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Abstract

Observations from the Polar spacecraft, taken during a period of northward interplanetary

magnetic field (IMF) show magnetosheath ions within the magnetosphere with velocity

distributions resulting from multiple merging sites along the same field line. The
observations from the TIDE instrument show two separate ion energy-time dispersions

that are attributed to two widely separated (-20Re) merging sites. Estimates of the initial

merging times show that they occurred nearly simultaneously (within 5 minutes.) Along

with these populations, cold, ionospheric ions were observed counterstreaming along the

field lines. The presence of such ions is evidence that these field lines are connected to
the ionosphere on both ends. These results are consistent with the hypothesis that double

merging can produce closed field lines populated by solar wind plasma. While the

merging sites cannot be unambiguously located, the observations and analyses favor one

site poleward of the northern cusp and a second site at low latitudes.

Introduction

Solar wind plasma enters the magnetosphere through openings created by magnetic

merging. Under southward IMF conditions this entry generally occurs in the subsolar

region equatorward of the cusps. Conversely, during periods of northward IMF merging

is thought occur primarily poleward of the cusps. Recent observations have shown that at

times this merging can occur along the same magnetosheath field line in both
hemispheres and create a closed field line containing a mix of magnetosheath and

magnetospheric/ionospheric plasmas. These field lines are expected to eventually move

completely inside the magnetosphere and may be a source for the low-latitude boundary
layer (LLBL) under northward IMF conditions. This phenomena has been discussed in

the contest of double, post-cusp merging only while a similar situation can, theoretically,

occur with a mix of post-cusp and sub-solar merging (assuming component merging.)

A model of the formation of the LLBL under northward IMF was proposed first by Song
and Russell [1992] In this model solar wind enters the magnetosphere by nearly

simultaneous merging between almost empty lobe field lines and the magnetosheath field

lines poleward of the cusps in both hemispheres. The reconnected magnetosheath flux
tube shortens as it convects to the dayside and submerges into the magnetosphere

forming the LLBL. Later this approach to the LLBL formation was given support through

in-situ observations [e.g. Le et al., 1996, Onsager et al., 2001] and by MHD simulations
[e.g. Ogino et al., 1994, Reader et al., 1997]. In a case study Onsager et al. [2001] showed

that counterstreaming electrons in the magnetosheath boundary layer are a signature of
double merging. Based on the statistical study of 56 encounters of the magnetopause



Lavraudetal. [2006]haveshownthatbidirectionalheatedelectronsaresignaturesof
newlyclosedmagnetosheathlinessupportingthemechanismproposedbySongand
Russell[1992].

Whilestatisticsof doublemerginghavebeenreportedby(e.g.Lavraudetal,2006),the
specificsofthisphenomenon,suchaslocationandrelativetimingof thetwoonsets,have
yetto bedetermined.Thispaperpresentsacasestudyof acuspcrossingmadebythe
PolarspacecraftonMarch18,2006Earthwardof themagnetopauseduringalongperiod
of northwardIMF.Acceleratedmagnetosheathplasmaoriginatingfromtwodifferent
mergingsiteswasobservedastwodistinctvelocity-timedispersions.Thesedispersions
areconsistentwith twowidelyseparatedmergingsites.BecausePolarwaslocatedwithin
themagnetospherenearthesoutherncuspthemagnetosheathionsacceleratedatboth
siteswereobservedstreamingEarthward.Alongwiththesepopulationsoutward-
streamingcomponentsof eachwerepresentandrepresentthefasteroftheaccelerated
ionsthathadmirroredin theionosphere.Additionally,counterstreamingcoldionospheric
populationswereobservedprovidingevidencefor theexistenceofnewlyclosedfield
linesresidingin theLLBL.Theseresultssupporttheideathatdoublemergingonthe
samefieldlinescanprovideasourcefor formationof theLLBL undernorthwardIMF
conditions.

