
Richard A. Plastow

Science Applications International Corporation, Cleveland, Ohio

Filling the Assurance Gap on Complex Electronics

NASA/CR—2007-214939

August 2007

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI Program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NASA Aeronautics and Space Database and its

public interface, the NASA Technical Reports Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world.

Results are published in both non-NASA channels and

by NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counterpart of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies that

contain minimal annotation. Does not contain

extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services also include creating custom

thesauri, building customized databases, organizing

and publishing research results.

For more information about the NASA STI

program, see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 301–621–0134

• Telephone the NASA STI Help Desk at

301–621–0390

• Write to:

 NASA Center for AeroSpace Information (CASI)

 7115 Standard Drive

 Hanover, MD 21076–1320

Richard A. Plastow

Science Applications International Corporation, Cleveland, Ohio

Filling the Assurance Gap on Complex Electronics

NASA/CR—2007-214939

August 2007

National Aeronautics and

Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Prepared under Contract NAS3–03140

Prepared for the

Second International Conference on Space Safety

cosponsored by the ESA, NASA, and IAASS

Chicago, Illinois, March 14–16, 2007

Acknowledgments

Thanks to the NASA Software Assurance Research Program which funded this research. Special thanks to Kalynnda Berens

who developed the idea and initially assisted in the research. Finally, thanks to Phuoc Thai who assisted with the surveys and

Anita Tenteris who proofread this paper.

Available from

NASA Center for Aerospace Information

7115 Standard Drive

Hanover, MD 21076–1320

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Level of Review: This material has been technically reviewed by NASA expert reviewer.

This report contains preliminary findings,

subject to revision as analysis proceeds.

NASA/CR—2007-214939 1

Filling the Assurance Gap on Complex Electronics

Richard A. Plastow
Science Applications International Corporation

Brook Park, Ohio 44142

Abstract

Many of the methods used to develop software bare a close
resemblance to Complex Electronics (CE) development. CE
are now programmed to perform tasks that were previously
handled by software, such as communication protocols. For
example, the James Webb Space Telescope will use Field
Programmable Gate Arrays (FPGAs), which can have over a
million logic gates, to send telemetry. System-on-chip (SoC)
devices, another type of complex electronics, can combine a
microprocessor, input and output channels, and sometimes an
FPGA for programmability. With this increased intricacy, the
possibility of “software-like” bugs such as incorrect design,
logic, and unexpected interactions within the logic is great.

Since CE devices are obscuring the hardware/software
boundary, mature software methodologies have been
proposed, with slight modifications, to develop these devices.
By using standardized S/W Engineering methods such as
checklists, missing requirements and “bugs” can be detected
earlier in the development cycle, thus creating a development
process for CE that can be easily maintained and configurable
based on the device used.

Overview
As software and hardware merge into self adapting designs,

how is correctness of their function assured? Complex
Electronics is defined as neither hardware nor software but as
“soft hardware”. What resides in them is not really software
but a logic structure for a hardware device that was created by
software. Quality Assurance is struggling with how to
adequately deal with these “software-like” aspects. Currently,
software methods are being used to develop this “Soft
hardware”. Some problems and concerns with CE use are:

• Application Specific Integrated Circuits (ASICs) and
FPGAs are used to avoid the rigors of the software
assurance process which ultimately results in bypassing
fundamental verifications.

• Complex Electronic devices are designed and
programmed by electronic engineers (designers), often
without quality assurance oversight or configuration
management control of the designs. In addition, the
development process may not be well defined or
followed.

• ASICs, FPGAs, and SoC can contain embedded
microprocessor cores with user-supplied software. They
combine electronics and firmware onto one chip. The

presence of the firmware (i.e., software) is not always
obvious to assurance personnel.

• Hardware Designers now utilize high-level software
languages (e.g., C, C++) to define complex electronic
designs (in whole or in part).

• Hardware quality assurance personnel may not be fully
cognizant of the functions, potential problems, and issues
with these devices.

