Integrated Approach to User Account Management

Kesselman, Glenn and Smith, William

Lockheed Martin Mission Services
Quest Software Public Sector

October 17, 2007
Agenda

• Background
• Analysis of Options
• Requirements
• Considered Architectures
• Architecture Evaluation
• Architecture Conclusions
• Benefits
• Then What?
• Proof-of-Concept (POC)
• POC Conclusions
 - Implementation Strategy
 - Results to Date
 - Conclusion
Background

- **Multiple Operating Systems**
- **Systems configurations which will remain unchanged until the Orbiter retirement**
- **Users with the same or different user accounts in different domains**
- **Migration from Network Information System (NIS) style domains to the Active Directory (AD) styled domains**
- **How to deal with groups privileges**
 - Using a Lockheed Martin provided tool known as ‘become’
 - Using organizational units and personalities
 - **How to roll out**
 » Roll out with new equipment
 » Phase in on existing equipment
 » Dealing with unchanged equipment
Analysis of Options

• Was it feasible to provide one user ID management system?
 - Yes, but…

• What options were considered?
 - Reviewed Light Weight Directory Access Protocol (LDAP) vendor offerings and white papers
 - Reviewed LDAP newsgroups and blogs
 - Identified 5 candidate architectures
 - Industry current “best practices” said 2 architectures are consistent with industry approaches
 - Leverage our agreements with our vendors
 » Questions were posted to Microsoft, Red Hat, Sun, and Quest with respect to LDAP
Security Requirements

- **User Passwords:**
 - shall be protected / secured when sent over a network
 - shall be protected / secured as stored on the LDAP server
 - shall be defined by the user (within guidelines and constraints)
 - shall have a minimum and a maximum age
 - shall be checked against a password history record to prevent password reuse
 - shall generate warnings when the password nears expiration
 - shall be checked for triviality and ensure minimum standards (defined) are met (minimum number of characters, types, etc.)

- **Accounts** shall be locked out with warning messages upon successive login failures.

- **Other System Entry Applications** (FTP, Telnet, rsh) will continue to use the existing applications password policies. A follow-on study should be conducted to mitigate application password policy risk acceptance
What Were the Considered Architectures?

- Parallel Authentication Servers
 - Both MS Windows and UNIX/Linux
- Common Authentication Server
 - Supports both MS Windows and UNIX/Linux from a common ‘platform’
Parallel Authentication Servers

• **Architecture A • Separate Management**
 - UNIX/Linux clients authenticate with a UNIX/Linux LDAP server
 - Windows clients authenticate with a Windows 2003 server
 - Use the same user ID and password on the Windows and UNIX/Linux systems

• **Architecture B • Synchronized**
 - Same as Separate Management, but the LDAP database on the Windows and UNIX/Linux servers are synchronized by external tools and processes
Common Authentication Server

- **Architecture C** - Windows AD server
 - Serves both UNIX/Linux and Windows clients
- **Architecture D** - UNIX/Linux LDAP server
 - Serves both UNIX/Linux and Windows clients
- **Architecture E** - Vintela + Windows AD server
 - Serves both UNIX/Linux and Windows clients
 - Vintela option facilitates Kerberized authentication, simpler management, and strict password policy adherence
Parallel Architecture A

PAM = Pluggable Authentication Module
DUA = Directory User Agent

UNIX/Linux Client
- Login
- PAM
- DUA

MS Windows Client
- Login
- LSASS

MS Windows Server 2003
- MS Kerberos V5
- MS Active Directory

UNIX/Linux
- LDAP
dagemon
- Dir Svcs
- User DB

LDAP
- RFC 1510
- LDAP

Userid / password

Userid / domain/ password

LSASS = Local Security Authority Sub-System
Parallel Architecture B

UNIX/Linux Client
- Login
- PAM
- DUA

MS Windows Client
- Login
- LSASS

UNIX/Linux
- LDAP daemon
- Dir Svcs
- User DB

MS Windows Server 2003
- MS Kerberos V5
- MS Active Directory
- User DB

Userid / password

LDAP

RFC 1510

synchronization
Common Architecture C
Windows LDAP Deployment Architecture

MS Windows Client
Userid / domain / password

MS Windows Client
Login | LSASS

MS Windows Based Authentication

MS Windows Server 2003
MS Kerberos V5
MS Active Directory
User DB

UNIX/Linux Client
Login | PAM | DUA

LSASS
User DB

MS Windows copyrighted

RFC 1510
LDAP

C

MCES 2007 October 15 – 18 2007
Glenn Kesselman and William Smith
Page 11
Common Architecture D
Linux LDAP Deployment Architecture

