.  MISE EN SCENE

As a result of studying the scenarios literature, a particular

format was devised with the aim of being recognizable to sce-

nario practitioners while having characteristics that can be

translated to CSP traces. This design for R2D2C’s D2 phase is

called Mise en Scene, a term that comes from the field of film

studies. Literally translating from French gives “putting in the

scene,” and the term is often used to describe everything visi-

ble to the camera within a shot, especially elements relevant

to the narrative of the work. This title was chosen as a wry

nod to ambiguity in terminology, since “scenario” is similarly

ambiguous and prone to many interpretations.

Mise en Scene has four elements, illustrated in block dia-

gram form in Figure 2, which together accomplish the work

of the D2 phase:

1. Scenario Medium—Scenario Notation Language (SNL)
The medium created for Mise en Scene is a textual, form-

based notation loosely based on Cockburn’s guidelines for

effective use cases [Coc01]. Whereas Cockburn states that a

use case collects a number of scenarios describing related

behavior, Mise en Scene does not follow this conceptual

grouping. An SNL scenario is used to describe a single pat-

tern of required execution in the proposed system. The system

description may consist of multiple scenarios.

2. System for Connecting Scenarios—Scenario Glossary
(SNLGlue)

A system represented as a collection of scenarios has the

potential to be extremely disjoint, so as a means of connecting

common elements in scenarios, a system-wide glossary is

proposed, allowing a Mise en Scene user to intelligently view

scenarios interactively, thus showing their interconnections

with other scenarios. SNLGlue relates to the “data dictionary”

concept employed in relational database management systems

and in other system engineering approaches.

3. Trace Medium—Trace Notation Language (TNL)
Traces are syntactically simple, and require no specialized

medium for the Mise en Scene approach. The conventional

form of traces as used with the Formal Systems CSP tools

[For] is applied in Mise en Scene, with the addition of an

XML wrapper that provides the ability to store additional

optional information used for Mise en Scene and R2D2C inte-

gration.

4. Mechanical Transformation Process—SCN2T
The cornerstone of Mise en Scene is the process by which

scenarios represented in SNL can be converted to TNL. Sec-

tion 5.4 lists rules for translating from the SNL scenario

medium to a set of traces.

5.1  Scenario Schema

Following a study of the definitions and uses of “scenar-

ios” in the literature, a set of attributes common to the major-

ity of the approaches surveyed was identified. The result,

listed in Table 1, is similar to Cockburn’s description of a sce-

nario [Coc01]. The attributes are sorted into two broad cate-

gories: informational, which likely serve a primarily

documentary purpose, and functional, which ought to be

reflected in any synthesized implementation and must there-

fore be translated to traces. Not all possible attributes were

selected for Mise en Scene. Those marked with * are present

in the Mise en Scene scenario schema (defined below) under

those or similar names, while attributes marked with ** can

optionally be entered in the Description for documentary pur-

poses. They were not given dedicated fields for the sake of

simplicity. Functional attributes that were not amenable to

translation were not incorporated in the Mise en Scene sce-

nario schema, but might be added in future work.

Table 1. Common scenario attributes

Common Name 
of Attribute

Description

Informational Attributes

Name* Title used to identify the scenario. 

Description* A textual overview of the actions con-

tained in, and the actors involved in, the 

scenario.

Author* Who created the scenario.

Actors* Persons or systems involved in carrying 

out the scenario. Actors can be “Pri-

mary”—the actor who carries out the 

actions of the scenario—or “Second-

ary”—actors who aid the primary actor.

Revision

History**

A method of tracking changes between 

scenario edits.

Stakeholders** A description or list of persons affected 

by the design of or changes to the sce-

nario.

Goals** A scenario has one or more goals, which 

are carried out through a set of actions.

Subgoals** Goals may be further decomposed into 

subgoals, which contain their own sets 

of actions.

Non-Functional 

Requirements**

Textual documentation containing 

requirements information that cannot be 

readily expressed in a functional form.
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In the bullets below, each field in the Mise en Scene sce-

nario schema is defined. Required fields are in bold, the oth-

ers being optional. Along the way, concepts linking scenario

attributes and CSP are interspersed. Readers who prefer to see

concrete examples may wish to scan the case studies in Sec-

tions 6 and 7 in parallel with this section.

• ID—A name that uniquely identifies the scenario. Same as

“Name” in Table 1.

• Description—A free-form textual description of the sce-

nario and what it does. This serves as a comment for read-

ers in addition to providing text that can be used for

searching purposes.

• Author—The names of the author(s), and any other details.

The following two fields fulfill the purpose of the

“Actors” attribute in Table 1. The Mise en Scene “compo-

nent” is similar to the actor/role concept within Cockburn’s

treatment of use cases [Coc01], as well as to the use-case con-

cept included in UML [BRJ99, Fow03]. A similar concept is

seen in other approaches incorporating use cases [SDV96,

KA06, KKAM06]. The chief difference is that a component is

allowed to be internal or external to the system, whereas the

actor/role concept places the actor outside the system. This

nuance was introduced in an effort to create a concept similar

to a use case’s actors that better matches the notion of “pro-

cesses” in CSP. As with use-case actors, components may also

represent other systems or users of the system.

In scenarios, components are classified as primary or sup-

plemental. (The term “secondary” was avoided to lessen the

possible confusion with use-case secondary actors.)

• Primary Component—The identifier of the component

that carries out all actions in this scenario. A scenario must

only have a single component as its primary component,

which is considered to be the initiator of the scenario.

• Supplemental Components—Identifiers of components

referenced within the scenario, with which the primary

component communicates and synchronizes. A scenario

may have any number (including 0) of supplemental com-

ponents.

In the two following attributes, Precondition and Trigger,

the concept of a “task” is referenced. The smallest unit of exe-

cution that components carry out, intended to correspond to a

CSP event, is called a task, defined by one step in the sce-

nario’s flow text. A component can only perform a single task

at a time, though two components may cooperate in perform-

ing a single task. When tasks in other scenarios are referenced

for triggers and preconditions, they are qualified with the rele-

vant component in the form componentID::taskID. While

components and tasks are defined implicitly by mentioning

them in scenarios, SNL also has statements for explicitly add-

ing documentation to component names and task IDs. A task

schema may optionally list the components that are allowed to

perform it, and this will be enforced by Mise en Scene when

processing scenario flow text.

In one sense, the scenarios cause the system to transition

from state to state by performing individual tasks. Nonethe-

less, it is worth observing that CSP traces provide an event-

based formalism, so the notion of “system state” is only

implied and not explicit, as it would be in a state-based for-

malism (e.g., Statecharts). The underlying trace semantics

impose an inherent limitation on the specification of precon-

ditions: They can only refer to tasks, not to “states.” For

example, one cannot specify a condition that “The door is

open”; instead, one specifies that “The OpenDoor task has

been performed.” If the action is reversible, the door’s state

could be specified by requiring that the number of OpenDoor

events exceeds the number of CloseDoor events.