• Meaningful verification efforts require the person be
knowledgeable about the complex electronic device and
the tool suite used to create and implement the design.

The fast pace of technological change and the new uses of
current technology are strong motivators to define acceptable
assurance practices for complex electronics. Adaptive or
reconfigurable computing, where computers, chips, or systems
alter their functionality to adapt to changing applications,
could be an assurance nightmare.

Software techniques, processes and checklists can help fill
this assurance gap. Modern HDLs are derived from software
languages with VHDL a derivative of ADA and Verilog based
on C. This research proposes the uses of these software
techniques in a hardware development setting. A large portion
of the development process is software driven. The chip
design is created in a Hardware Description Language (HDL).
This design is then simulated, tested, and verified as software.
A netlist is then created from this HDL and burned into the
chip, creating the real hardware.

Complex Electronics
Is the Device Complex?

In the term complex electronics, complex is used to
distinguish between simple devices, such as off-the-shelf
Integrated Circuits (ICs) and logic gates, and complex user-
creatable devices. A good rule of thumb to distinguish
between simple and complex is, if the internal logic of the
device has more than a few gates and connections, it is
probably complex.

The Federal Aviation Administration (FAA) provides a
definition in DO-254, “Design Assurance Guidance for
Airborne Electronic Hardware” document: “A hardware item
is identified as simple only if a comprehensive combination of
deterministic tests and analysis appropriate to the design
assurance level can ensure correct functional performance
under all foreseeable operating conditions with no anomalous
behavior. When an item cannot be classified as simple, it

NASA/CR—2007-214939 2

should be classified as complex. An item constructed entirely
from simple items may itself be complex.”

Firmware (which is essentially software stored on a read-
only device) is not considered complex electronics. The most
common definition of firmware is found in IEEE 610.12-1990:
“The combination of hardware device and computer
instructions and data that reside as read-only software on that
device.”

Types of Complex Electronics

There are two types of Complex Electronics, programmable
or designable integrated circuits. “Programmable” logic
devices are programmed by the designer and range from
simple chips to complex devices capable of being
programmed on-the-fly. Some types of programmable devices
are:

• Complex Programmable Logic Device (CPLD)
• Field Programmable Gate Arrays
• FPGA microprocessors/systems
• Reconfigurable computing

“Designable” logic devices are integrated circuits that are
designed but not burned into the chip by the design engineer.
The design is submitted to the manufacturer for
implementation in the device. The ASIC and SoC are
examples of a designable device.

With complex electronics, there is no defined standard for
developing the software that is used to create the hardware.
The design engineer will design to some electronic standard
and local best practices. This can create a wide difference
between the verifications done when the hardware is created,
even in the same organization.

Using Software Processes on Hardware
Hardware development follows a process that is very

similar to software development. Many of the proven software
techniques used in software development/verification can be
used with little or no modification on hardware. In the next
sections, each phase of the development cycle will be
discussed and comparisons will be made between hardware
and software.

Classify the Device

As with any software project, classifying the criticality of
the function(s) the chip will be performing is necessary. Two
important questions need to be asked. Does the chip perform
safety or mission critical functions? What are the
consequences if it fails? Table 1 lists the criteria for each CE
criticality. The quality assurance engineer should determine if
the device in question falls within the High Criticality, based
on the criteria listed. If the device does not meet the high
criteria, the software quality assurance engineer should review

the Moderate category. If the device does not meet the
moderate criteria then the device should be classified as Low
criticality.