Data

The ion observations herein were obtained on March 18, 2006 by the Thermal Ion
Dynamics Experiment ion spectrometer [Moore et al, 1995]. They consist of several

distinct ion populations including two velocity-dispersed magnetosheath distribution and

multiple, counterstreaming ionospheric populations. Figure 1 is an overview spectrogram

that clearly shows the two overlapping magnetosheath populations and their energy

dispersion with time. Figure 2 shows two consecutive two-dimensional plots of ion
phase space density for both the first (top panels) and the second dispersions (bottom

panels). It is evident in Figure 2 that the magnetosheath ions exhibit the shape associated

with ions injected at a distant source (cf. Burch et al., 1986). Further, in the bottom

panels, both accelerated magnetosheath populations can be seen which shows that they
existed on the same field lines simultaneously. The existence of multiple colder ion

populations attributed to an ionospheric source can also been seen in all panels and is
evidence for closed field lines.

Along with these ion data, electric field and magnetic field observations from Polar's

Electric Field Instrument [Harvey et al., 1995] and the Magnetic Field Experiment

[Russell et al., 1995] are used to locate Polar within the magnetosphere and to provide

convection velocities. Figure 3 shows the location of Polar within the magnetosphere
based on results from the T96 model []. Superposed on that model are instantaneous

vectors derived from the MFE data. The location of the spacecraft relative to the model
field is consistent with the observed fields.

Using data from EFI and MFE convection velocities were computed. During the time

period of the injections these velocities showed large amplitude waves superposed on



relativelysteadyconvectivemotions.Theaveragevelocitiesfor thetimeintervalofthese
observations(0250-0340UT)areV(GSM)=(4+/64,2+/-6,-6+/-4).In generalthe
convectionissouthward(in theGSMcoordinatesystem)whichtranslatesto apolar
motionin thesouthernionosphere.

AdditionaldataweretakenfromtheGeotailMagneticFieldExperiment{Kokubunet
a1.,1994]andtheLowEnergyParticleExperiment[Mukaietal.,1994]to characterizethe
solarwindconditions(Figure3b-e).ThesedatashowthattheIMFwasmoderately
northernduringmostof theeventand,aswill beshown,wasdefinitelynorthwardatthe
timeof theseinjections.Also,andimportantly,thedynamicpressurewasrelativelyhigh
attimesduringtheseobservations.

Analysis

Undertheassumptionthatthesedispersionsoccurredalonga"single"fieldlinethetime
of anddistancetothemerging-inducedinjectionscanbedetermined.Theiontime-of-
flight isgivenby(Burchetal.,1986)

f /-1/2 s

J2EJ o sin asB(Z)/B,) az

For zero pitch angle ions (as = 0) the following simple relationship between velocity and

time applies:

Vjj = R( t- to) -1 (eq. 1)

where,

Vj/is the speed of the ions along the local magnetic field
R is the distance from the initial injection site to the spacecraft
t is time

to is the time of the initial injection.

The proper speed to use in this equation is the lowest speed existing in the injected

distribution at any time [Lockwood??]. This can be accomplished, in principle, by finding
the low-speed cutoff for each observed distribution parallel or anti-parallel to the

magnetic field. This was done initially with limited success owing to the existence of

multiple ionospheric populations that, at times, obscured the low-energy cutoff of the

magnetosheath populations. In a complimentary approach drifting maxwellian
distributions were fit to each velocity distribution (f(v) vs. v). A similar approach has

been used previously with success [e.g. Trattner, Fuselier, etc]. This method provided a

mean drift velocity and a temperature spread. The low-speed cutoff was calculated by

subtracting a 6v equivalent to 0.5kT from the drift speed derived from the fitted

maxwellian. These two methods were compared and are used in the subsequent analysis.



ThederivedparallelspeedswerefittedtotheaboveequationandvaluesforR andto
obtainedfor bothdispersions(Fig4). Notethatthetwodifferentvaluesof Vminyield
thesameresultwithintheuncertaintyof thefitting.Theseresultsshowthattheinjections
occurrednearlysimultaneouslyatdistancesseparatedby-12Re(25Reand13Re.)The
resultsofthecurve-fittingusingeq.1aregiveninTableI.

Discussion

The purpose of this report is to show evidence of magnetosheath plasma captured on field
lines that are newly closed as a result of double merging. In so doing it must be shown

that the field lines are closed, contain magnetosheath plasma, and the ion distributions

bear the signatures of interaction with two separate merging sites.

