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Filling the Assurance Gap on Complex Electronics 
 

Richard A. Plastow 
Science Applications International Corporation 

Brook Park, Ohio 44142 
 
Abstract 

Many of the methods used to develop software bare a close 
resemblance to Complex Electronics (CE) development. CE 
are now programmed to perform tasks that were previously 
handled by software, such as communication protocols. For 
example, the James Webb Space Telescope will use Field 
Programmable Gate Arrays (FPGAs), which can have over a 
million logic gates, to send telemetry. System-on-chip (SoC) 
devices, another type of complex electronics, can combine a 
microprocessor, input and output channels, and sometimes an 
FPGA for programmability. With this increased intricacy, the 
possibility of “software-like” bugs such as incorrect design, 
logic, and unexpected interactions within the logic is great.  

Since CE devices are obscuring the hardware/software 
boundary, mature software methodologies have been 
proposed, with slight modifications, to develop these devices. 
By using standardized S/W Engineering methods such as 
checklists, missing requirements and “bugs” can be detected 
earlier in the development cycle, thus creating a development 
process for CE that can be easily maintained and configurable 
based on the device used.  

Overview 
As software and hardware merge into self adapting designs, 

how is correctness of their function assured? Complex 
Electronics is defined as neither hardware nor software but as 
“soft hardware”. What resides in them is not really software 
but a logic structure for a hardware device that was created by 
software. Quality Assurance is struggling with how to 
adequately deal with these “software-like” aspects. Currently, 
software methods are being used to develop this “Soft 
hardware”. Some problems and concerns with CE use are: 

• Application Specific Integrated Circuits (ASICs) and 
FPGAs are used to avoid the rigors of the software 
assurance process which ultimately results in bypassing 
fundamental verifications.  

• Complex Electronic devices are designed and 
programmed by electronic engineers (designers), often 
without quality assurance oversight or configuration 
management control of the designs. In addition, the 
development process may not be well defined or 
followed.  

• ASICs, FPGAs, and SoC can contain embedded 
microprocessor cores with user-supplied software. They 
combine electronics and firmware onto one chip. The 

presence of the firmware (i.e., software) is not always 
obvious to assurance personnel.  

• Hardware Designers now utilize high-level software 
languages (e.g., C, C++) to define complex electronic 
designs (in whole or in part).  

• Hardware quality assurance personnel may not be fully 
cognizant of the functions, potential problems, and issues 
with these devices.  

• Meaningful verification efforts require the person be 
knowledgeable about the complex electronic device and 
the tool suite used to create and implement the design.  

The fast pace of technological change and the new uses of 
current technology are strong motivators to define acceptable 
assurance practices for complex electronics. Adaptive or 
reconfigurable computing, where computers, chips, or systems 
alter their functionality to adapt to changing applications, 
could be an assurance nightmare. 

Software techniques, processes and checklists can help fill 
this assurance gap. Modern HDLs are derived from software 
languages with VHDL a derivative of ADA and Verilog based 
on C. This research proposes the uses of these software 
techniques in a hardware development setting. A large portion 
of the development process is software driven. The chip 
design is created in a Hardware Description Language (HDL). 
This design is then simulated, tested, and verified as software. 
A netlist is then created from this HDL and burned into the 
chip, creating the real hardware. 

Complex Electronics 
Is the Device Complex? 

In the term complex electronics, complex is used to 
distinguish between simple devices, such as off-the-shelf 
Integrated Circuits (ICs) and logic gates, and complex user-
creatable devices. A good rule of thumb to distinguish 
between simple and complex is, if the internal logic of the 
device has more than a few gates and connections, it is 
probably complex. 

The Federal Aviation Administration (FAA) provides a 
definition in DO-254, “Design Assurance Guidance for 
Airborne Electronic Hardware” document: “A hardware item 
is identified as simple only if a comprehensive combination of 
deterministic tests and analysis appropriate to the design 
assurance level can ensure correct functional performance 
under all foreseeable operating conditions with no anomalous 
behavior. When an item cannot be classified as simple, it 
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should be classified as complex. An item constructed entirely 
from simple items may itself be complex.” 

Firmware (which is essentially software stored on a read-
only device) is not considered complex electronics. The most 
common definition of firmware is found in IEEE 610.12-1990: 
“The combination of hardware device and computer 
instructions and data that reside as read-only software on that 
device.” 