TABLE 1.—CE CRITICALITY CLASSIFICATION
Criticality Criteria

High • The complex electronics executes safety-critical
functions

• The complex electronics executes mission-critical
functions and is a single point of failure

• The design is expected to be highly complex
• The design is expected to have significant risk due

to one or more of these factors:
o Unstable requirements
o Technical concerns with the chosen technology,

such as power consumption, design size for the
chip, timing, packaging, or operating frequency

o Highly innovative and untried design approach
o Highly aggressive schedule
o Inexperience of the design team

Moderate • The complex electronics executes mission-critical
functions but there is redundancy in the system

• The design is expected to be moderately complex
• The design is expected to have moderate risk due to

one or more of these factors:
o Some requirements undefined or unstable
o Somewhat innovative and untried design

approach
o Aggressive schedule
o Design team contains some inexperienced

members

Low The complex electronics is classified as Low if it does not
fall into either of the above categories

Plan the Process

Once the criticality of the device is determined, the
assurance process can be tailored based on that criticality. An
assurance plan for the device listing pertinent information
should be created. It should include the same type of
information needed when software is being developed. This
would include:

• Development system (tools) being used
• Configuration management system
• Training needed
• Problem tracking system
• Risk Management
• Device Criticality level

NASA/CR—2007-214939 3

• Audits to be performed (Based on criticality)
• Reference and applicable documents

The plan should be reviewed by the complex electronics
developer, the system engineer, quality assurance, and project
management. Once approved, the Complex Electronics
Assurance Plan will guide the assurance activities for the rest
of the project life cycle. Like all project plans, the Complex
Electronics Assurance Plan is a living document and should be
reviewed and updated whenever any significant changes occur
in the project.

Requirements

Like software, the requirements for complex electronics
flow down from system and sub-system requirements;
therefore, a requirements review should be done. Care must be
taken to ensure the requirements meet the 3C’s: clear, concise,
and confirmable. Table 2 shows the software techniques that
can be utilized to verify the complex electronics requirements.
Each activity is based on the determined device criticality.

TABLE 2.—SOFTWARE TECHNIQUES FOR REQUIREMENTS
Techniques for Requirements Phase based on criticality level

 Low Moderate High
Requirements
evaluation

Check for main
characteristics

All main
characteristics
plus assess for
completeness

Complete
evaluation
against all
criteria

Requirements
review

Informal Informal Formal

Interface
analysis

Informal
Assessment

Focus on key
interfaces and
critical timing

Detailed
analysis, all
interfaces.
Includes
timing

Traceability
analysis

Trace from
higher-level
requirements

Trace from
higher-level
requirements.

Verify derived
requirements
correctly trace

Trace from
higher to CE
and from CE
to higher level
requirements

Full
assessment of
derived
requirements

Reverse
Engineering of
Requirements

Performed only
if no
requirements
document
available from
project

Performed only
if no
requirements
document
available from
project

Independent
derivation of
requirements
used as a tool
to assess
requirements
document.

Modeling Not performed Some diagrams
are created to
assess
requirements

Complete
modeling of
the
requirements

Table 3 lists the other Assurance Activities/Techniques that

can be performed through out the development cycles based
on the criticality of the complex electronic device. As an
example, Fault Tree Analysis (FTA) allows the designer to

note those critical areas and use additional care in the design
of that area. The FTA aids in analysis of large and complex
systems, and is particularly adept at representing and
analyzing redundancy arrangements. In addition, common
cause events are easily handled.

TABLE 3.—ADDITIONAL ASSURANCE ACTIVITIES
Continuing Assurance Activities based on criticality level

 Low Moderate High
Risk analysis Informal Informal Formal
Decision
tables or trees

Not
performed

Performed with
most important
conditions only

All inputs and
conditions

Fault Tree
Analysis
(FTA)

Minimal Minimal Add design
failures for CE
to FTA, if not
already included

Failure
Modes and
Effects
Analysis
(FMEA)

Minimal Ensure that
FMEA addresses
CE failures

Add design
failures for CE
to FMEA, if not
already included

Assurance techniques used for complex electronics are

based on the needs of the project and should be updated as the
device is developed and tested or changed.

Design Entry

The objective of assurance during design entry is to verify
that the design correctly implements all the requirements
designated.

The main design activities for complex electronics during
the preliminary design phase are:

1. Create a high-level design description.
2. Identify major components, including third-party

Intellectual Property (IP) modules or cores.
3. Feedback any derived requirements that result from the

process to the requirements engineering process.
4. Resolve any omissions or errors in the requirements found

during design entry.
5. Include reliability, such as Single Event Upset (SEU)

protection, maintenance, and test features that are
necessary to meet performance and quality requirements.

