Ares V: Designing the Heavy Lift Capability to Explore the Moon

John P. Sumrall, Manager Advanced Planning
Craig McArthur, Manager, Core Stage Element
Exploration Launch Projects Office
NASA Marshall Space Flight Center
Huntsville, AL 35812

Abstract

NASA’s Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall (Fig. 2). As currently envisioned, it will lift 136 metric tons (300,000 pounds) to a 30-by-160 nautical mile orbit at 28.5-degrees inclination, or 55 metric tons (120,000 pounds) to trans-lunar injection. This paper will cover the latest developments in the Ares V project in 2007 and discuss future activities.

Fig. 1. Ares V launch concept.
The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. But its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68 rocket engines, each supplying about 700,000 pounds of thrust. Its propellants are liquid hydrogen and liquid oxygen.

The two solid rocket boosters provide about 3.5 million pounds of thrust at liftoff. These 5-segment boosters are derived from the 4-segment boosters now used on the Space Shuttle, and are similar to those used in the Ares I first stage. The EDS is powered by one J-2X engine. The J-2X, which has roughly 294,000 pounds of thrust, also powers the Ares I Upper Stage. It is derived from the J-2 that powered the Saturn V second and third stages. The EDS performs two functions. Its initial suborbital burns will place the LSAM into a stable Earth orbit. After the Orion crew vehicle, launched separately on an Ares I, docks with the LSAM/EDS, the EDS would ignite a second time to put the combined 65-metric ton vehicle into a lunar transfer orbit.

Although Ares I remains NASA’s top priority, the Exploration Launch Projects Office is making progress on the early steps needed for Ares V to carry out the lunar mission before the next decade is out. The Ares V completed a preliminary design cycle in 2006. For this early phase, engineers took the basic information about payload requirements and combined them with some general assumptions about engines, aerodynamics, etc. to develop some basic designs and estimates on masses, trajectory, heating, facility
considerations, and more. The results of these studies are being compiled and will inform future, more detailed design cycles.

NASA also is pursuing a common engine with the Air Force for use on the Delta IV and Ares V per direction received from the NASA Administrator in August 2006. With the proposed joint upgrades, the improved RS-68 would deliver more thrust and be safer, more reliable, and more efficient than the current RS-68, while maintaining low manufacturing and operating costs. An Upgrades Requirements Review of the RS-68 engine began in October 2006. A turbopump Preliminary Design Review was conducted in November 2006. NASA and the Air Force completed a Memorandum of Understanding in December 2006. An Interagency Agreement remains in negotiations. NASA hopes to conclude negotiations in February 2007, move to additional design reviews on the RS-68 engine by June, and begin early testing by August. These and other developments are discussed in more detail below.

References
Ares V
Designing the Heavy Lift Capability to Explore the Moon

John P. Sumrall
Ares Advanced Planning Manager
Ares Projects Office
NASA Marshall Space Flight Center

AIAA Space 2007
September 2007
Contents

♦ Vehicle & Requirements Overview
♦ Vehicle Concept Analysis
♦ Nosecone Analysis
♦ Payload Shroud Analysis
♦ Conclusions
Vehicle & Requirements Overview
Reference Ares V Concept Overview

Ares V (CaLV)

Payload Fairing

Earth Departure Stage (EDS)

Core Stage (CS)

Reusable Solid Rocket Booster (RSRB)

8.4 m (27.56 ft)

22 m (72.2 ft)

23.29 m (76.4 ft)

10 m (33 ft)

110.31 m (361.9 ft)

65.02 m (213.3 ft)

53.85 m (176.7 ft)
Ares V Ascent Profile

Core Stage
5 x RS-68
414.2 sec. Isp, 106.0% Power Lead
33.0 ft (10.0 m) Diameter

EDS
1 x J2X
448.0 sec. Isp, 294 lbf Thrust
27.5 ft (10.0 m) Diameter

Launch

Liftoff
Time = +1 sec

Core Separation
Time = 325.3 sec
Altitude = 400.0 kft

SRB Separation
Time = 126.6 sec
Altitude = 125.0 kft

SRB Splashdown

Shroud Separation
Time = 335.5 sec
Altitude = 422.7 kft

EDS Ignition
Time = 325.3 sec
Altitude = 400.0 kft

Main Engine Cutoff
Time = 325.3 sec
Altitude = 400.0 kft

EDS Engine Cutoff
Time = 767.2 sec
Sub-Orbital Burn Duration = 441.9 sec
Orbital Altitude = 120 nmi circ @ 28.5°

