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ABSTRACT

The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996,

were the height of space tether technology development. Since NASA's investment of some

$200M and two Shuttle missions in those two pioneering missions, there have been several

smaller tether flight experiments, but interest in this promising technology has waned within

NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space

tether systems and the fact that they have been flight validated and shown to perform as, or better

than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions

experienced technical difficulties, the causes of these early developmental problems are now

_mown to be design or materials flaws that are (1) unrelated to the basic viability of space tether

technology, and (2) they are readily corrected. The purpose of this paper is to review the

dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they

afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and

solution of the early developmental problems; and to provide an update on progress made in

development of the technology. Finally, it is shown that (1) all problems experienced during

early development of the technology now have solutions; and (2) the technology has been

matured by advances made in strength and robustness of tether materials, high voltage

engineering in the space environment, tether health and status monitoring, and the elimination of

t]_e broken tether hazard. In view of this, it is inexplicable why this flight-validated technology

has not been utilized in the past decade, considering the powerful and unique capabilities that

space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions,

but can also greatly reduce the cost of certain on-going space operations.
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Developmental History of

Space Tethers
1970's Dynamics of long gravity-gradient

stabilized tethers shown feasiblel
NASA presented TSS concept
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Technological interests formulated
- electrical power generation
- orbital transfer
- de-orbit, etc.

Electrodynamic: 20-km conducting tether
w/Reel-type deployer (NASA/ASI)

Dynamic: 20-km Non-Conducting Tether
wi Spindle Type Deployer (NASA)

Bi-polar operation; i.e., generator and motor modes
(NASA)

Electrodynamic: 20-km conducting tether
w/Reel-type deployer (NASA/ASI)

Dynamic: 4 km long x 2 mm diameter tether (NRL)



Tethered Sate lite Orbita Dynamics
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Tethered Sate lite Orbita Dynamics
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Generation Mode

Motor Mode
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End-body Stab lization Rec uirement
TECHNOLOGIES

F 2 s

M 1 = (L/2)F Tcos o_- LF2sin o_ = 0

F T = dfed= IB COS o_(L)
0

0

Fz = m2 [( Vl 2/r2)-(MG/r22) ]

M2 = (F Tcos o:)/2

2[( V12/r2)-(MG/r22)]

f

V o

m

2

I

End-Body Stabilizer
and Contactor

fed- IB cos _ dr
C_

X F T

c F
eq



Positive Results
from Tether Missions
Dynamics

• Dynamic Stability (TSS-l)
Gravity-gradient stabilization achieved at < 300 m.

• Ease of Deployment and Control (SEDS-l/2 & TSS-l)
Deployment to 20 Ian, station keeping for more than 20 hrs,
and satellite retrieval have been demonstrated.

• Recovery from Dynamic Upsets & Slack Tether
TSS recovered from severer dynamic perturbations, slack
tether and satellite pendulous motions.

• Retrieval (TSS-l) Near retrieval (most critical aspect)
from 276 m was nominal (shown at right).

Electrodynamics

• Current collection in space ten times more efficient than predicted (TSS-IR)
Even greater efficiency obtained w/gas emissions. Pre-TSS theoretical models much too conservative.

• Energy conversion from spacecraft orbit into electrical power demonstrated (TSS-IR)
A peak power of> 3.5 kW was generated.

• Bi-polar operations (PMG) Polarity and current flow reversal performed, demonstrating power and
propulsive thrust generation.

Hardware Flight Heritage

• Tether Survivability Demonstrated In-Space (TiPS)
The TiPS tether (2 nun x 4 Ian) remains intact on orbit for 10 years.

• Deployer In-Space Validation (6 missions)
Successful deployment with simple spool deployer (SEDS-l & 2, PMG and TiPS), and with real type (TSS).