• Precondition—A partial description of the system state

required before the scenario can be executed, represented

Functional Attributes

Precondition* A description of the state the system 

must be in for a scenario to be eligible 

for execution.

Triggers* The event or events that cause a sce-

nario to be invoked.

Flow / Path* The sequence of actions that constitutes 

successful execution.

Alternate Flows / 

Paths*

Flows of executions invoked by condi-

tional statements within a scenario.

Extensions / 

Exceptions*

Flows of execution used to handle fail-

ures or other exceptional circumstances.

Priority A classification attribute used to resolve 

non-determinism or scheduling when 

multiple scenarios can be invoked.

Constraints A set of requirements for data or opera-

tions contained in the scenario; may be 

expressed in a formal syntax or natural 

language.

Success

Guarantee

Conditions that are true upon successful 

termination of a scenario.

Minimal

Guarantee

Conditions that are guaranteed to be 

true, in even the most disastrous failure.

Safety

Properties

A description or list of things that can-

not happen within the scenario. In per-

forming any of this list, the scenario 

violates its safety properties, and is con-

sidered unsafe.

Table 1. Common scenario attributes (Cont.)

Common Name 
of Attribute

Description



Mise en Scene: Conversion of Scenarios to CSP Traces for the Requirements-to-Design-to-Code Project

6

as a set of task identifiers. These tasks must have occurred

before the scenario can be triggered. The preconditions of

the system can be empty (specified as “none”), making the

scenario always ready to be triggered (see next). This kind

of precondition is fairly simple, and would not allow for

the situation where a subsequent task neutralizes or

reverses the referenced task. In future work, it is planned to

expand preconditions to accept a logical predicate on mul-

tiple tasks.

• Trigger—The task ID of the system event that causes the

scenario flow text to be “executed.” The trigger, which is

mandatory, in combination with the scenario’s precondi-

tions (if any) provide a guard: the behavior contained in a

scenario may only occur after its trigger has passed. The

most permissive trigger is the task ID System::start, which

enables a scenario to be executed at any time during sys-

tem execution. Once a scenario completes, it must be

retriggered in order to execute again.

• Scenario Flow—An ordered set of steps expressed in a

restricted syntax that specifies the behavior of the scenario

as actions undertaken by the primary component, and com-

munication/synchronization with its supplemental compo-

nents. Cockburn calls this as the “main success scenario,”

or the case in which “nothing goes wrong” [Coc01]. As

with use case authoring, the scenario flow should provide

behavior for the nominal flow of execution, and excep-

tional circumstances are to be handled by scenario exten-

sions. The syntax of the scenario flow text, SFT, is detailed

in Section 5.2.

• Extensions—Analogous to subroutines or functions in a

conventional programming language. Scenario extensions

are written using SFT syntax, and do not contain precondi-

tions or triggers. Extensions are executed by the SFT

“extension” directive. Upon completion of an extension,

control returns to the calling flow, allowing for extensions

to call other extensions. A scenario may invoke only its

own extensions, not extensions contained in other scenar-

ios. A scenario extension is identified by the ScenarioID

followed by the scope resolution operator (::) and the

extension identifier.

Besides the nine attributes listed above, scenarios may

contain an optional “preamble” field. As with a strongly-

typed programming language, the purpose is to declare any

variables that will be referenced by the scenario flow text. See

Section 5.2.3 for more on variables.

5.2  Scenario Flow Text (SFT)

Scenario Flow Text, or SFT (pronounced “soft”), is a

series of lines, each containing syntax known as a step. A step

contains a task to perform and/or other measures such as con-

ditionals or communication directives.

The SFT syntax is based upon simple natural language

sentences. The SVDPI (Subject Verb Direct-object Preposi-

tional-phrase Indirect-object) pattern, as used in much of the

use case literature [Coc01, RA97, KKAM06], is employed

with minor additions. SVDPI was chosen as a compromise

between overly formal syntax and unrestricted natural lan-

guage. An example is shown in Figure 3.

SFT steps may refer to three types of entities—compo-

nents, tasks, and channels. Components and tasks were intro-

duced in the previous section. As for channels, just as in CSP,

they are one-way (simplex) channels with two fixed end-

points: the producer, who outputs to the channel, and the con-

sumer who receives input from the channel. Channels have an

associated set of data types that can be communicated along

the channel. Operations on channels are considered non-buff-

ered: a value may only be sent/received if the other endpoint

is ready to receive/send the message.

A channel schema lists the data types that it communi-

cates, and identifies its producer and consumer components;

its ID is automatically derived from those three attributes.

Since it is possible to define multiple channels between a pair

of components, each channel can be augmented with a unique

alias.

5.2.1  SFT Step Statements

The flow text of an SNL scenario is built using a series of

SFT step statements. Every SFT statement is numbered, to

provide a unique identifier for each step in the scenario. Spe-

cific steps of a scenario may be referenced using the follow-

ing syntax:

ScenarioID::Step#N

Where:

• ScenarioID is a valid scenario identifier.

• N is valid step number within the scenario specified.

Within an extension (discussed below), steps are identified

as follows:

ScenarioID::Extension::ExtensionID#N

In practice, the current version of SNL does not use step

Fig. 3. Example of SFT Syntax using SVDPI 
Pattern
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references. This construct is reserved for future use with pos-

sible goto and looping steps (see Section 5.2.2).

The following paragraphs define the various kinds of step

statements. Literal keywords and symbols are shown in bold

font. The notation {X|Y|Z} indicates a choice among X, Y, or

Z. Brackets [X] indicate that X is optional. Note that each step

is terminated with a period.

Executional Step. The basic building block of SFT is the

executional step. It is used to specify that the primary compo-

nent of a scenario carries out a specific task. An executional

step is performed in isolation—no communication with

another component takes place. The syntax of the executional

step is as follows:

ComponentID {performs|does|executes} TaskID.

Where:

• ComponentID is the identifier of the primary component 

of the scenario containing this step.

• The verb is one of the three specified synonyms.

• TaskID is the identifier of a task that is capable of being 

performed by component specified.

In order to generate an “empty step,” TaskID may be given

as System::nothing. The empty step is intended for use

with conditionals to indicate that in some circumstance, noth-

ing should be done.

Communication Step—Sending on an unspecified chan-
nel. There are two possible communication steps, one for

sending and one for receiving. In this one, the primary com-

ponent sends one or more values, in a single transfer event, to

a supplemental component via a channel. The syntax of the

send step is as follows:

ComponentID {sends|transmits|writes|outputs|
posts|puts} (Value1,Value2,..,ValueN-1,ValueN)
to SupplementalComponent.