6. Ensure that testing performed will verify the
requirements.

7. Identify constraints on other system elements as a result
of this high-level design.

The assurance engineer should ask the following questions
when evaluating the preliminary design:

• Is the CE design complete?
• Do all requirements trace to architectural blocks or

functions?
• Are the requirements correctly implemented?
• Does the design contain functions that are not required?

NASA/CR—2007-214939 4

• Does the design contain any internal inconsistencies or
conflicts?

• Does the design conflict with any requirements or with
another system element?

• Does the design clearly identify constraints on other
system elements, and on the installation and operation
processes?

• Is the quality of the design (documentation and Hardware
Description Language (HDL) model) adequate for its
usage?

• Will the design result in a testable system? Consider both
physical access (e.g., test pins) and the ability to test
modules within the device.

• Are special pins (e.g., mode pin on FPGA, Joint Test
Action Group (JTAG) pins, no-connect pins) used
correctly?

• If some requirements conflict (such as power
consumption and performance speed), was a trade-off
performed to determine the optimal levels for each
requirement?

• Is the design flexible enough to accommodate anticipated
requirements changes?

• Did the design follow the coding standard and design
guidelines?

If Commercial Off The Shelf (COTS) or IP cores/modules
are used within the complex electronics, their design needs to
be evaluated also. Areas to consider are:

• Functions within the IP module that will not be used.
• Interfaces (voltages, timing, signal characteristics, etc.)

• Verification performed by the vendor. What
documentation exists for that verification? What
additional testing needs to be performed?

• IP module upgrades. If the vendor indicates that there is a
problem with the IP module, how will that problem (and
fix) be evaluated for the complex electronics?

At this point in the project life cycle, the design is just code
modules developed in the selected HDL. Although HDL is not
“real code”, many software assurance techniques can be
utilized effectively. For example, as a risk mitigation step,
using coding standards make the code more readable and
upgradeable. Using a standard naming convention allows
another design engineers to continue/modify the design with
greater assurance of success. Table 4 lists useful software
techniques for the design stage of the development cycle based
on device criticality. Preliminary design reviews provide
alternate viewpoints of the current design and provide
valuable feedback to the design engineer. Interface Analysis
can be used to insure that all interfaces are correct and
included in the design.

One example of a design assurance activity that is highly
successful for software assurance is Change Impact Analysis
(CIA). CIA should be performed for complex electronics to
measure the impact of any planned HDL code change. This
includes changes to fix problems encountered as well as
enhancements.

A

TABLE 4.—DESIGN PHASE ASSURANCE ACTIVITIES
Assurance Techniques for the Design Phase

 Low Moderate High
Simulation Not performed Not performed, or only performed on

aspects that are in question
If model is executable, simulations should be
designed for nominal and error conditions

Preliminary
design
evaluation

Evaluate
design for
compatibility
with rest of
system

Evaluate for compatibility, interfaces. Have
expert evaluate important design areas.

Use expert to evaluate design

Preliminary
design review
(formal or
informal)

Informal Informal or Formal Formal, with engineering expert

Interface
analysis

Informal
assessment

Focus on key interfaces and critical timing Detailed analysis, all interfaces. Includes timing

Traceability
analysis

Trace from
requirements
to design

Trace from complex electronics
requirements to design blocks. Verify
blocks correctly implement the
requirements.

Trace from complex electronics requirements to
design blocks and the reverse. Verify no
functionality not covered by requirements

NASA/CR—2007-214939 5

Design Testing

Testing is an activity that occurs during multiple phases
of the development cycle. The initial design phase sees
various components of the design developed and tested as
individual pieces. Here it is important that the designer get
the interfaces correct. Design reviews held using the
Interface Control Document can prevent major problems
later as the components are linked together in the detailed
design phase. During the detailed design of the chip a test
bench, a collection of simulated inputs and timing models,
is used to test and verify the design. Test benches, often
created by the designer, are not infallible. A review of the
test plan, aka test bench, will help insure all requirements
are tested. Simulation is used extensively during detailed
design to verify the complex electronic design. Testing the
actual chip during system verification can sometimes be an
eye-opening experience.