Types of Complex Electronics 

There are two types of Complex Electronics, programmable 
or designable integrated circuits. “Programmable” logic 
devices are programmed by the designer and range from 
simple chips to complex devices capable of being 
programmed on-the-fly. Some types of programmable devices 
are: 
 

• Complex Programmable Logic Device (CPLD)  
• Field Programmable Gate Arrays  
• FPGA microprocessors/systems  
• Reconfigurable computing 
 

“Designable” logic devices are integrated circuits that are 
designed but not burned into the chip by the design engineer. 
The design is submitted to the manufacturer for 
implementation in the device. The ASIC and SoC are 
examples of a designable device. 

With complex electronics, there is no defined standard for 
developing the software that is used to create the hardware. 
The design engineer will design to some electronic standard 
and local best practices. This can create a wide difference 
between the verifications done when the hardware is created, 
even in the same organization. 

Using Software Processes on Hardware 
Hardware development follows a process that is very 

similar to software development. Many of the proven software 
techniques used in software development/verification can be 
used with little or no modification on hardware. In the next 
sections, each phase of the development cycle will be 
discussed and comparisons will be made between hardware 
and software. 

Classify the Device 

As with any software project, classifying the criticality of 
the function(s) the chip will be performing is necessary. Two 
important questions need to be asked. Does the chip perform 
safety or mission critical functions? What are the 
consequences if it fails? Table 1 lists the criteria for each CE 
criticality. The quality assurance engineer should determine if 
the device in question falls within the High Criticality, based 
on the criteria listed. If the device does not meet the high 
criteria, the software quality assurance engineer should review 

the Moderate category. If the device does not meet the 
moderate criteria then the device should be classified as Low 
criticality.  
 

TABLE 1.—CE CRITICALITY CLASSIFICATION 
Criticality Criteria 

High  • The complex electronics executes safety-critical 
functions  

• The complex electronics executes mission-critical 
functions and is a single point of failure  

• The design is expected to be highly complex  
• The design is expected to have significant risk due 

to one or more of these factors:  
o Unstable requirements  
o Technical concerns with the chosen technology, 

such as power consumption, design size for the 
chip, timing, packaging, or operating frequency 

o Highly innovative and untried design approach  
o Highly aggressive schedule  
o Inexperience of the design team  

Moderate  • The complex electronics executes mission-critical 
functions but there is redundancy in the system  

• The design is expected to be moderately complex  
• The design is expected to have moderate risk due to 

one or more of these factors:  
o Some requirements undefined or unstable  
o Somewhat innovative and untried design 

approach  
o Aggressive schedule  
o Design team contains some inexperienced 

members  

Low  The complex electronics is classified as Low if it does not 
fall into either of the above categories 

Plan the Process 

Once the criticality of the device is determined, the 
assurance process can be tailored based on that criticality. An 
assurance plan for the device listing pertinent information 
should be created. It should include the same type of 
information needed when software is being developed. This 
would include: 
 
• Development system (tools) being used 
• Configuration management system 
• Training needed 
• Problem tracking system 
• Risk Management 
• Device Criticality level 
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• Audits to be performed (Based on criticality) 
• Reference and applicable documents 
 

The plan should be reviewed by the complex electronics 
developer, the system engineer, quality assurance, and project 
management. Once approved, the Complex Electronics 
Assurance Plan will guide the assurance activities for the rest 
of the project life cycle. Like all project plans, the Complex 
Electronics Assurance Plan is a living document and should be 
reviewed and updated whenever any significant changes occur 
in the project.  

Requirements 

Like software, the requirements for complex electronics 
flow down from system and sub-system requirements; 
therefore, a requirements review should be done. Care must be 
taken to ensure the requirements meet the 3C’s: clear, concise, 
and confirmable. Table 2 shows the software techniques that 
can be utilized to verify the complex electronics requirements. 
Each activity is based on the determined device criticality.  
 

TABLE 2.—SOFTWARE TECHNIQUES FOR REQUIREMENTS 
Techniques for Requirements Phase based on criticality level 

 Low Moderate High 
Requirements 
evaluation 

Check for main 
characteristics 

All main 
characteristics 
plus assess for 
completeness 

Complete 
evaluation 
against all 
criteria 

Requirements 
review 

Informal Informal Formal 

Interface 
analysis 

Informal 
Assessment 

Focus on key 
interfaces and 
critical timing 

Detailed 
analysis, all 
interfaces. 
Includes 
timing 

Traceability 
analysis 

Trace from 
higher-level 
requirements 

Trace from 
higher-level 
requirements. 
 