Where:

• ComponentID is the identifier of the primary component 

of the scenario containing this step.

• The verb is any of the six specified synonyms.

• Data values are separated by commas. The enclosing 

parentheses are optional if only a single data value is 

sent.

• SupplementalComponent is the identifier of a supple-

mental component with whom the primary component 

can communicate.

In this version of the sending step, the channel is unspeci-

fied. If a channel exists that matches the endpoints and speci-

fied data types, that channel ID is automatically selected. If

multiple candidates exist, then the channel must be specified

using the next construct.

Communication Step—Sending on a specified channel. If
multiple channels of the same type(s) exist between the same

endpoints, then the channel alias must be specified. The syn-

tax is as follows:

ComponentID {sends|transmits|writes|outputs|
posts|puts} (Value1,Value2,..,ValueN-1,ValueN)
to SupplementalComponent via ChannelAlias

Where:

• ChannelAlias is the alias of the channel to send on.

The other syntax elements are identical to the unspecified

channel send.

Communication Step—Receiving on an unspecified chan-
nel. This step is the counterpart of the sending step. Its syntax

is similar to the sending step, the change being the verb and

preposition:

ComponentID {receives|reads|inputs|
obtains|gets} (Value1,Value2,..,ValueN-1,
ValueN) from SupplementalComponent.

If the channel alias must be specified to remove ambiguity,

the following construct should be used.

Communication Step—Receiving on a specified channel. 
As with sending, an author can specify the channel for

transmission as follows:

ComponentID {receives|reads|inputs|
obtains|gets} (Value1,Value2,..,ValueN-1,
ValueN) from SupplementalComponent
via ChannelAlias.

Conditional Step. The conditional step allows for one of two

or more steps to be selected given a condition that is evalu-

ated.

if Condition1 then STEP1.
[else if Condition2 then STEP2.]
[else if CondtionN-1 then STEPN-1.]
else STEPN.

Where:

• Condition1 through ConditionN-1 are conditional 

expressions.

• STEP1 through STEPN are valid steps, as specified 

using SFT syntax. These steps can also contain condi-

tional steps, thus allowing for nesting of conditionals.

• Any number of else-if steps may be written.
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• The last line must contain an else step, which is executed 

if all previous conditions have been evaluated as false.

In its simplest form, the conditional contains only an “if”

step and an “else” step. Each line is evaluated in sequence,

and the first true statement is executed. If all statements are

false, the else is executed.

At present, Mise en Scene supports the following condi-

tional expressions:

• Relational: <, <=, ==, >, >=

• Logical: NOT, AND, OR, XOR

• Event: TaskID occurred (true if TaskID has occurred

in the environment of the scenario containing this condi-

tional)

Extension Step. This step is used to invoke a scenario exten-

sion. Scenario extensions are written as separate scenario

flow fragments, and used to handle exceptional cases. They

are generally used with conditional steps, or used for organi-

zational purposes when writing particularly long scenario

flows. The syntax used to invoke a scenario extension is:

ComponentID invokes ExtensionID.

Where:

• Scenario is the scenario identifier.

• ExtensionID is an identifier of one of this scenario’s 

extensions.

Upon completion of the extension, execution returns to the

scenario flow, continuing with the next step in the flow.

Arithmetic Step. The arithmetic step is used to manipulate

scenario variables (described in Section 5.2.3). Here, SFT

syntax uses the familiar form of the C programming language.

Although an arithmetic step may be composed of a number of

statements, it is still considered a single task, making it indi-

visible. The syntax of the arithmetic step is as follows (in this

case, the braces, shown in bold, are literal symbols):

ComponentID performs { assignments }.

Where:

• ComponentID is the primary component of the scenario.

• assignments are one or more assignment statements of 

the form variable = expression, written using the opera-

tors given below. The semicolon-separated statements 

must be enclosed within a set of braces.

At present, Mise en Scene provides the following arith-

metic operators: + (addition), - (subtraction), / (division), *
(multiplication), and % (modulo).

Rendezvous Step. The rendezvous step is a modified execu-

tional step that performs a task synchronized with another

component. The synchronizing component must appear in the

scenario’s list of supplemental components. An executional

step is made to be a rendezvous step by using the “with” key-

word as follows:

Step with Component.

Where:

• Step is an executional step, written using valid SFT syn-

tax.

• Component is a component appearing in the list of sup-

plemental components for the scenario.

Note that every communication step is implicitly a rendez-

vous, so no “with” clause is required.

An author must be careful in specifying behavior using the

rendezvous and communication steps, as they may introduce

deadlock (mutual dependency) into a system. Within R2D2C,

the D3 and D4 phases will recognize this and alert the author,

but at present, Mise en Scene (the D2 step) does not diagnose

this flaw.

5.2.2  Constructs omitted from SFT

Originally, a “goto” construct was introduced to allow the

flow of execution to skip to another step in the scenario. This

would be used for scenario “looping” (allowing a scenario to

repeat portions of its behavior indefinitely or until a condition

was satisfied). However, the construct has been removed from

this initial version of SFT to avoid the possibility of infinite

traces. In future work (see Section 8), infinite traces are cited

as a topic for further exploration, and upon developing a trace

medium suitable for infinite traces, this construct is likely to

be reintroduced.

5.2.3  SFT and Variables

Mise en Scene allows for variables to exist at two scopes:

scenario and system. Scenario variables may only be used

within the scenario that contains them, whereas System Vari-

ables can be accessed (read-only) by any scenarios within the

system. The latter allows for parameters to be defined to pro-

vide system-wide configuration information. Just as CSP has

no “global variables,” system variables cannot be used to

communicate between components; channels must be used

for that purpose. Variables are declared in the system pream-

ble and scenario preambles. See the Section 6 and Section 7

case studies for examples of both kinds of preambles.

Variables are used for channel operations to send or

receive data, and are necessary for arithmetic and conditional

syntax. SFT supports the following built-in variable types:

integer, character, float, string, bit, boolean. Additionally, SFT
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provides the ability to add custom variable types to a specifi-

cation in the system preamble. Type information is contained

in the outgoing trace representation, discussed next.

5.3  Representing Traces

The common form of traces as used with the Formal Sys-

tems CSP tools, FDR and Probe [For], is also utilized in Mise

en Scene, with the addition of an XML wrapper that associ-

ates a set of traces with the scenario(s) from which they were

derived and enables additional information to be passed to the

next phase of R2D2C alongside the trace set. This is called

Trace Notation Language (TNL). Additional information

included in this wrapper are:

• Scenario Identifier—The ID of the scenario(s) from

which the set of traces was derived.