The two meagnetosheath populations seen in these observations exhibit the velocity

dispersion signatures typically associated with particle injection at a distant source. The
analysis indicates that they were accelerated at distant merging sites. If such observations

were made between the two merging sites (e.g. in the equatorial region in the case of two

post-cusp sites) two counterstreaming populations, resulting from the reflection of a

fraction of the magnetosheath plasma incident on the two equatorward moving merging
kinks, would be observed. However, Polar was in the mid-altitude cusp, Earthward of

both merging sites and, therefore, observed the reflected ions from one site superposed on

the injected ions from the other site. Thus both populations are seen traveling Earthward,
antiparallel to the magnetic field.

The presence of counterstreaming ions with narrow, beam distributions typical of

outflowing Earth-borne ions is evidence that this field line has been populated on both
end by the ionosphere. Thus it is concluded that these field lines are connected to the

ionosphere on both ends and are closed.

The location of these two merging sites and the timing of the injections is of interest.

While the idea of double merging is most often discussed in terms of two, post-cusp

locations, this scenario is inconsistent with these observations in two aspects. First, given

the location of Polar with respect to the local magnetic field configuration at the time of

the observations it seems unlikely that a field line that merged tailward of the cusp could
be reconfigured to the more dipole-like shape suggested by comparing the observed field

and the model (Figure 3). Secondly, in order to achieve this reconfiguration,

equatorward/sunward convection would be required while the observations show anti-
sunward convection.

Given these inconsistencies a second possibility arises with respect to the merging sites.
That is, one site located poleward of the northern cusp and a second in the sub-solar

region. Assuming a merging site equatorward of the cusp in the near-equatorial

region.leads naturally to a magnetic field configuration at the spacecraft consistent with

the observations, It also allows for the possibility of a convective motion containing a
significant negative z component (in GSM coordinates.)



Conclusions

The results of these analyses show that:

two separate magnetosheath ion injections occurred at well-seperated (10Re)

distances nearly simultaneously

the two injections occurred on the same group of field lines

counterstreaming ionospheric ion populations coexisted with the magnetosheath
ions

From this it is evident that the observed field lines had experience merging in two

different regions that resulted in a newly closed field line containing a mixture of
ionospheric and magnetospheric ions. Two scenarios are considered with respect to the

location of the sites. One in which nearly simultaneous merging occurred poleward of the
northern cusp and in the near-equatorial region and a second in which both sites were

post-cusp and in opposite hemispheres. While it is not possible to distinquish between

these two definitively, the observations favor the former case. This idea leads to a

previously unconsidered method of capturing magnetosheath field lines and formation of
the LLBL under northerward IMF.
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Table I
v = R*6371.*(t-tO)"1 Dispersion 1 Dispersion 2

Method Parameter Value Error Value Error
R - Distance to merging site (Re) 13. 1. 25.0 0.4

Curve- UT of initial injection (s) 9800 61 9780. 16
Fit Chi-squared of fit 3543.8 ]8674

Regression 0.894 0.980
R - Distance to merging site (Re) 12. 1. 27.0 1.

Velocit UT of initial injection (s) 9900 56 9700 43
Y
Cutoff Chi-squared of fit 938.1 10344

Regression 0.964 0.961
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Figure I - Overview of observations on March 18, 2006 showing: (a) energy-time
spectrogram of TIDE data; (b-d) components of the IMF in GSM coordinates; (e) solar
wind dynamic pressure.



Figure 2 - (top panels) Superposition of ion populations including dispersion 1 at 
IOOkm- 1 and terrestrial ions from southern hemisphere and/or outer plasmasphere near
75krn- l

. (bottom panels) Superposition of ion populations including dispersion 1 below
IOOkm- l

, dispersion 2 at -200krn-1
, and terrestrial ions from northern hemisphere at

IOOkrn- 1
•
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Figure 3 - Location of the Polar spacecraft with respect to a modeled magnetic field, bow
shock, and magnetopause. The orbit track for Polar is plotted from 2300UT on March 17
to 0500Ut on March 18.
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Figure 4 - (A) Low-speed cutoffs for dispersion 1 derived from curve fits and directly

from data (see text). Fits to equation ! are shown. (B) Low-speed cutoffs from

dispersion 2 derived from curve fits and directly from data (see text). Fits to equation 1

are shown. Parameters are given in Table I.