Verify derived 
requirements 
correctly trace 

Trace from 
higher to CE 
and from CE 
to higher level 
requirements 
 
Full 
assessment of 
derived 
requirements 

Reverse 
Engineering of 
Requirements 

Performed only 
if no 
requirements 
document 
available from 
project 

Performed only 
if no 
requirements 
document 
available from 
project 

Independent 
derivation of 
requirements 
used as a tool 
to assess 
requirements 
document. 

Modeling Not performed Some diagrams 
are created to 
assess 
requirements 

Complete 
modeling of 
the 
requirements 

 
Table 3 lists the other Assurance Activities/Techniques that 

can be performed through out the development cycles based 
on the criticality of the complex electronic device. As an 
example, Fault Tree Analysis (FTA) allows the designer to 

note those critical areas and use additional care in the design 
of that area. The FTA aids in analysis of large and complex 
systems, and is particularly adept at representing and 
analyzing redundancy arrangements. In addition, common 
cause events are easily handled. 
 

TABLE 3.—ADDITIONAL ASSURANCE ACTIVITIES 
Continuing Assurance Activities based on criticality level 

 Low Moderate High 
Risk analysis Informal Informal Formal 
Decision 
tables or trees 

Not 
performed 

Performed with 
most important 
conditions only 

All inputs and 
conditions 

Fault Tree 
Analysis 
(FTA) 

Minimal Minimal Add design 
failures for CE 
to FTA, if not 
already included 

Failure 
Modes and 
Effects 
Analysis 
(FMEA) 

Minimal Ensure that 
FMEA addresses 
CE failures 

Add design 
failures for CE 
to FMEA, if not 
already included 

 
Assurance techniques used for complex electronics are 

based on the needs of the project and should be updated as the 
device is developed and tested or changed.  

Design Entry 

The objective of assurance during design entry is to verify 
that the design correctly implements all the requirements 
designated.  

The main design activities for complex electronics during 
the preliminary design phase are:  

1. Create a high-level design description.  
2. Identify major components, including third-party 

Intellectual Property (IP) modules or cores.  
3. Feedback any derived requirements that result from the 

process to the requirements engineering process. 
4. Resolve any omissions or errors in the requirements found 

during design entry. 
5. Include reliability, such as Single Event Upset (SEU) 

protection, maintenance, and test features that are 
necessary to meet performance and quality requirements. 

6. Ensure that testing performed will verify the 
requirements.  

7. Identify constraints on other system elements as a result 
of this high-level design.  

The assurance engineer should ask the following questions 
when evaluating the preliminary design:  

 
• Is the CE design complete?  
• Do all requirements trace to architectural blocks or 

functions?  
• Are the requirements correctly implemented? 
• Does the design contain functions that are not required?  
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• Does the design contain any internal inconsistencies or 
conflicts?  

• Does the design conflict with any requirements or with 
another system element?  

• Does the design clearly identify constraints on other 
system elements, and on the installation and operation 
processes?  

• Is the quality of the design (documentation and Hardware 
Description Language (HDL) model) adequate for its 
usage?  

• Will the design result in a testable system? Consider both 
physical access (e.g., test pins) and the ability to test 
modules within the device.  

• Are special pins (e.g., mode pin on FPGA, Joint Test 
Action Group (JTAG) pins, no-connect pins) used 
correctly?  

• If some requirements conflict (such as power 
consumption and performance speed), was a trade-off 
performed to determine the optimal levels for each 
requirement?  

• Is the design flexible enough to accommodate anticipated 
requirements changes?  

• Did the design follow the coding standard and design 
guidelines?  

If Commercial Off The Shelf (COTS) or IP cores/modules 
are used within the complex electronics, their design needs to 
be evaluated also. Areas to consider are:  

 

• Functions within the IP module that will not be used.  
• Interfaces (voltages, timing, signal characteristics, etc.)  

• Verification performed by the vendor. What 
documentation exists for that verification? What 
additional testing needs to be performed?  

• IP module upgrades. If the vendor indicates that there is a 
problem with the IP module, how will that problem (and 
fix) be evaluated for the complex electronics? 