• Component Identifier—The identifier(s) of the system

component to which this set of traces belongs.

• Trace Set—The set of traces for the system component,

represented using the aforementioned trace notation.

• Types—Definition of types and ranges of variables used

within this set of traces.

In order to reduce the volume of traces output, Mise en

Scene distinguishes between “terminal” traces—those that

contain all the events recording a system execution from start

to finish—and “non-terminal” traces. The latter are prefixes

of a terminal trace, and record any execution short of the end.

(These definitions rule out infinite traces, which are the sub-

ject of future work.) From the CSP standpoint, a system’s

traces must include all possible terminal and non-terminal

traces, as well as the empty trace < > that represents the sys-

tem before it does anything. But from the computing stand-

point, the non-terminal traces are purely redundant and would

needlessly bulk up the output of the D2 phase. Therefore, the

SCN2T conversion process generates only the terminal traces

from a system’s scenarios. Non-terminal traces can be easily

derived by the D3 phase, should it require them.

TNL differs from traditional CSP traces in another man-

ner: variables. As properly defined, channel communication

events appearing in traces do not contain variables, but only

containing actual literal values. This may lead to a state space

explosion, as all combinations of valid data for variables must

be contained in a process’s traces. To simplify the TNL

medium, variable place holders have been introduced. These

place holders have types and value ranges associated with

them, allowing the complete variable expansion to take place

at the D3 phase if required.

Since conditional expressions and arithmetic operations

cannot be directly expressed in conventional CSP trace nota-

tion, Mise en Scene encodes this information in the guise of

trace events. Without the ability to pass these operations to D3

and later phases, calculations contained in the scenario would

be lost and not able to be synthesized into an executable

implementation.

5.4  Translation Algorithms

The cornerstone of Mise en Scene is the process by which

scenarios represented in SNL are translated to TNL. This pro-

cess is composed of two sub-problems. The first is converting

individual scenarios into sets of equivalent traces. This is han-

dled by mapping each line in a scenario to one or more events

in the generated traces. The second, and larger, problem is

composing the multiple sets of individual component traces

into a set of system traces. This is more difficult than single

scenario to trace translation due to the need to satisfy con-

straints of multiple scenarios, the possibility of combinatorial

explosion of traces, and the resulting large data sets.

This section starts by describing the rules used to translate

from a single scenario’s SFT to TNL, and then explains how

to generate traces from scenarios in combination.

5.4.1  Individual Scenario Translation

Table 2 lists the elements of SFT syntax by step type, and

describes the corresponding trace output. Each of these rules

is applied to every step in a scenario to generate all possible

traces for that scenario.

Table 2. Translating steps of SFT

Step Type Effect on Trace Output

Executional States that a system component performs an 

action, thus a single event is appended to the 

trace output.

Communi-

cation

Generates a channel.data event appended to 

the trace output. The channel event contains 

the sender and receiver of the channel as well 

as the data type.

Conditional Creates a set of events equal to the number of 

branches in the conditional statement. Each 

set of events resulting from the conditional 

syntax is appended to every trace preceding 

the conditional statement. The branch can be 

of any step type.

Extensions The traces for an extension invocation are 

generated (according to the steps they con-

tain) and are appended to the trace output.

Arithmetic Creates an event that denotes the arithmetic 

operation, and the values (variables or con-

stants) referenced by the operation.

Rendezvous At the scenario level, rendezvous syntax has 

no additional effect on the trace output.
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5.4.2  Parallel Composition of Scenarios

After the translation of individual scenarios, and append-

ing sequentially composed scenarios, comes the task of com-

bining scenarios in parallel. The trigger attribute determines

how scenarios combine. If two scenarios share a trigger, they

are eligible to be executed in parallel. If a scenario is triggered

by another scenario’s event, the former scenario is composed

sequentially with the event contained in the latter scenario.

Parallel execution implies that the order of tasks within

each individual scenario must be preserved, but the relative

order between scenarios is not important, except where syn-

chronization or communication occur. That is, if scenario P

generates a trace <a,b,c> and scenario Q generates <d,e,f>,

then when P and Q execute in parallel, any of ten possible

permutations of <a,b,c,d,e,f> may arise such that a, b, and c,

and d, e, and f, still occur in their original orders. This is what

is meant by interleaving traces. If the scenarios share events

in common for communication or synchronization purposes,

then the combined trace contains only a single instance of the

shared events. That is, if P generates <a,x,b> and Q generates

<d,e,x>, where x is a shared event, the combined traces are

the four permutations of <a,d,e,x,b> where a, x, and b, and d,

e, and x, occur in their original orders.

Precondition and trigger attributes play an important role

in the creation of system traces. Preconditions filter the set of

terminal traces to remove all traces that do not contain the

events specified by the precondition of the scenario. Triggers

are used to determine the order of scenario execution.

The generation of system traces (representing the parallel

composition of scenarios) is carried out using an eight-step

algorithm:

• Step 1—The set of traces for each scenario should be gen-

erated using the previously discussed rules for each sce-

nario, and then all eligible scenarios are combined

sequentially.

• Step 2—Create a set of tuples S, whose members have the

following composition:

SCN = <ScenarioIDs, ComponentID, Trigger,
Precondition, Traces, Syncs>

Populate this set by creating a tuple from each one of the

scenarios and its derived traces. Each field is explained

next:

• ScenarioIDs: The IDs of all scenarios the set of traces 

was derived from. Initially this starts as a single scenario 

ID.

• ComponentID: The component that executes the traces 

contained in the tuple.

• Trigger: The trigger of the scenario this tuple was cre-

ated from.

• Precondition: The precondition of the scenario this tuple 

was created from.

• Traces: The set of traces derived from the scenario.

• Syncs: The list of events that this component rendezvous 

with other components to perform.

Another tuple is introduced:

SYSTEMTRACEEVENT =
<taskID,ScenarioIDsTriggered>

This tuple is used to represent events in system traces.

ScenarioIDsTriggered is a list used to store the IDs of sce-

narios that this taskID has already triggered, to prevent

multiple triggering. These tuples are stored in a set, SYS-

TEM, which is initially empty.

• Step 3—Concatenate any scenarios triggered by another

scenario’s Scenario::success event. Mise en Scene allows

especially long scenarios to be broken up into several

smaller scenarios, composed sequentially using Previous-
Scenario::success as the trigger of subsequent scenarios.

This is done as follows:

1. Iterate over the set of tuples S, searching for a tuple T

that contains a trigger of X::success where X is a sce-

nario.

2. Locate scenario X’s tuple in S.

3. Append all the traces of T to all of the traces for X.

Append the ScenarioIDs of T to the scenarios IDs of

X. Make the Syncs of X equal to the union of the

Syncs for X and T.

