In-Space Repair and Refurbishment of Thermal Protection System
Structures of Reusable Launch Vehicles

M. Singh
Ohio Aerospace Institute
NASA Glenn Research Center
Cleveland, OH 44135 (USA)

Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120°C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.
In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

M. Singh
Ohio Aerospace Institute
NASA Glenn Research Center
Cleveland, OH 44135 (USA)
Outline

• Introduction and Background
• Need for In-Space Repair and Inspection
• Technical Challenges
 – *Space Environment, EVA, Tools, Materials Issues*
 – *Inspection, Verification, and Validation*
• Repair Technologies
 – **Crack Repair Material**: GRABER
 – **Integrated System for Large Area TPS Repair**: InSTALER
• Testing and Characterization
 – *Physicochemical Characterization*
 – *Plasma Performance (ArcJet Testing, Torch Testing, etc)*
 – *Microstructural Characterization*
• Applications
• Summary and Conclusions
Repair of Hubble Space Telescope, Satellites, and Future Space Exploration Systems

ASTRO:
Autonomous Space Transfer and Robotic Orbiter
First Robotic Satellite Repair Man (DARPA)-Launched March 12, 2007

Hubble Space Telescope Repair Missions
Lunar and Mars Exploration Missions
Damage Possibilities to Thermal Protection System (TPS)

- Impact damage during ground handling
- Damage due to falling of ice or other objects during launch
- Micrometeoroid and orbital debris impact
- Damage caused by different factors during launch and reentry (weather, launch acoustics, shearing, etc.)
Foam separated from bipod ramp impacted on lower half of RCC panel #8

81.9 sec
21-27” long, 12-18” wide
625-840 ft/sec (416-573 miles/hr)

Bipod Fitting redesign

Old

New

Debris Strike Enhanced.mov
CAIB Recommendation R6.4-1

- For missions to the ISS, develop a practicable capability to inspect and effect emergency repairs to the widest possible range of damage to the **Thermal Protection System**, including both tile and RCC, taking advantage of the additional capabilities available when near to or docked at the ISS.

- For non-station missions, develop a comprehensive autonomous (independent of Station) **inspection and repair capability** to cover the widest possible range of damage scenarios.

- Accomplish an on-orbit Thermal Protection System inspection, using appropriate assets and capabilities, early in all missions.

- The **ultimate objective** should be a fully autonomous capability that an ISS mission fails to achieve the correct orbit, fails to dock successfully, or is damaged during or after undocking.

Leading Edge Structural Subsystem (LESS)

RCC Components

- Nose Cap, Chin Panel, and Seals
- Forward External Tank Attachment “Arrowhead” Plate
- Wing Leading Edge Panels and Seals
Leading Edge RCC Panels and T-Seals

Nose cap

RCC Seal strip

Wing L.E. RCC panels
Details of Reinforced Carbon-Carbon (RCC) Composite TPS Structures

Cross Sectional View Showing Carbon/Carbon, SiC, and Type A Sealant

Dr. Nathan Jacobson, NASA GRC
STS-45 Impact Damage on OV-104 WLE Panel 10R

Outer Surface Damage

Inner Surface Damage

Don Curry, JSC
STS-45 Impact Damage on Atlantis WLE Panel 10R

Overall View of Impact Sites

Detail of Surface Damage

Detail of Backface Damage
External Tank Foam Impact Test on Wing Leading Edge Reinforced Carbon-Carbon (RCC) Panel

RCC Panel 8 Test Article

OV103 On-board Camera Image (Port Wing Leading Edge Area)

Dr. Koichi Wakata, JAXA/JSC
Damage to Leading Edges During Impact Testing on Ground

IML Damage Surface Panel 9L

OML Damage Surface Panel 9L2

Foam Blasts 16-inch Hole in Final Shuttle Test @SWRI, TX, July 7, 2003
Different Repair Concepts for RCC Wing Leading Edge Damage

- Wrap
- Plug
- Crack Repair
Performing Repair in Space Environment is Quite Complex and Challenging

- EVA is like floating in the large pool of water, in a pressurized and only partially form fitting balloon.
- Normal EMU pressure is 4.3 psi.
- Thermal environments of the repair poses a significant challenge (temperature changes from -175 F (-115°C) to +250 F (121°C) and the back again in the span of 90 minutes.
- In some areas, the temperature changes from extreme cold to extreme hot in about 20 minutes time.
- Space vacuum is quite high (10^{-7} or 10^{-8} Torr).
EVA Considerations and Concerns for In Space Repair

- **EVA Access to the damage site** – getting the EVA crewmember there
- **EVA Worksite Restraint** – keeping the crewmember in place and in a stable orientation to effect the repair and react the loads associated with the repair
- **EVA Tools Design and Development** – designing, certifying and manufacturing the tools required for access, restraint, repair and cleanup
- **EVA Repair Techniques Development** – developing and validating the particular techniques required to accomplish access, restrain the crewmember and effect the repair
Space Shuttle Re-entry Conditions are Quite Harsh and Extreme

