SPACE TEST OF BARE-WIRE ANODE TETHERS

L. Johnson
Manager, Science Programs and Projects Office/VP50
NASA George C. Marshall Space Flight Center
Huntsville, Alabama

H. A. Fujii
Tokyo Metropolitan Institute of Technology
Tokyo, Japan

J. R. Sanmartin
Universidad Politecnica de Madrid
Madrid, Spain

ABSTRACT

An international team, lead by Tokyo Metropolitan University, is developing a mission concept for a suborbital test of orbital-motion-limited (OML) bare-wire anode current collection for application to electrodynamic tether propulsion. The tether is a tape with a 50-mm width, 0.05-mm thickness, and 1-km length. This will be the first space test of the OML theory. In addition, by being an engineering demonstration (of space tethers), the mission will demonstrate electric beam generation for “sounding” determination of the neutral density profile in the ionospheric “E-layer.” If selected by the Institute of Space and Astronautical Science/Japanese Aerospace Exploration Agency (JAXA), the mission will launch in early 2009 using an S520 Sounding Rocket. During ascent, and above =100 km in attitude, the 1-km tape tether will be deployed at a rate of 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow. This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using electrodynamic tethers for propulsion or power generation.

INTRODUCTION

If selected for flight, a team of researchers lead by Professor Fujii at Tokyo Metropolitan Institute of Technology will develop and fly a sounding rocket payload that will, for the first time, demonstrate bare-wire electron collection by an electrodynamic tether in space. Data sufficient to validate the performance of the bare-wire anode’s performance as predicted by the orbital-motion-limited (OML) theory will be obtained. A secondary objective of the experiment will be the active sounding of the ionosphere using secondary electrons emitted by the tether from ion bombardment in order to determine the neutral atom column density within the ionospheric E-layer. In addition, the overall current collection efficiency of the tether system will be used to update performance models of future electrodynamic tether propulsion and power systems being considered for space application by NASA, JAXA, and others.

EXPERIMENT OBJECTIVES

The proposed experiment has three objectives—one engineering and two science:

1. Deployment of a “bare” electrodynamic tape tether in space (engineering).
2. Test of OML electron collection in space (science).
3. Demonstration of electric beam generation to measure neutral species column density (science—not within the scope of this paper).

Approved for public release; distribution is unlimited.
Objectives (1) and (2) of the experiment are to fully deploy the tape tether using a "new" deployment scheme that is actually derived from a very common technique used by firefighters in paying out very long fire hoses. The tape will be folded and stacked into a box with an opening on one end—resembling a tissue box. A spring will eject an endmass attached to the rocket by the tether. As the endmass separates, the tether will be deployed to a total length of 1 km. The tether is made from aluminum and as it passes through the Earth's magnetic field and ionosphere, it will collect electrons along its length. The total amount of current collected will be used to assess the validity of the OML theory.

Objective (3) is to use the bare-wire anode as an effective beam source to produce artificial auroral effects. Ambient ions with kiloelectronvolt energies impacting the tape tether will liberate secondary electrons that race down the magnetic field, excite neutral atoms in the ionosphere, and produce auroral emissions detectable by sensors onboard the rocket. Analysis of these emissions will allow the neutral atom density profiles to be inferred.

The rocket will first deploy a 1-km aluminum tape tether within minutes of launch. The bias voltage of the vertically deployed tether, which results just from its orbital motion through Earth's magnetic field, is positive with respect to the ambient plasma at the top and negative at the bottom. The tether generates and forms part of a unique type of electrical circuit that has been successfully demonstrated in space by flights of the plasma motor generator (PMG) in 1993 and the tethered satellite systems (TSS-1 and TSS-1 R) in 1992 and 1996. Both missions deployed long conducting tethers from orbiting spacecraft and successfully generated a current. The tethered system extracts electrons from the ionospheric plasma at one end (upper or lower, depending upon the deployment direction and intended thrust motion) and then carries them through the tether to the other end where they are returned to the plasma. The circuit is completed by currents in the plasma.