4. Remove T from S.

5. Repeat steps 1-4 until no more success triggers are

found.

• Step 4—Select a scenario that is eligible to run at system

start. Locate a scenario R such that its trigger is Sys-

tem::start. Make the traces contained in SYSTEM equal to

the traces of R. Remove this tuple R from S.

• Step 5—If possible, select another tuple R such that its

trigger is System::start. Interleave R’s traces with SYS-

TEM, taking into account any common SYNCs. Remove

tuple R. Repeat this step until no more System::start trig-

gers are found.

• Step 6—Find the first tuple Q in the set of tuples S with a

trigger event that has occurred in SYSTEM. Verify that the

trigger event selected has not already triggered this sce-

nario. Each individual event in a trace in SYSTEM keeps a

list of the ScenarioIDs it has triggered. Then do as follows:

1. Interleave the traces of Q with the traces of SYSTEM,

between the occurrence of Q’s trigger, and the end of

SYSTEM or Q being retriggered, whichever occurs

first. Rendezvous with any SYNCS present in the sys-

tem.

2. Store the scenario ID of Q in the event inside the

traces of SYSTEM that triggered Q.
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Repeat this step until no more scenarios can be triggered.

• Step 7—Using the preconditions of scenarios contained in

S, and the traces in SYSTEM, prune any traces with events

occurring before a precondition has been met. By having

each event in a trace in SYSTEM keep track of scenarios it

has triggered, the system is able to perform this reduction

after building the set of system traces, thus simplifying

step 6.

• Step 8—The above steps generate the set of all terminal

traces, containing all possible interleavings. If non-termi-

nal traces are needed, calculate all the prefixes of all traces

contained in SYSTEM, and union this set with SYSTEM.

A final, optional step is variable expansion. True CSP

traces do not contain “variable placeholders” like TNL traces

do; instead, the trace set contains all traces for all possible

combinations of variables’ values. This expansion is easily

performed, but omitted from Mise en Scene as it may increase

the size of the trace set by several orders of magnitude, and is

likely to be more hindrance than help to the D3 phase.

As the current conception of Mise en Scene does not allow

for infinite traces, one is not able to specify two scenarios, A

and B, that re-trigger each other, creating a ping-pong effect.

Infinite traces and their effect on system specifications are a

focus of future work.

5.5  SNLGlue

In the scenario-based approaches surveyed, a major diffi-

culty was connecting, collecting, and categorizing scenarios.

To assist a scenario’s authors, a scenario editor is envisioned

possessing automated component and task highlighting, and

the ability to query the system and obtain a clear view of

interaction between components. This is the fourth ingredient

of Mise en Scene, the element that unites the other three

(SNL, TNL, and SCN2T). SNLGlue is a software tool, rather

than another language, likely to be added during integration

with R2D2C. It is seen as being particularly helpful for users

who wish to dispense with the D1 phase and directly author

scenarios using SNL.

6.  PREVIOUS CASE STUDIES

In order to confirm that the expressive capabilities of Mise

en Scene’s scenario medium are at least sufficient to handle

the few published R2D2C examples, these were represented

using SNL. Below is the “Page Analyst” scenario taken from

the LOGOS/ANTS system [HRR05c], reworked in terms of

SNL:

Scenario ID: RequestPagerInfo
Scenario Description: Requests the pager 
information for an analyst and sends the request 
to the DatabaseAgent. Presented on pg. 11 of 
NASA/TM--2005--212774

Author ID: GSFC
Primary Component: PagerAgent
Supplemental Components: UIAgent,DatabaseAgent 
Preconditions: None
Trigger:
UIAgent_PagerAgent_PAGERINFOTYPE_request.
requestinfo
Preamble:
{
PAGERINFOTYPE requestinfo;
ANALYSTINFOTYPE analystinfo;

}
Scenario Flow:
1. PagerAgent sends requestinfo to DatabaseAgent 
via QUERY.
2. PagerAgent receives analystinfo from 
DatabaseAgent via RESULT.
3. PagerAgent performs createandStoreMessage.
Scenario Extensions: None

The RequestPagerInfo scenario defines the tasks carried

out by the PagerAgent to retrieve an analyst’s contact infor-

mation and page them using said information. The scenario is

triggered by a request from the UIAgent.

The traces resulting from the SCN2T translation algorithm

are:

<PagerAgent_DatabaseAgent_PAGERINFOTYPE_QUERY.r
equestinfo, 
DatabaseAgent_PagerAgent_ANALYSTINFOTYPE_RESULT
.analystinfo, createandStoreMessage>

SNL versions of the other case studies from existing

R2D2C publications may be found in Appendix A of [Car06].

Since the existing examples were brief and did not exer-

cise the richness of SNL’s syntactic constructs, a somewhat

larger control-dominated system was created as a case study.

7.  ROBOT PROBE CASE STUDY

This example presents a set of scenarios for a robotic

probe designed to conduct soil surveys. Only the scenarios for

Fig. 4. System Architecture of Robot Probe 
System.
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the probe itself are presented. The probe is controlled by a

command station component (“Station”). Figure 4 shows an

overview of the entire system, and Figure 5 is a sketch of the

probe itself.

The probe contains two treads both capable of forward and

backward movement, allowing the probe to turn clockwise,

turn counter-clockwise, move forward, and move backward,

as shown in Figure 6. The front of the probe contains a sensor

that reads the pH and water content of the soil at the probe’s

current location. The sensor and the two treads are controlled

by three controllers, shown in Figure 7. The probe receives

commands from and relays data to the system component Sta-

tion, not shown. This example presents all permitted interac-

tions with Station, which is considered to be in the

environment of Probe. 

The scenarios in this example rely heavily on the exten-

sion/invoke construct, and also demonstrate the use of

unnamed channels.

In the following sections the set of traces for each possible

Probe instruction is derived. Due to the size of the trace set, it

is abbreviated.

7.1  System Preamble

Shown below is the system preamble for the robot probe

system. Several custom data types have been added for the

representation of x,y coordinates, probe commands, pH and

water sample values, and electromechanical instructions to

the probe’s treads.

System::preamble
{
nametype integer = {-1024..1024}
nametype string = {0..512}
nametype character = {0..255}
nametype float = {-1000000.00..1000000.00}
nametype bit = {0..1}
nametype boolean = {0..1}
nametype COORDINATE = {-1000..1000)
nametype COMMANDTYPE = {0..4}
nametype DIRECTIONCOMMAND = {0..3}
nametype PHSAMPLE = {0..8}
nametype WATERSAMPLE = {0..100}
nametype TREADDIRECTION = {0..1}
}

Fig. 8. System Preamble for Robot Probe.