EDS TLI Burn
Orbital Altitude = 100 nmi circ @ 28.5°
Burn Duration = 309.0 sec

LSAM/CEV Separation

CEV Rendez. & Dock w/EDS
Time - Assumed Up to 14 Days
Orbital Altitude Assumed to Degrade to 100 nmi

EDS Disposal

Maximum Dynamic Pressure
Time = 79.5 sec
Altitude = 45.8 kft

National Aeronautics and Space Administration
Ares V Driving Requirements from CARD

<table>
<thead>
<tr>
<th>CARD Req't</th>
<th>Requirement</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| CA0391-HQ | The CaLV shall utilize twin shuttle-derived 5-segment SRBs along with a core stage that employs 5 modified RS-68 engines for first stage propulsion. | ♦ Draws Performance Constraints around Booster Selection and Core Stage Design
♦ Boosters and Core Stage Provide ~70% of Delta V for LEO Insertion |
| CA0847-PO | The CaLV EDS shall deliver at least 66,939 (TBR-001-076) kg (147,266 lbm) from Earth Rendezvous Orbit (ERO) to the start of the Trans-Lunar Coast (TLC) for crewed lunar missions. | ♦ Defines TLI Payload most strenuous performance parameter
♦ TLI Payload Sizes EDS |
| CA0836-PO | The LSAM shall have a Control Mass of 45,000 (TBR-001-075) kg (99,180 lbm) at the time of launch for Lunar Sortie and Lunar Outpost crew missions | ♦ Defines LEO Payload for Crew Mission
♦ Contribute ~2/3 Mass for TLI Payload
♦ TLI Payload Sizes EDS |
| CA4139-PO | The CEV shall have a Control Mass of 20,185 (TBR-001-159) kg (44,500 lbm) at the time of CaLV rendezvous. | ♦ Contribute ~1/3 Mass for TLI Payload
♦ TLI Payload Sizes EDS |
| CA0051-PO | The CaLV EDS shall provide a minimum translational delta-V of 3,150 (TBR-001-258) m/s (10,335 ft/s) for the TLI for crewed lunar missions. | ♦ Defines Delta V thus propellant Needed for Delta V
♦ TLI Delta V Sizes EDS |
| CA0850-PO | The CaLV EDS shall meet its requirements after loitering in low Earth orbit (LEO) at least (TBD-001-975) days after orbit insertion for crewed lunar missions. | ♦ Defines Propellant Reserves for EDS Stage
♦ Major Factor in subsystem Selection and Design for EDS |
| CA0282-PO | The CaLV shall deliver at least 125,000 (TBR-001-220) kg (275,578 lbm) to a (TBD-001-072) Earth orbit for Mars exploration missions. | ♦ Defines Mars Mission Max Payload per launch
♦ Orbit and Payload size the Ares V |
| CA3215-PO | The CaLV shall launch cargo into a (TBD-001-565) Earth orbit for Mars missions. | ♦ Further defines performance capability of Ares V |
Performance Comparison
ESAS CaLV to Ares V Current Reference

♦ Original ESAS Capability
 • 46.0 mt Allowable Lander Mass
 • 20.0 mt CEV Mass
 • No Loiter in LEO
 • TLI total $\Delta v = 10,236$ ft/sec
 • 7.4 mt TLI performance reserve
 • 73.4 mt Cal V gross payload at TLI capability

♦ Concept refinement to reduce cost and maximize commonality between Ares I and Ares V
 • Core Stage
 - SSME derived to RS-68
 • SSME $Isp = 452.1$ sec
 • RS-68 $Isp = 414.7$ sec
 - 27.5 ft. to 33 ft. diameter
 • RSRB
 - ESAS RSRB used HTPB, MEOP = 1066 psi, thrust trace optimized for CaLV
 - Current RSRB uses PBAN, MEOP = 1016 psi, thrust trace optimized for Ares I (53-06)
 • EDS
 - 2 J-2S+ (451.5 sec) engines to 1 J-2X engine (448 sec)
 • Other concept and analysis maturation
 • 73.1 mt Cal V gross payload at TLI capability
 • CxCB approval May 2006