The efficiency with which electrons are collected is predicted by a theory that applies when their Debye length is much greater than the object's size—as it can also be stated, when the object is small with respect to its sheath size. This theory is known as OML (orbital-motion limited). The uninsulated tether will collect electrons along part of its length. The efficiency with which it collects will be used to determine the validity of OML predictions.

EXPERIMENT IMPLEMENTATION

After launch, the sounding rocket will achieve a maximum altitude of ~300 km. During ascent, a round conductive boom with a diameter of 1 cm and length of 20 m will be deployed, followed by the 1-km tape tether (Figure 1).

At the first stage of the experiment, the positive terminal of power supply is connected to the conductive boom and the negative terminal of power supply to the tape tether (Figure 2). Electrons collected by the boom cross supply to tape, where they leak at the rate of ion impacts plus secondary yield.

During the next stage of the experiment, the negative terminal of the power supply will be switched to being connected to the hollow cathode and the tape tether will be connected to the positive terminal (Figure 3). Electrons collected by the tape tether will cross the supply and be ejected by the cathode.

The supply voltage sweeps across a range centered with the supply voltage at ~2 kV. Each sweep will be obtained by either varying the voltage supply or across embedded resistors and will take 20 s. The total experiment will be completed within 5 min. The current collected by the tape is measured and compared with theoretical predictions.
Figure 1. Example of a Mission Profile for a Tether Experiment With a Sounding Rocket (Image Taken From Oedipus-C Mission).

Figure 2. Testing OML Theory Without the Use of an Active Plasma Contactor. The Tape Boom and the Tape are Biased Positive and Negative, Respectively.

Figure 3. Testing OML Theory With a Hollow Cathode Plasma Contactor. The Tape is Biased Positive.

Instruments onboard the rocket will include Langmuir probes (for plasma diagnostics), a three-axis magnetometer (to measure the local magnetic field), accelerometers, and an ammeter (to measure the current at the onboard power supply).
ANTICIPATED RESULTS AND APPLICATIONS OF THE DATA

Electrodynamic tether thrusters work by virtue of the force a magnetic field exerts on a wire carrying an electrical current. This phenomenon was first observed by Ampere, one of the pioneers in the study of electromagnetic phenomena, around 180 years ago. The details of the force, which acts on any charged particle moving through a magnetic field, including the electrons moving in a current-carrying wire, were concisely expressed by Lorentz in 1895 in an equation that now bears his name. The force acts in a direction perpendicular to both the direction of current flow and the magnetic field vector. Electric motors make use of this force: a wire loop in a magnetic field is made to rotate by the torque the Lorentz force exerts on it due to an alternating current in the loop timed so as to keep the torque acting in the same direction. The motion of the loop is transmitted to a shaft, thus providing work. Michael Faraday demonstrated the first simple electric motor in 1821.

Although the working principle of electrodynamic tether (EDT) thrusters is not new, its application to space transportation may be significant. In essence, an EDT thruster is just a clever way of getting an electrical current to flow in a long orbiting wire (the tether) so that the Earth's magnetic field will accelerate the wire and, consequently, the payload attached to the wire. The direction of current flow in the tether, either toward or away from the Earth along the local vertical, determines whether the magnetic force will raise or lower the orbit.

The bias voltage of a vertically deployed metal tether, which results just from its orbital motion (assumed eastward) through Earth's magnetic field, is positive with respect to the ambient plasma at the top and negative at the bottom. This polarization is due to the action of the Lorentz force on the electrons in the tether. Thus, the "natural" current flow is the result of negative electrons being attracted to the upper end and then returned to the plasma at the lower end. The magnetic force, in this case, has a component opposite the direction of motion, and thus leads to a lowering of the orbit and eventually to reentry. In this "generator" mode of operation, the Lorentz force serves both to drive the current and then to act on the current to decelerate the system. This operational mode was thoroughly verified to work in space by the TSS and PMG missions described above, but no measurements were made to quantify the resulting small orbital changes.

