Parameter Trade Studies For Coherent Lidar
Wind Measurements of Wind from Space

Michael J. Kavaya
NASA Langley Research Center
michael.j.kavaya@nasa.gov

Rod G. Frehlich
CIRES, University of Colorado

SPIE Lidar Remote Sensing for Environmental Monitoring VIII
San Diego, CA

Global Wind Mission Concept
Hybrid Doppler Lidar Concept

Complementary Lidars Together Lower Total Mass, Power, Cost, Risk

Green represents percentage of sampled volumes when coherent subsystem provides the most accurate LOS measurement; **Yellow** is for direct detection; **Gray** is when neither system provides an observation that meets data requirements.

When two perspectives are possible
- **Green**: both perspectives from coherent system
- **Yellow**: both perspectives from direct molecular
- **Blue**: one perspective coherent, one perspective direct
GWOS Mission Study

- Hybrid Doppler lidar
- 400 km, 45 deg nadir, 4 azimuth angles
- Coherent lidar:
 - 0.25 J, 5 Hz, 2.053 microns, 180 ns
 - 0.5 m receiver diameter
 - 60 shot accumulation attempted; 12 s; 85.2 km
 - Pattern repeat = 4 x (12 + 1.5) = 54 s = 390 km
- 1 m/s design 1-σ wind turbulence (broadens sig. spectrum)
- 0.5 m/s 1-s laser difference frequency knowledge error
- No vertical shear of horizontal wind velocity (always aligned with beam: broadens signal spectrum)
- Sampling/representativeness error = 0.62 m/s (85 km line in 100 km box)
Specific GWOS Operating Point For Trade Studies

- 5 km altitude wind measurement height
- Enhanced aerosol levels; $\beta = 2.75 \times 10^{-8} \text{ m}^{-1} \text{sr}^{-1}$
- Vertical resolution = 2000 m
- $\varphi = 4.5$ (# coherent photoelectrons per range gate per shot)
- 60 shots accumulation attempt
- $\Pr\{\text{good}\} = 0.95$
- Lidar LOS velocity error = 1.5 m/s
- Lidar horizontal velocity error = 2.0 m/s
- With sampling error, total horizontal velocity error = 2.1 m/s
Pulse Energy vs. PRF

- Hold Pr{good} = 0.95
- Velocity error does not change

Favors higher PRF?

nominal operating point
Laser Power vs. PRF

- Hold \(\text{Pr\{good\}} = 0.95 \)
- Velocity error does not change
- Laser Power = Energy \(\times \) PRF

Favors lower PRF?
Relative LDA Lifetime vs. PRF

- Hold Pr\{good\} = 0.95
- Velocity error does not change
- LDA lifetime probably reflects laser lifetime

Favors higher PRF?
• Hold \(Pr\{\text{good}\} = 0.95 \)
• Velocity error does not change
• Lifetime in \textbf{seconds} more important than lifetime in shots
 \(\text{(seconds} = \text{shots}/\text{PRF}) \)

Favors lower PRF?
• Hold Pr{good} = 0.95
• Velocity error fairly constant above 180 ns (5% bad estimates dominating)

Outside the validated parameter range of the performance parameterization
Pulse Energy vs. Telescope Diameter

- Assume scanner does not reduce collection area
- Assume $1-\sigma$ transmit/receive misalignment angle fixed at 3.082 μrad
- Hold $Pr\{\text{good}\} = 0.95$ and velocity accuracy constant

- Larger diameters have more SNR loss for fixed misalignment angle
Pulse Energy vs. Nadir Angle

- Hold Pr\{good\} = 0.95
- Above 70 degrees misses the earth

- Spherical earth steepens the slope
Velocity Error vs. Nadir Angle

- Hold Pr\{good\} = 0.95
- Above 70 degrees misses the earth

- Laser beam more horizontal at larger nadir angles
Velocity Error x Pulse Energy vs. Nadir Angle

- Hold $P_{\text{good}} = 0.95$
- Above 70 degrees misses the earth

- Broad optimum from 25 – 45 degrees
• Hold $Pr\{\text{good}\} = 0.95$
• Above 70 degrees misses the earth

• Broader optimum; what other figures of merit are there?
Pulse Energy vs. Vertical Resolution

- Hold Pr\{good\} = 0.95

- Wind shear increases required pulse energy
Wind shear greatly increases velocity error
Dilemma: pulse energy and velocity error favor oppositely
(Energy x Error)^{-1} vs. Vertical Resolution

- Wind shear case has optimum vertical resolution
Pulse Energy vs. Velocity Search Bandwidth

- Full search bandwidth in horizontal direction for last pass through the data
- Hold Pr\{good\} = 0.95

• Significant effect on pulse energy
Velocity Accuracy vs. Velocity Search Bandwidth

- Full search bandwidth in horizontal direction for last pass through the data
- Hold $\text{Pr\{good\}} = 0.95$

- Large effect on velocity error
- Bad wind estimates dominate error
Summary and Conclusions

- NASA LaRC computer simulation of global wind profiling coherent-detection Doppler lidar uses latest published theory
- Simulation permits parametric trade studies with choice of parameters held constant
- Tool should prove useful in mission design and guide to parameter goals for technology under development
- There are many more possible trades than are shown here
- Desire to incorporate optic component aberrations, laser beam intensity and phase description, and misalignment rigorously into theory
Back Up Slides