At this point in the project life cycle, the design is just code 
modules developed in the selected HDL. Although HDL is not 
“real code”, many software assurance techniques can be 
utilized effectively. For example, as a risk mitigation step, 
using coding standards make the code more readable and 
upgradeable. Using a standard naming convention allows 
another design engineers to continue/modify the design with 
greater assurance of success. Table 4 lists useful software 
techniques for the design stage of the development cycle based 
on device criticality. Preliminary design reviews provide 
alternate viewpoints of the current design and provide 
valuable feedback to the design engineer. Interface Analysis 
can be used to insure that all interfaces are correct and 
included in the design.  

One example of a design assurance activity that is highly 
successful for software assurance is Change Impact Analysis 
(CIA). CIA should be performed for complex electronics to 
measure the impact of any planned HDL code change. This 
includes changes to fix problems encountered as well as 
enhancements.  

A 
 

 
 

TABLE 4.—DESIGN PHASE ASSURANCE ACTIVITIES
Assurance Techniques for the Design Phase 

 Low Moderate High 
Simulation Not performed Not performed, or only performed on 

aspects that are in question 
If model is executable, simulations should be 
designed for nominal and error conditions 

Preliminary 
design 
evaluation 

 

Evaluate 
design for 
compatibility 
with rest of 
system 

Evaluate for compatibility, interfaces. Have 
expert evaluate important design areas.  

Use expert to evaluate design 

Preliminary 
design review 
(formal or 
informal) 

Informal Informal or Formal Formal, with engineering expert 

Interface 
analysis  

Informal 
assessment 

Focus on key interfaces and critical timing Detailed analysis, all interfaces. Includes timing 

Traceability 
analysis 

Trace from 
requirements 
to design 

Trace from complex electronics 
requirements to design blocks. Verify 
blocks correctly implement the 
requirements. 

Trace from complex electronics requirements to 
design blocks and the reverse. Verify no 
functionality not covered by requirements 
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Design Testing 

Testing is an activity that occurs during multiple phases 
of the development cycle. The initial design phase sees 
various components of the design developed and tested as 
individual pieces. Here it is important that the designer get 
the interfaces correct. Design reviews held using the 
Interface Control Document can prevent major problems 
later as the components are linked together in the detailed 
design phase. During the detailed design of the chip a test 
bench, a collection of simulated inputs and timing models, 
is used to test and verify the design. Test benches, often 
created by the designer, are not infallible. A review of the 
test plan, aka test bench, will help insure all requirements 
are tested. Simulation is used extensively during detailed 
design to verify the complex electronic design. Testing the 
actual chip during system verification can sometimes be an 
eye-opening experience.  

Testing the programmed chip—independently and 
integrated onto a circuit board—are necessary steps in 
verifying the design. The assurance role during the testing 
phase is to ensure that the tests are adequate to verify the 
requirements. Beyond that, good assurance engineers help 
the project define tests that exercise the system, or system 
element, in various situations, including fault and failure 
conditions. Functional and Physical Configuration Audits 
should be performed on the device. Figure 1 shows the 
flow through the various tests performed. 

Creation of a test plan is an important part of chip 
verification and should not be omitted. This plan should be 
used to insure all chip requirements have been tested. The 
plan should include more than “test for success” items. 
Test cases should include expected faults, all known error 
conditions, and missing inputs. During the design phase 
testing, faults should be injected into the simulations to 
insure they are handled gracefully.  
 

 
Figure 1.—CE testing. 

 

Conclusions 
Complex electronics development follows a design cycle 

very similar to software. Modern HDLs are derived from a 
software language with VHDL a derivative of ADA and 
Verilog based on C. With such a close tie to software, it is 
a logical step to use software methods. The software 
development community offers many tools that can 
streamline the development of complex electronics while 
enhancing the quality of the device. 

Software techniques such as change impact analysis and 
fault tree analysis provide a way to better understand and 
verify the CE design. Requirements reviews can assure that 
requirements are complete, concise, and confirmable. 
Design reviews using software like coding standards will 
verify the HDL is correct, understandable and modifiable. 
Software-like methods can be used within all design phases 
to develop the final product. As software and hardware 
merge into self adapting designs, this interdisciplinary 
approach provides a way to insure design quality in the 
future.  

Future Work 
This work focused on the use of software quality 

assurance techniques and checklists with FPGAs. Future 
research will focus on verifying these techniques and 
checklists on other types of complex electronic devices 
such as SoCs and ASICs. In addition, more research is 
needed for reconfigurable computing to determine the most 
appropriate approach to device verification.  
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