One of the most important features of tether thrusters is that no onboard power source is required to drive the electrical current flow in either the orbit-raising or orbit-lowering mode. Sources inherent to Earth orbit are used. To raise the orbit, the natural energy of the Sun can be converted to the electrical energy required to drive the tether current. To lower the orbit, the orbital energy itself (supplied by the Earth-to-orbit launcher when it raises the system into orbit) is the energy source of the tether current via the action of the Lorentz force.

Electrodynamic tethers can be directly applied to a wide spectrum of uses in space. As a propulsion system, they include satellite deorbit, transfer of a satellite from one orbit to another, altitude maintenance for large spacecraft such as the International Space Station (ISS), and since it works wherever there is a magnetic field and an ionosphere, planetary exploration missions.

Space is becoming increasingly cluttered with debris—from old satellites and rocket stages to bits of trash thrown overboard by early space travelers. Near-Earth space is becoming filled with collision hazards to current and future satellites. To mitigate the growth of this problem, a requirement that spacecraft deorbit themselves after completion of their mission is being considered by various governments. One method to do this would be to carry extra propellant so that the satellite can thrust to reentry. This requires a large mass of propellant, and every kilogram of propellant that must be carried reduces the weight available for payload. Moreover, it requires that the propulsion system must be functional after sitting in orbit for 10 years or more. Electrodynamic tethers provide a lower mass and potentially more reliable means of bringing old satellites out of orbit. A tether system could reside in a small package bolted to the satellite. When the end of the satellite's useful life is reached, a conducting tether several kilometers long would be deployed from the satellite and the electrodynamic tether propulsion orbit decay process would begin. The orbital decay process can be very rapid. Calculations indicate that a tether
weighing as little as 2 percent of the satellite weight can bring a satellite out of some orbits in just a few weeks. (Compare that to centuries without any deorbit system!)

An electrodynamic tether upper stage could be used as an orbit transfer vehicle (OTV) to move payloads within low Earth orbit. The OTV would rendezvous with the payload and launch vehicle, grapple the payload, and maneuver it to a new orbital altitude or inclination without the use of boost propellant. The tug could then lower its orbit to rendezvous with the next payload and repeat the process. Conceivably, such a system could perform several orbital maneuvering assignments without resupply, making it relatively inexpensive to operate. However, due to the rapidly diminishing plasma density around the Earth, the tug would be limited to operation at altitudes of <2,300 km.

Outfitting the ISS with an electrodynamic reboost tether might eliminate the most critical and constraining dependency on Earth—propellant resupply. The ISS can supply its own power but not its own propellant.

A concept design for an electrodynamic tether thruster capable of delivering 0.5 to 0.8 N of thrust to the ISS at a cost of <10 kW of electrical power consists of a 10-km-long aluminum tether in the form of a thick ribbon (0.6 mm x 10 mm). Despite its length, the tether would weigh only about 200 kg. The tether reboost system would operate continuously and virtually eliminate the need for expensive resupply missions to keep the station in orbit. Over its 10-year life, considerable cost savings might result. However, many questions, particularly those associated with crew safety, must be resolved before such a system can be placed on the Space Station. For example, a method for preventing recoil of a tether accidentally severed by a micrometeoroid orbital debris particle must be developed to mitigate the possibility of the tether wrapping itself around the Station or one of its critical components.

Perhaps the most exotic use of the technology would be to provide propulsion and power to spacecraft exploring the outer planets. The environment of the Jovian system has properties that are particularly favorable for use of an electrodynamic tether: Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities, which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N, and power levels are as high as 1 MW! With current spacecraft being extremely limited in power consumption due to their distance from the Sun (typically using <100 W), this level of available power could make available a whole new suite of science instruments such as high-power radar. However, the power levels are so high that power conversion, energy dissipation, and tether temperature become issues that must be addressed.

CONCLUSION

The proposed sounding rocket test of the OML theory will be sufficient to validate bare-wire tether anodes for future mission applications. In addition, a new type of tether deployment will be tested, possibly leading to a viable, survivable alternative to wire-type tethers used in past space missions.

REFERENCES