TECHNOLOGIES
TSS Data -vs- Standard Theory
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L sab e Power: TSS-1 R Data vs Theory
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Open Issues

• Tether long-term survivability
in meteorite, debris, and atomic
oxygen environments

• Broken Tether Hazard
entanglement of mother sic by
slack tether following rebound

• Stability
long-term electrodynamic-dynamic
coupling (with tether current)

• Deployer development
simple, robust, low mass, multi­
purpose

• Plasma contactor
development
simple, low consumables, mass
and power-or passive



Grid-S 3here Low-Drag E ectrode
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TECHNOLOGIES
Alenia Tether Deployer Hardware



TECHNOLOGIES
Long-Life Tether Designs

Prototype
Hoytether Tether
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Tether Optical Fiber Impact Monitor

Single Fiber

Reflector

T55-1 R Tether, Break Relaxation
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TECHNOLOGIES
Dynamic Up-Set and Relaxation



TSS-1R 'elher-Break Data
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STS-75, TSS-IR Mission, 19961057101:29:09:997
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TSS Tether (,onstruction

Nome× Core 7

Cu -_J

Conduclor _ati _Kelv
. .,ON_ . . a,r

Strength, Member

-!Nomex Braid

Diameter

Max Mass

Breakstrength

Temp Range
Eqec_ Characteristics

Max Etong ation_

2.54 mm (0.I in)

8,2 kg/km (5,5 _b/kft)

1780 N (400 ib)

-! 00 ° 1o +i 25 ° C (- 1 4,8° to +257 ° F)

Carry 1-A Current at 10 kV

5 mA (Max) Leakage
5% at 1'780 N



Classical ED (;onf'c uration
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Orbta ED orce Var'ations
TEE_IN, I_OJ,_O_ES'

Tether

• Type: Insulated
• Length" 2.5 km

Electrode,
• Diameter--15 m dia

Grid-Sphere
• Bias-- +50 V

Orbit
• Altitude--400 km
• Inclination--51.5 °

Current Collection
Model--Parker-Murphy EBC
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Magnetospheric Plasma Profile

101

Region of Classical
Electrodynamic Tether

o erations

Synchronous Orbit (42,1 00 km) ,

10-3 10-2 10-1

Density (106 cm-3), Pressure (mT)

H +
e

10-4

•••.."

~-----------.._----------------------------------------
••• •••• •• •••• •• •••• •• ••••• •••• ••••••.. .. "

••••,#

200
--oIIIIIIIII.",..-F1
•••••••••••••

1001 -"'!""':""'~~~~:cL::~:~:~::~::=~--~p:r:e:s:s~ur:e~~
60-

10-5

20,000

40,000

10,000
8,000
6,000

4,000

E 3,000

~ 2,000
Q)

"C
::s...
::: 1,000
< 800

600

400



TECHNOLOGIES

 ,ec,ronjTJ
Emission J i /7 F = I (B x L)

Very Low

Plasma Density

F

Vo





mp

Comparative "Pro 3el ant" Ef:iciencies
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Characteristics &
Capabilities

• Device Masses < 20/0 of host
mass·

• Dormant during satellite operation

• Deploys tether when sat~lIite dies

• Tether drags against geomagnetic
field, de-orbits satellite in weeks

• No propellant required

• Self-powered - needs no input
oJ

power

• Can deorbit a dead satellite

TUI Terminator Tether™





Rational for ED Boost of HST
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Raising HST to a Permanent Parking Orbit:

Removes HST from active space w/o its
destruction and at potentially a lower cost to
NASA,

Circumvents any possibility of impacting
populated regions on earth.

Provides flexibility--allows extended orbit
maintenance and future recovery from parking
orbit.
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ISS Tether Reboost System (TRS)

~ Power Supply
Satellite
(will use space­
qualified DS1
technology)

Twin 2.5 km
conductive,
long-life
tethers

Tether break
mitigation ~

• Instantaneously jettisonable

• Twin 2.5 km electrodynamic tethers

• Enables orbit maintenance and
reboost

• Only mechanical interface with ISS

• Uses no Station power

• Acceptable Station eM shift (<3 m)

• Naturally stabilizes station attitude
(roll axis)

• No expellant re-supply over design
life (5 yr)

• Total system mass <1000 kg

• Tether monitoring & break
protection
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Momentum Exchange ED Reboost (MXER)

The'Momentum-eXchangel Electrodynamic Reboost
(MXER) Tether Facility is a reusable, propellantless,
in-space upper stage for sending payloads from LEO
to GTO and beyond.

• Tether is 90-120 km long and operates
in an elliptical, equatorial orbit

• Rapid rotation of the tether allows its
tip to match position and velocity with
the payload instantaneously.

• Orbital energy given by the tether to
the payload is restored over 30-45
days using electrodynamic tether
propulsion.
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