Next, the schemas for all components of the Robot Probe

are given:

Component ID: Station
Description: The command station relaying 
directional commands to the probe, and the 
recipient of data collected from the sensor.

Component ID: Probe

Fig. 5. Robot Probe Top and Side Views.

Fig. 6. Robot Probe Movement Commands 
showing tread directions.

Fig. 7. Robot Probe Internal View of Major 
System Components.
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Description: A two tread, ‘tank-style’ robotic 
probe that is controlled remotely by a contol 
station. The probe collects soil samples and 
transmits this data to the control station.

Component ID: MotorControl
Description: An integrated controller for the 
probe’s two independent treads. Receives 
commands from the probe and send electro-
mechanical instructions and synchronization 
instructions to each of the probe’s treads.
Component ID: LeftTread
Description: The tread on the left side of the 
probe, controlled by MotorControl.

Component ID: RightTread
Description: The tread on the left side of the 
probe, controlled by MotorControl.

Component ID: Sensor
Description: The sensor on the front of the 
probe that collects pH and water data from the 
terrain. Sensor is controlled by the probe, and 
relays data back to the control station.

Fig. 9. Schemas for Robot Probe components

Next are a number of scenarios that describe the behavior

of the robot probe, beginning with probe initialization:

Scenario ID: RobotStart
Description: Tasks performed by the robotic 
probe upon system start.
Author: John Carter
Primary Component: Probe
Supplemental Component: Station
Precondition: None
Trigger: System::start
Preamble:
{
COORDINATE xloc;
COORDINATE yloc;

}
Scenario Flow:
1.  Probe performs robot_initialize.
2.  Probe sends xloc to Station.
3.  Probe sends yloc to Station.
4.  Probe performs robot_ready.

Extensions: None

Fig. 10. Scenario describing Probe initialization

The following scenario outlines the flow of execution for

receiving and processing a command from Station: 

Scenario ID: RobotCommand
Description: The probe receives a command to 
turn, move, or collect a sample from Station and 
executes it.
Author: John Carter
Primary Component: Probe
Supplemental Components: Station, MotorControl, 
Sensor
Precondition: Probe::robot_ready

Trigger: Station::robot_command
Preamble: {
COMMANDTYPE cmd;
PHSAMPLE new_ph;
WATERSAMPLE new_water;

}
Scenario Flow:
1.  Probe receives cmd from Station via command.
2.  if (cmd == 0) Probe invokes Forward.
    else if (cmd == 1) Probe invokes TurnRight.
    else if (cmd == 2) Probe invokes Backward.
    else if (cmd == 3) Probe invokes TurnLeft.
    else Probe invokes CollectData.
3.  Probe performs acknowledged.

Extension ID: RobotCommand::Extension::Forward
Description: Commands MotorControl to move robot 
forward.
1.  Probe performs ready_move.
2.  Probe sends 0 to MotorControl.
3.  Probe performs move_complete with 
MotorControl.

Extension ID:
RobotCommand::Extension::TurnRight
Description: Commands MotorControl to turn robot 
CW.
1.  Probe performs ready_move.
2.  Probe sends 1 to MotorControl.
3.  Probe performs move_complete with 
MotorControl..

Extension ID: RobotCommand::Extension::Backward
Description: Commands MotorControl to move robot 
backward.
1.  Probe performs ready_move.
2.  Probe sends 2 to MotorControl.
3.  Probe performs move_complete with 
MotorControl.

Extension ID: RobotCommand::Extension::TurnLeft
Description: Commands MotorControl to turn robot 
CCW.
1.  Probe performs ready_move.
2.  Probe sends 3 to MotorControl.
3.  Probe performs move_complete with 
MotorControl.

Extension ID:
RobotCommand::Extension::CollectData
Description: Collects a set of samples (pH and 
water) from the sensor.
1. Probe performs collect_sample.
2. Probe receives new_ph from Sensor.
3. Probe receives new_water from Sensor.
4. Probe sends new_ph to Station.
5. Probe sends new_water to Station.
6. Probe performs sample_done with Sensor.

Fig. 11. Scenario showing Probe processing a 
command from Station

The following scenario collects and forwards data:
Scenario ID: Sensor_Collect
Description: Collects a pH and water sample from 
the soil at current location.
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Primary Component: Sensor
Supplemental Components: Probe
Precondition: Probe::robot_initialize
Trigger: Probe::collect_sample
Preamble: {
PHSAMPLE ph;
WATERSAMPLE water;

}
Scenario Flow:
1.  Sensor performs collect_ph.
2.  Sensor performs collect_water.
3.  Sensor sends ph to Probe.
4.  Sensor sends water to Probe.
3.  Sensor performs sample_done with Probe.

Extensions: None

Fig. 12. Scenario describing the Sensor component 
collecting a sample

The Move_Probe scenario relays commands from the

Probe to the independent treads:

Scenario ID: Move_Probe
Description: Processes movement commands from 
the probe.
Primary Component: MotorControl
Supplemental Component: Probe
Preconditions: None
Trigger: Probe::ready_move
Preamble:
{
DIRECTIONCOMMAND direction_cmd;

}
Scenario Flow:
1. MotorControl performs move_command.
2. MotorControl receives direction_cmd from 
Probe.
3. if (direction_cmd == 0) MotorControl invokes 
move_ahead.
    else if (direction_cmd == 1) MotorControl 
invokes turn_right.
    else if (direction_cmd == 2) MotorControl 
invokes move_back.
    else MotorControl invokes turn_left.
4. MotorControl performs disengage with 
LeftTread.
5. MotorControl performs disengage with 
RightTread.
6. MotorControl performs move_complete with 
Probe.

Extensions:

Extension ID: Move_Probe::Extension::move_ahead
Description: Moves robot probe forward.
1. MotorControl sends 1 to LeftTread via LTDIR.
2. MotorControl sends 1 to RightTread via RTDIR.

Extension ID: Move_Probe::Extension::turn_right
Description: Turns robot probe clockwise.
1. MotorControl sends 1 to LeftTread via LTDIR.
2. MotorControl sends 0 to RightTread via RTDIR.

Extension ID: Move_Probe::Extension::move_back
Description: Moves robot probe backward.

1. MotorControl sends 0 to LeftTread via LTDIR.
2. MotorControl sends 0 to RightTread via RTDIR.

Extension ID: Move_Probe::Extension::turn_left
Description: Moves robot probe counter-
clockwise.
1. MotorControl sends 0 to LeftTread via LTDIR.
2. MotorControl sends 1 to RightTread via RTDIR.
Scenario description of the MotorControl.