- Temperature to 2000 K
- Reduced pressure--0.005 to 0.010 atm
- Gases--O₂, N₂, CO₂
 - Shock leads to O, N and ions
- Short times ~15 minutes/re-entry
- Best simulated with arc-jet
WLE Entry Temperature Profiles

Panel 9 (55% Span) Temperature Profile for Nom ISS EOM

Entry Time (sec) vs. Temperature (°F)

- Entry Time (sec) range: 0 to 2000
- Temperature range: 0 to 3000

Legend:
- 5500 BP
- 5501 BP
- 5502 BP
- 5503 BP
- 5504 BP
- 5505 BP
- 5506 BP
- 5507 BP
- 5508 BP
- 5509 BP
- 5510 BP
- 5511 BP
- 5512 BP
- 5513 BP
- 5514 BP
- 5515 BP
- 5516 BP
- 5517 BP
- 5518 BP
- 5519 BP
- 5520 BP
- 5521 BP
- 5522 BP
- 5523 BP
- 5524 BP
- 5525 BP
- 5526 BP
- 5527 BP
- 5528 BP
- 5529 BP
- 5530 BP
- 5531 BP
- 5532 BP
- 5533 BP
- 5534 BP
- 5535 BP
- 5536 BP
- 5537 BP
- 5538 BP
- 5539 BP
- 5540 BP
- 5541 BP
- 5542 BP
- 5543 BP
- 5544 BP
- 5545 BP
- 5546 BP
- 5547 BP
- 5548 BP
- 5549 BP
- 5550 BP
- 5551 BP
- 5552 BP
- 5553 BP
- 5554 BP
- 5555 BP
- 5556 BP
- 5557 BP
- 5558 BP
- 5559 BP
- 5560 BP
- 5561 BP
- 5562 BP
- 5563 BP
- 5564 BP
- 5565 BP
Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) for Crack Repair

- High temperature adhesive based on organic based systems with a number of inorganic constituents.
- Viscosity and curing behavior (time, temperature) can be tailored to suit the needs.
- GRABER has been used to prepreg a wide variety of ceramic fiber weaves (C, SiO₂, SiC).
- It bonds very well with a wide variety of surfaces and cures up to 120°C with heat.
- It can be acid cured at lower temperatures as well.

- 2005 R&D 100 Award
- Northern Ohio Live Magazine- Awards of Achievement, S&T Category- Runner Up
Typical High Temperature Testing Steps for Various Repair Materials

- Simulated Testing in High Temperature Furnace (1650°C)
- Plasma Torch (MSFC, ATK)
- HYMETS (LaRC)
- QARE Rig (GRC)
- Specimen viewed during test
- ArcJet Testing (Stagnation and Wedge) at JSC, ARC, and Boeing LCAT

2"x2" 1" dia 2.8"
Reproducibility, Storage, and Shelf Life Characterization
Brookfield PVS Rheometer Used for the Viscosity Measurements

The temperature control bath has capability from –20 C (-4 F) to 180 C (356 F)
Reproducibility of GRABER 5A

Materials made at different times and in varying amounts show consistent viscosity
Materials stored for different times at room temperature show consistent viscosity.
Effects of Storage Times & Temperatures

<table>
<thead>
<tr>
<th>Materials</th>
<th>One Month</th>
<th>Two Months</th>
<th>>Three Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C</td>
<td>-15°C</td>
<td>0°C</td>
</tr>
<tr>
<td>Graber-5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Graber-5A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Graber-12A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Materials stored for different times (1-3 months) had similar type of viscosity behavior as freshly prepared materials.

Material was Tested under Vacuum
Storage Effects on GRABER 5A

Material Stored in a Freezer at -15 C

Materials stored for different times (1-3 months) had similar type of viscosity behavior as freshly prepared materials.

Material was Tested under Vacuum
Crack Repair, ArcJet Testing, and Post Test Characterization

• GRABER 5 (0.035” and 0.062” wide cracks-ARC)
• GRABER 5A (0.035” and 0.062”-ARC)
• GRABER 12A (0.035”-JSC and 0.035” and 0.062”-ARC)

No failure through repaired cracks was observed during the ArcJet Tests
Pre-Test Photographs of Repaired Specimens
Run 12 – Model 1993
(0.035” or ~0.89 mm wide crack, GRABER-5A)

Percent Argon = 6% @ 2960F condition
Add air = 11.6% @ 2960F condition
Anomaly: water leak from electrode, which allowed water vapor in the stream
ArcJet Testing of Repaired Specimens
Run 12 – Model 1993
(0.035” or ~0.89 mm wide crack, GRABER-5A)