MS Windows Client
- Login
- LSASS

Linux LDAP Server
- PADL/Samba/WinBind
- MIT Athena Kerberos V5
- LDAP daemon
- Dir Svcs
- User DB

UNIX/Linux Client
- Login
- PAM
- DUA

Userid / domain/ password

RFC 1510 (Kerberos V5)

UNIX/Linux Based Authentication
Common Architecture E
Windows LDAP Deployment Architecture

MS Windows Based Authentication

MS Windows Client
Login
LSASS

UNIX/Linux Client
Login
PAM
Vintela Agent

Userid / domain/ password

MS Windows Server 2003
Vintela
MS Kerberos V5
MS Active Directory
User DB

Userid / password

RFC 1510
LDAP
Candidate Architecture Evaluation Factors

- Highly Available
- Swingable (Ops to Test & back)
- Scalable
- Secure channel to protect authentication
- Supports customized login application
- Cross security level information exchange
- Password History & Aging
- Userid/Password database is secure
- User impacts
- GUI

- Legacy (non-compliant) Systems Support
- Product Support
- Custom Pluggable Authentication Module (PAM) development framework
- Administration tools are adequate
- Customizable
- System administration impacts
- Administration automation
- Interoperable
- Commercial-Off-The-Shelf COTS, COTS, COTS
Candidate Architecture Scorecard

<table>
<thead>
<tr>
<th>Scorecard</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly available</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swingable</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Scalable</td>
<td>m</td>
<td></td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Secure Channel</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>POS login support</td>
<td>m</td>
<td></td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Cross Sec Level Info Exchange</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Password History & Aging</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Userid/Password DB is secure</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>User impact</td>
<td>m</td>
<td></td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>ACA interface</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Legacy systems support</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Product Support</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Custom PAM framework</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Adequate Tools</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Customizable</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Sysadmin impacts</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Automated admin</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Interoperable</td>
<td>N/A</td>
<td></td>
<td>m</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Estimated Engineering Effort</td>
<td>m</td>
<td></td>
<td>m</td>
<td></td>
<td>m</td>
</tr>
</tbody>
</table>

- **No Major Issues**
- **Issues With Mitigation**
- **Issues Have No Mitigation**
Architecture Conclusions

• Using a single userid/password can be accomplished for a single domain user (i.e. OPS only or Development only)

• LDAP implementation is feasible with at least 2 defined domains (Operations & Development/Verification)

• The existing NASA Mission Control Center Systems (MCCS) and subsystems will be supported as part of a planned equipment replacement / upgrade, remain ‘as-is’ until an equipment replacement occurs, or be migrated as part of an approved change direction

• Some existing subsystems can be supported with an upgrade

• The recommended architectures will meet the user password management requirements

• The candidate architecture D is not feasible and will not be pursued because the Linux LDAP server with samba and winbind cannot provide all the necessary services required by Windows
Benefits

• Users have 1 User Identity (ID) and fewer passwords for ALL of the MCCS and subsystems
• Password policy will be uniform and consistent across systems and subsystems
• Password change interval will be uniform based upon a NASA Johnson Space Center approved policy
• This is / was NOT Single Sign On (SSO)
 - Requesting access to another system or subsystem WILL require the user to provide their User ID and password
 - The candidate LDAP architectures do not preclude moving to SSO in the future
POC Scope

• Then What? DO Proof-Of-Concept (POC)
 - Validate security requirements
 → password syntax, management, expiration, history, etc.
 - Explore mixed architecture to ensure that a consolidated single product type LDAP server implementation is viable, or prove that the parallel candidate architecture deployment is required.
 - Install client and server systems, using existing resources to evaluate the possible architectures and products.
POC Scope

• Then What?
 - Facilitate identifying products for the common approach.
 - Identifying a common PAM configuration to support / authenticate MCCS systems.
 - Determine if a common schema will support all intended targets.
 - Verify that emulated environment swings are supported.
 - Identify administration tools to support LDAP environment.
 - Report results of POC actions.
POC Conclusions

Architecture “B” – Parallel LDAP Servers (A & B collapsed)

» Uses Red Hat Directory Services (RDS) for Linux, Solaris and AIX logon clients.
» RDS interfaces with AD keep the userid/password database in synchronization over a secure link.