Fig. 13. Scenario for the MotorControl

Finally, the scenarios describing the behavior for one of

the independent treads are presented. The behavior between

the two scenarios is similar, hence only of the two treads is

included:

Scenario ID: LeftTread_Movement
Description: Controls the left tread on a tank-
style robot.
Primary Component: LeftTread
Supplemental Components: MotorControl, 
RightTread
Precondition: Probe::robot_initialize
Trigger: MotorControl:move_command
Preamble:
{
TREADDIRECTION lt_direction;

}

Scenario Flow:
Trigger: MotorControl:move_command
1. LeftTread receives lt_direction from 
MotorControl via LTDIR.
2. if (lt_direction == 1) LeftTread performs 
lt_setforward.
    else LeftTread performs lt_setbackward.
3. LeftTread performs direction_engage with 
RightTread.
4. LeftTread performs move with RightTread.
5. LeftTread performs disengage with 
MotorControl.

Extensions: None
Scenario for the behavior of the probe’s left 
tread.

Fig. 14. Scenario for the Probe’s left tread

Next we perform the translation of all individual traces.

7.2  Individual Scenario Traces

The trace resulting from translating RobotStart is:

terminal traces (Probe) = {
<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready> }

The traces resulting from the RobotCommand scenario

and its extensions are:

terminal traces (Probe) = {
<Station_Probe_COMMANDTYPE.cmd,op_equal.cmd.0.1
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,ready_move,Probe_MotorControl_DIRECTIONCOMMAND
.0,move_complete,acknowledged>,
<Station_Probe_COMMANDTYPE.cmd,op_equal.cmd.1.1
,ready_move,Probe_MotorControl_DIRECTIONCOMMAND
.1,move_complete,acknowledged>,
<Station_Probe_COMMANDTYPE.cmd,op_equal.cmd.2.1
,ready_move,Probe_MotorControl_DIRECTIONCOMMAND
.2,move_complete,acknowledged>,
<Station_Probe_COMMANDTYPE.cmd,op_equal.cmd.3.1
,ready_move,Probe_MotorControl_DIRECTIONCOMMAND
.3,move_complete,acknowledged>,
<Station_Probe_COMMANDTYPE.cmd,op_equal.cmd.4.1
,collect_sample,Sensor_Probe_PHSAMPLE.new_ph,Se
nsor_Probe_WATERSAMPLE.new_water,
Probe_Station_PHSAMPLE.new_ph,Probe_Station_WAT
ERSAMPLE.new_water,sample_done,acknowledged>
}

The traces of the Sensor resulting from the Sensor_Collect

scenario are:

terminal traces (SensorCollect) = {
<collect_ph,collect_water,Sensor_Probe_PHSAMPLE
.ph,Sensor_Probe_WATERSAMPLE.water,sample_done>
}

The traces of the MotorControl, created from the

Move_Probe scenario:

terminal traces (MoveProbe) = {
<move_command,Probe_MotorControl_DIRECTIONCOMMA
ND.direction_cmd,op_equal.direction_cmd.0.1,Mot
orControl_LeftTread_TREADDIRECTION_LTDIR.1,Moto
rControl_RightTread_TREADDIRECTION_TRDIR.1,dise
ngage,disengage,move_complete>,

<move_command,Probe_MotorControl_DIRECTIONCOMMA
ND.direction_cmd,op_equal.direction_cmd.0.2,Mot
orControl_LeftTread_TREADDIRECTION_LTDIR.1,Moto
rControl_RightTread_TREADDIRECTION_TRDIR.0,dise
ngage,disengage,move_complete>,

<move_command,Probe_MotorControl_DIRECTIONCOMMA
ND.direction_cmd,op_equal.direction_cmd.0.3,Mot
orControl_LeftTread_TREADDIRECTION_LTDIR.0,Moto
rControl_RightTread_TREADDIRECTION_TRDIR.0,dise
ngage,disengage,move_complete>,

<move_command,Probe_MotorControl_DIRECTIONCOMMA
ND.direction_cmd,op_equal.direction_cmd.0.4,Mot
orControl_LeftTread_TREADDIRECTION_LTDIR.0,Moto
rControl_RightTread_TREADDIRECTION_TRDIR.1,dise
ngage,disengage,move_complete> }

The traces from MotorControl are:

terminal traces(LeftTread_Movement) = {
<MotorControl_LeftTread_TREADDIRECTION_LTDIR.lt
_direction,op_equal.lt_direction.1.1,lt_setforw
ard,direction_engage,move,disengage>
<MotorControl_LeftTread_TREADDIRECTION_LTDIR.lt
_direction,op_equal.lt_direction.0.1,lt_setback
ward,direction_engage,move,disengage> }

terminal traces(RightTread_Movement) = {
<MotorControl_RightTread_TREADDIRECTION_RTDIR.r
t_direction,op_equal.rt_direction.1.1,rt_setfor
ward,direction_engage,move,disengage>
<MotorControl_RightTread_TREADDIRECTION_RTDIR.r
t_direction,op_equal.rt_direction.0.1,rt_setbac
kward,direction_engage,move,disengage> }

7.3  System Traces

Next, individual traces of each Probe component are com-

bined into a set of traces representing the behavior of the

entire system. Recall that Station is considered part of the

environment of the Probe, so all possible interactions with

Station must be included.

After the system executes System::start, only one scenario

is eligible to run, RobotStart, so begin with its trace:

traces (System) = {
<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready...>
}

After executing this series of events, no more scenarios

can execute, due to the RobotCommand triggering on Sta-

tion::robot_command. By decoupling Station from this sys-

tem for the purposes of this example, it is assumed that the

Station performs this immediately after robot_ready. This

allows the example to incorporate the set of traces arising

from RobotCommand, and these are appended to the previous

trace, along the set of possible commands originating from

Station:

traces (System) = {
<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.0.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.0,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.1.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.1,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.2.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.2,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.3.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.3,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,<Station_Probe_COMMANDTYPE.cmd,op_equ
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al.cmd.4.1,collect_sample,Sensor_Probe_PHSAMPLE
.new_ph,Sensor_Probe_WATERSAMPLE.new_water,
Probe_Station_PHSAMPLE.new_ph,Probe_Station_WAT
ERSAMPLE.new_water,sample_done,acknowledged...>
}

Next, Sensor’s traces are incorporated, which are only

appended to the last traces in the previous set, as it shows the

flow of execution when Station requests a sample. After

inserting Sensor’s events between Probe and Sensor’s rendez-

vous, the trace set becomes:

traces (System) = {
<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.0.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.0,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.1.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.1,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.2.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.2,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.3.1,ready_move,Probe_MotorControl_DIRECTI
ONCOMMAND.3,move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command, <Station_Probe_COMMANDTYPE.cmd, 
op_equal.cmd.4.1,collect_sample, 
collect_ph,collect_water,Sensor_Probe_PHSAMPLE.
new_ph, 
Sensor_Probe_WATERSAMPLE.new_water,Probe_Statio
n_PHSAMPLE.new_ph,Probe_Station_WATERSAMPLE.new
_water,sample_done,acknowledged...> }