Testing the programmed chip—independently and
integrated onto a circuit board—are necessary steps in
verifying the design. The assurance role during the testing
phase is to ensure that the tests are adequate to verify the
requirements. Beyond that, good assurance engineers help
the project define tests that exercise the system, or system
element, in various situations, including fault and failure
conditions. Functional and Physical Configuration Audits
should be performed on the device. Figure 1 shows the
flow through the various tests performed.

Creation of a test plan is an important part of chip
verification and should not be omitted. This plan should be
used to insure all chip requirements have been tested. The
plan should include more than “test for success” items.
Test cases should include expected faults, all known error
conditions, and missing inputs. During the design phase
testing, faults should be injected into the simulations to
insure they are handled gracefully.

Figure 1.—CE testing.

Conclusions
Complex electronics development follows a design cycle

very similar to software. Modern HDLs are derived from a
software language with VHDL a derivative of ADA and
Verilog based on C. With such a close tie to software, it is
a logical step to use software methods. The software
development community offers many tools that can
streamline the development of complex electronics while
enhancing the quality of the device.

Software techniques such as change impact analysis and
fault tree analysis provide a way to better understand and
verify the CE design. Requirements reviews can assure that
requirements are complete, concise, and confirmable.
Design reviews using software like coding standards will
verify the HDL is correct, understandable and modifiable.
Software-like methods can be used within all design phases
to develop the final product. As software and hardware
merge into self adapting designs, this interdisciplinary
approach provides a way to insure design quality in the
future.

Future Work
This work focused on the use of software quality

assurance techniques and checklists with FPGAs. Future
research will focus on verifying these techniques and
checklists on other types of complex electronic devices
such as SoCs and ASICs. In addition, more research is
needed for reconfigurable computing to determine the most
appropriate approach to device verification.

References
1. Federal Aviation Administration (FAA) Software

Considerations in Airborne Systems and Equipment
Certification document DO-178B

2. FAA Design Assurance Guidance for Airborne
Electronic Hardware document DO-254

3. NASA Software Assurance Standard STD-8739.8
4. NASA Software Engineering Requirements NPR

7150.2
5. NASA Software Safety Standard NASA-STD-

8719.13B

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
01-08-2007

2. REPORT TYPE
Final Contractor Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Filling the Assurance Gap on Complex Electronics

5a. CONTRACT NUMBER
NAS3-03140

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Plastow, Richard, A.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 981155.03.03.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Science Applications International Corporation
21000 Brookpark Road
Brook Park, Ohio 44142

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-16173

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORS
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/CR-2007-214939

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 33, 38, and 61
Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Many of the methods used to develop software bare a close resemblance to Complex Electronics (CE) development. CE are now
programmed to perform tasks that were previously handled by software, such as communication protocols. For example, the James Webb
Space Telescope will use Field Programmable Gate Arrays (FPGAs), which can have over a million logic gates, to send telemetry. System-
on-chip (SoC) devices, another type of complex electronics, can combine a microprocessor, input and output channels, and sometimes an
FPGA for programmability. With this increased intricacy, the possibility of “software-like” bugs such as incorrect design, logic, and
unexpected interactions within the logic is great. Since CE devices are obscuring the hardware/software boundary, mature software
methodologies have been proposed, with slight modifications, to develop these devices. By using standardized S/W Engineering methods
such as checklists, missing requirements and “bugs” can be detected earlier in the development cycle, thus creating a development process
for CE that can be easily maintained and configurable based on the device used.
15. SUBJECT TERMS
Complex electronics; Firmware; Software; Assurance; Safety; Programmable; ASIC; FPGA; SoC; Process

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

11

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
301-621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