♦ CARD Requirements and Groundrules Changes- Current Baseline Reference
 • 14 Day Loiter Requirement Assumed (CARD TBD)
 • TLI total $\Delta v = 10,417$ ft/sec
 • FPR 2.4 mt propellant (400 ft/sec)
 • Parking Orbit change (160 to 120 nmi)
 • 64.6 mt Cal V gross payload at TLI capability
5 RS-68 Core, 5 Seg. SRB, 1 J-2X EDS
1.5 Launch TLI – 14 Day Loiter

Vehicle Concept Characteristics

GLOW 7,326,376 lbf
- Payload Envelope L x D 33.0 ft x 24.5 ft
- Shroud Jettison Mass 12,868 lbm

Booster (each)
- Propellants PBAN (166-06 Trace)
- Overboard Propellant 1,380,873 lbm
- Stage pmf 0.8558
- Burnout Mass 232,608 lbm
- # Boosters / Type 2 / 5 Segment SRM
- Booster Thrust (@ 0.7 sec) 3,510,791 lbf @ Vac
- Booster Isp (@ 0.7 sec) 267.4 sec @ Vac
- Burn Time 126.6 sec

Core Stage
- Propellants LOX/LH2
- Usable Propellant 3,078,410 lbm
- Propellant Offload 0.0 %
- Stage pmf 0.9017
- Dry Mass 301,883 lbm
- Burnout Mass 335,684 lbm
- # Engines / Type 5 / RS-68
- Engine Thrust (106%) 688,693 lbf @ SL
- Engine Isp (106%) 448.0 sec @ SL
- Mission Power Level 106.0 %
- Stage Burn Time 751.7 sec

Interstage
- Core/EDS
- Dry Mass 17,847 lbm

Delivery Orbit
- 1.5 Launch TLI
- LEO Delivery 120 nmi circular @ 28.5°
- TLI Payload from 100 nmi 142,543 lbm 64.6 MT*
- Performance Reserve 8,913 lbm 4.0 MT
- CEV Payload Mass 44,500 lbm 20.2 MT
- LSAM Payload Mass 89,130 lbm 40.4 MT
- Insertion Altitude 122.0 nmi
- T/W @ Liftoff 1.36
- Max Dynamic Pressure 637 psf
- Max g's Ascent Burn 3.86 g
- T/W @ Booster Separation 1.35
- T/W Second Stage 0.44
- T/W @ TLI Ignition 0.75

EDS Stage
- 14 day Loiter
- Propellants LOX/LH2
- Usable Propellant 492,753 lbm
- Propellant Offload 0.0 %
- Stage pmf 0.8853
- Dry Mass 47,503 lbm
- Burnout Mass 48,735 lbm
- Suborbital Burn Mass 290,000 lbm
- Pre-TLI Overboard Mass 9,757 lbm
- FPR 5,319 lbm
- # Engines / Type 1 / J-2X
- Engine Thrust (100%) 294,000 lbf @ Vac
- Engine Isp (100%) 448.0 sec @ Vac
- Mission Power Level 100.0 %
- Stage Burn Time 751.7 sec

National Aeronautics and Space Administration

* LEO delivery orbit is 120 nmi circ @ 28.5°, assumes orbital decay to 100 nmi during 14 day loiter for CEV rendezvous and dock prior to TLI burn
Task Description

♦ Objective:
 • Determine if a tangent ogive or single angle nosecone would yield better performance than the reference bi-conic angle nosecone for the reference Ares V concept

♦ Task
 • Determine the relative performance of an Ares V vehicle equipped with a single angle nosecone and a tangent ogive nosecone
 • Analysis includes updated aerodynamics, shroud masses, and resulting performance gains / losses
Shrouds Analyzed

Reference Bi-conic
13,189 lbs

Single Angle
10,719 lbs

Ogive
14,922 lbs
Estimated drag for the Magnum vehicle with tangent ogive and conic nosecone, with SRB's attached.