Next, the traces of Motor_Control are incorporated into

the first four traces of the previous set, which represent the

move commands:

traces (System) = {
<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.0.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.0, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.1, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.1, 
disengage, disengage, move_complete, 
acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo

t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.1.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.1, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.1, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.0,
disengage, disengage, move_complete, 
acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.2.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.2, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.0, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.0, 
disengage, disengage, 
move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.3.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.3, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.0, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.1,
disengage, disengage, 
move_complete,acknowledged...>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command, <Station_Probe_COMMANDTYPE.cmd, 
op_equal.cmd.4.1,collect_sample, 
collect_ph,collect_water,Sensor_Probe_PHSAMPLE.
new_ph, 
Sensor_Probe_WATERSAMPLE.new_water,Probe_Statio
n_PHSAMPLE.new_ph,Probe_Station_WATERSAMPLE.new
_water,sample_done,acknowledged...> }

Finally, the events of the left and right treads are added.

First, the interleavings between the LeftTread and RightTread

are performed. All of the events in their traces are rendezvous,

except for lt_setforward, lt_setbackward, rt_setforward,

rt_setbackward. Each of the movements (first four traces) in

the above set, uses one of lt_ and rt_. The order in which these

events occur is arbitrary, since the treads engage, move, and

disengage together. From this, add the two possible interleav-

ings for each, and arrive at:

traces (System) = {
<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.0.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.0, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.1, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.1, 
lt_setforward, rt_setfoward, direction_engage, 
move, disengage, disengage, move_complete, 
acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.1.1,ready_move,move_command,Probe_MotorCo
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ntrol_DIRECTIONCOMMAND.1, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.1, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.0, 
lt_setforward, rt_setbackward, 
direction_engage, move, disengage, disengage, 
move_complete, acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.2.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.2, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.0, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.0, 
lt_setbackward, rt_setbackward, 
direction_engage, move, disengage, disengage, 
move_complete,acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.3.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.3, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.0, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.1, 
lt_setbackward, rt_setforward, 
direction_engage, move, disengage, disengage, 
move_complete,acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.0.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.0, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.1, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.1, 
rt_setforward, lt_setfoward, direction_engage, 
move, disengage, disengage, move_complete, 
acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.1.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.1, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.1, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.0, 
lt_setforward, rt_setbackward, 
direction_engage, move, disengage, disengage, 
move_complete, acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.2.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.2, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.0, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.0, 
rt_setbackward, lt_setbackward, 
direction_engage, move, disengage, disengage, 
move_complete,acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo

t_command,Station_Probe_COMMANDTYPE.cmd,op_equa
l.cmd.3.1,ready_move,move_command,Probe_MotorCo
ntrol_DIRECTIONCOMMAND.3, 
MotorControl_LeftTread_TREADDIRECTION_LTDIR.0, 
MotorControl_RightTread_TREADDIRECTION_TRDIR.1,
rt_setbackward, lt_setfoward, direction_engage, 
move, disengage, disengage, 
move_complete,acknowledged>,

<robot_initialize,Probe_Station_COORDINATE.xloc
,Probe_Station_COORDINATE.yloc,robot_ready,robo
t_command, <Station_Probe_COMMANDTYPE.cmd, 
op_equal.cmd.4.1,collect_sample, 
collect_ph,collect_water,Sensor_Probe_PHSAMPLE.
new_ph, 
Sensor_Probe_WATERSAMPLE.new_water,Probe_Statio
n_PHSAMPLE.new_ph,Probe_Station_WATERSAMPLE.new
_water,sample_done,acknowledged> }

The listing of the above traces is tedious, but serves to

illustrate the translation algorithm at work on the case study’s

scenarios.

8.  FUTURE WORK

The largest open problem with respect to SCN2T is the

issue of infinite traces. There may be a need for “while”-style

looping within the scenario medium, though the priority of

this need has yet to be investigated, but infinite traces will be

a by-product of a looping construct. A number of case studies

by trial users of Mise en Scene would likely highlight con-

structs missing from and required in the SNL medium.

Another area for further development is the implementa-

tion of a software prototype of SCN2T. This depends largely

on R2D2C integration. During the course of this work, a num-

ber of C++ classes and utilities were written to automate cal-

culations involving traces. These classes were developed with

an eventual prototype in mind, and should serve as a good

starting point for building a full implementation.

Another possible area of application for Mise en Scene is

the generation of traces for use in formal verification. In order

to verify trace refinement, a “safety specification” in the form

of a process, or set of traces that defines all of the permitted

system behavior, must be created. A tool such as Formal Sys-

tems’ FDR2 is able to prove that a candidate CSP implemen-

tation falls within the set of behavior prescribed in the safety

specification. Traces generated from natural language scenar-

ios may represent a user-friendly route to creating the needed

safety specifications.

R2D2C also includes a shortcut “S” flow whereby scenar-

ios are converted directly to a subset of CSP, bypassing the

traces generation and model inference phases. SNL to CSP

conversion has been attempted, and success has been

achieved in the area of single scenarios; however, more work

is needed toward composing CSP processes derived from sce-

narios to form the top-level system.
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9.  CONCLUSION

This research addressed the challenge of defining “sce-

nario” in an appropriate manner for the R2D2C project. The

resulting SNL meets the objectives of (1) being recognizable

as a “scenario-based approach,” since it is compatible with

widely surveyed usage, and (2) being translatable to CSP

traces. Therefore, SNL can play its desired role in the D2

phase of R2D2C. This was demonstrated by reworking exist-

ing R2D2C case studies in terms of SNL, and by developing a

new case study of a control-dominated system (robot probe)

that would be within the intended scope of R2D2C.

Furthermore, a challenge of all scenario-based approaches

is managing the fragmentation resulting from specifying a

system as a set of loosely connected scenarios. It becomes dif-

ficult to compose the scenarios into a larger whole. With Mise

en Scene this has been achieved by limiting the specification

medium from natural language to structured text, and by

employing the communication and synchronization paradigm

of CSP. The resulting scenario medium is suitable for directly

authoring scenarios for R2D2C even without the aid of a D1

Scenarios Capture phase, as shown by the robot probe case

study.

Finally, Mise en Scene provides the necessary automatic

means of translating from SNL scenarios to CSP traces, out-

put in the form of TNL. While the need for some adaptation

of TNL to an eventual implementation of the D3 Model Infer-

ence phase must be anticipated, Mise en Scene provides a

path to go forward into the research on formal model extrac-

tion from CSP traces, thereby considerably advancing the

work on R2D2C.
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