Percent Argon = 6% @ 2960F condition
Add air = 11.6% @ 2960F condition
Anomaly: water leak from electrode, which allowed water vapor in the stream
ArcJet Testing of Repaired Specimens
Run 12 – Model 1993
(0.035” or ~0.89 mm wide crack, GRABER-5A)

Post Test- Front Side

Post Test- Back Side
ArcJet Testing of Repaired Specimens
Run 17 – Model RCC 1
(0.062” or ~1.6 mm wide crack, GRABER-5A)

Percent Argon = 6% @ 2960F condition
Add air = 11.6% @ 2960F condition
Anomaly: Edge failure, sample removed after ~130 seconds @ 2960F condition
ArcJet Testing of Repaired Specimen

Run 17 – Model RCC 1
(0.062” or ~1.6 mm wide crack, GRABER-5A)

Percent Argon = 6% @ 2960F condition
Add air = 11.6% @ 2960F condition
Anamoly: Edge failure, sample removed after ~130 seconds @ 2960F condition
Microstructural Characterization of ArcJet Tested Specimens
Arcjet Sample Description and Preparation

Sample sectioned here

Sample face

Cross-Section
(Perpendicular to sample face)

Parallel Section
(Parallel to sample face)
ArcJet Sample 1993 (150-12), Graber 5A, 0.035” Crack Width

Front Side

There are a few large voids where oxidation has taken place. The Graber material appears fairly well adhered to the C/C material even after testing.
ArcJet Sample 150-11, RCC-1, GRABER 5A, 0.062” Crack Width
It appears in this sample that oxidation has reached an advanced stage. There is only a skeleton left of the Graber material which appears to be a glassy phase.
Potential Applications of GRABER Based Materials

- Joining and Assembly of C/C Composites
- Repair of C/C Based Composites
- Functionally Graded Coatings for C/C Composites
- Crack Repair System for CMCs
 - Repair of cracks and damaged coatings
 - Bonding and sealing of the edges
 - Repair of large size damage
- Joining of CMCs
- Manufacturing of Bulk CMCs
Integrated System for Large Area Tile and RCC Repair
Flexible Ceramic Wraps, Gaskets/sealants
Integrated System for Leading Edge and Tile Repair (InSTALER)

Flexible Ceramic Overwrap

- **QARE Rig Testing (GRC)**
- **HYMETES (LaRC)**
- **ArcJet Testing at JSC, ARC, and LCAT**
Large Area RCC Leading Edge and Tile Repair

Flexible, Thin, Tailored Refractory Composite or Metallic Overwrap

- Edge Seal or Fill
- Flexible Small Area Repair (SAR) Covers

Drill/Tap Tools Fasteners Gaskets SAR Patch
Post Test Observation of Tile Area Repair (TAR) Flexible Cover Materials

Typical Quick Access Rocket Exposure (QARE) Post Test Specimens

- **Material survived without any signs of burn through. But sample had large pores and bubbles.**

- **TRS4G7 with Silica Fiber**

HYMETS Post Test Specimens

- **Sample has smooth surface (no pores or signs of off gassing). No signs of burn through.**

- **GRC-2 with SiC Fiber**

- **Tile Test Profile 900 Sec. Mass loss ~ 19%**

- **GRC-2 (SiC Fiber)**

- **Tile Test Profile 900 Sec. Mass loss ~ 17%**

- **GRC-9 (SiC Fiber)**
Integrated System for Leading Edge and Tile Repair (InSTALER)

Flexible Ceramic Overwrap

Test Sample Temperature Response

Sample: GRC-11-1, Run 1588

- FAR HI
- FAR LOW
- Tile Calibration Temp

Pre-Test

Post Test

Excellent Plasma Performance in ArcJet Tests
Summary and Conclusions

- GRABER-based materials have multiuse capability and multifunctionality for a wide variety of repair applications. These systems have shown excellent plasma performance.
- This system can be easily modified to obtain adhesive materials with desired properties (viscosity, composition, curing behavior, etc.).
- These materials have long shelf life and normal handling and storage techniques can be used. In addition, these materials are affordable since the cost of raw constituents is very low (few dollars a pound).
- Flexible ceramic overwraps have shown excellent plasma performance in ArcJet testing conditions.
Acknowledgments

• Glenn Research Center, Cleveland, OH
 - Tarah Shpargel, Ron Phillips, Ray Babuder, Craig Robinson

• Johnson Space Center, Houston, TX
 - Dr. Brian Mayeaux, A. Rodriguez, Joe Riccio, and ArcJet Staff
 - Dr. Koichi Wakata, Dr. Danny Olivas, Jim Reilly

• Marshall Space Flight Center, Huntsville, AL
 - Mike Effinger, Mike Terry

• Langley Research Center, Hampton, VA
 – Steve Scotti, Wally Vaughn

• Ames Research Center, CA
 - Frank Hui, George Raiche, and ArcJet Test Facility Staff

• Boeing LCAT Staff