Architecture “E” – Shared LDAP Server (C a variant of E, D infeasible)

» Linux/Unix Clients use the Vintela add-on package to authenticate using Active Directory.
» No synchronization is required – common Windows LDAP server provides one userid/password database.
POC Conclusions

With Architecture “B”, we found RDS + AD, w/sync:
» Did not support the custom operations satisfactorily;
» Password strength lies in the individual client PAM’s and can vary based on host type;
» Installation of the client PAM was not straightforward, but rather error prone;
» Some of the user logon messages are missing or very brief in duration.

With Architecture “E”, we found Vintela + AD:
» Was simple to install using Red Hat style RPM’s;
» Provides the messages needed during login processing;
» Password policy was uniformly implemented by the Windows AD server;
» Performed well during custom operations.
» Most COTS oriented solution
POC Conclusions

- **Bottom Line:**
- **Implement Architecture E**
POC Conclusions

• **Implementation strategy**
 - Infrastructure is installed first, then subsystems are brought in according to outside schedule factors

 - **Common Userid Phase I: Development Systems and Subsystems**
 » Install new AD cluster and migrate Windows 2000/XP clients first
 » Verify custom login on Linux workstations
 » Migrate Linux/Unix clients next
 » Support LDAP testing with early adopters

 - **Common Userid Phase II: Operations Systems and Subsystems**
 » Repeat installation pattern from the Development Systems domain
 » Support LDAP authentication in equipment replacement devices (Linux workstations and servers)
 » Implement Windows devices (current and new)
 » Implement on Unix clients and servers
Results to date

- All of the Development Domain’s workstations and servers are converted to using the LDAP services based upon the Vintela agents
 - Caveat:
 » Some of the systems in the Development and Operations domain do not support PAM and therefore are still managed separately.
 » Root is managed locally (at the workstation or server).

- Some of the Operations Domain’s workstations and servers are converted to using the LDAP services
 - Caveat:
 » Some of the systems in the Operations domain do not support PAM and therefore are still managed separately.
 » Root is managed locally (at the workstation or server).
 » Roll-out to the Operations Domain systems and subsystems are being achieved incrementally with equipment replacements or retrofits.
Conclusion

• The implementation proceeds well with little problems.

• Quest has been instrumental in the successful implementation and problem resolution.
 - Problems were resolved at site in some instances with fixes being made in hours or days during the initial testing and roll out to the Development Domain

• For those systems that are being converted from a NIS based service to a PAM based service, develop a password testing system that user’s can ‘try-it’ before the ‘use-it’

• Educate the user about this service and why it is important
Conclusion

• Rolling out a ‘one-size-fits-all’ solution will be difficult, because the size will change
 - For example: If implementation of LDAP services with application authentication is required, then try that first before having the users change to the system.
 - Test the systems with many ‘high-fidelity’ users as possible
 » If you have ‘vocal’ users, get them to be some of those testers and hopefully advocates.

• We did not advertise this as a ‘single sign-on’ solution

• We did not advertise this as a panacea, just a step forward
Diverse Systems & Directories

Active Directory simplifies the situation for Windows systems,

- Multiple directories
- Multiple identities
 - Multiple logins
 - Not secure

but for non-Windows systems, directories and authentication must all be managed separately

Legacy systems
Third-party Directories
Other application ID Stores
Vintela integrates disparate Unix/Linux/Java identities into one secure Active Directory environment.
Presentation MetaData

<table>
<thead>
<tr>
<th>Metadata Name</th>
<th>Metadata Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Number</td>
<td>ABS-1559</td>
</tr>
<tr>
<td>Subject</td>
<td>Integrated Approach to User Account Management</td>
</tr>
<tr>
<td>Additional Contributors</td>
<td>Smith, William</td>
</tr>
<tr>
<td>Keywords</td>
<td>MCES 2007, Identity Management, Account Management</td>
</tr>
<tr>
<td>Legend</td>
<td>Leave blank or use a legend as specified in CPS-710 - http://policy.global.lmco.com/p3/lockmart/cps/legal/cps-710.html</td>
</tr>
<tr>
<td>Coverage</td>
<td>Case Studies</td>
</tr>
<tr>
<td>Audience</td>
<td>All Attendees</td>
</tr>
<tr>
<td>Track</td>
<td>Enabling Infrastructure Agility</td>
</tr>
<tr>
<td>Abstract</td>
<td>IT environments consist of both Windows and other platforms. Providing user account management for this model has become increasingly difficult. If Microsoft’s Active Directory could be enhanced to extend a Windows identity for authentication services for Unix, Linux, Java and Macintosh systems, then an integrated approach to user account management could be realized.</td>
</tr>
</tbody>
</table>