Revised Drag of Core + Boosters of Magnum for Various Nose Cones

Mach Number

Cd (Sref=827.3 ft²)
Alternate Nosecones / Summary

<table>
<thead>
<tr>
<th>Nosecone Type</th>
<th>Shroud Weight</th>
<th>Delta Payload to Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-conic</td>
<td>13,189 lbs</td>
<td>- 845 lbs injected LEO</td>
</tr>
<tr>
<td>Conic, 25-degree</td>
<td>10,719 lbs</td>
<td>- 1,168 lbs injected LEO</td>
</tr>
<tr>
<td>Tangent Ogive</td>
<td>14,922 lbs</td>
<td></td>
</tr>
</tbody>
</table>

- **The Reference Ares V Bi-conic nosecone exhibits...**
 - Highest injected payload mass to LEO
 - Easier fabrication compared to ogive
Payload Shroud Analysis
Ares V Evaluating Multiple EDS/Shroud Configurations

<table>
<thead>
<tr>
<th>Option</th>
<th>EDS Diameter</th>
<th>Shroud Diameter</th>
<th>Usable Diameter</th>
<th>Usable Cylindrical Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Baseline</td>
<td>8.4m</td>
<td>8.4m</td>
<td>7.5m</td>
<td>10m</td>
</tr>
<tr>
<td>B</td>
<td>8.4m</td>
<td>10m</td>
<td>8.77m</td>
<td>7.31m</td>
</tr>
<tr>
<td>C</td>
<td>10m</td>
<td>8.4m</td>
<td>7.5m</td>
<td>10m</td>
</tr>
<tr>
<td>D</td>
<td>10m</td>
<td>10m</td>
<td>8.77m</td>
<td>7.31m</td>
</tr>
<tr>
<td>E</td>
<td>10m</td>
<td>10m</td>
<td>8.77m</td>
<td>9.31m</td>
</tr>
</tbody>
</table>

Assumes 10m Short Shroud has same usable cylindrical volume as 8.4m Shroud: ~442m³
Results of Shroud and EDS Diameter Configuration Study - Preliminary Results

<table>
<thead>
<tr>
<th>Option</th>
<th>Shroud Diameter (Outside/Usable)</th>
<th>Shroud Usable Cyl Length</th>
<th>EDS Diameter</th>
<th>TLI Payload Delta from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A (Baseline)</td>
<td>8.4m / 7.5m</td>
<td>10m</td>
<td>8.4m</td>
<td>---</td>
</tr>
<tr>
<td>Option B (Constant Volume as A)</td>
<td>10m / 8.77m</td>
<td>7.31m</td>
<td>8.4m</td>
<td>- 2.8 MT</td>
</tr>
<tr>
<td>Option C</td>
<td>8.4m / 7.5m</td>
<td>10m</td>
<td>8.4m</td>
<td>- 0.7 MT</td>
</tr>
<tr>
<td>Option D</td>
<td>10m / 8.77m</td>
<td>7.31m</td>
<td>10m</td>
<td>- 0.2 MT</td>
</tr>
<tr>
<td>Option E</td>
<td>10m / 8.77m</td>
<td>9.31m</td>
<td>10m</td>
<td>- 0.5 MT</td>
</tr>
</tbody>
</table>

National Aeronautics and Space Administration
Ares V Mars Missions Drive Towards Larger Shroud Volumes

Option A (Baseline):
- 7.5m Inner Diameter
- 12m Barrel Length

Option B:
- 10m Inner Diameter
- 25m Barrel Length

Option C:
- 12m Inner Diameter
- 35m Barrel Length

Current VAB door height clearance is approximately 122 m. Larger Shrouds Can almost encapsulate the Shuttle Orbiter.
Conclusions

♦ Ares V Lift Requirement Needs to Be Better Understood and Defined

♦ Performance Enhancements have been Identified that Cover the Range of Anticipated Performance Needs Based on CARD Requirements and Lunar Architecture Team (LAT2) Results

♦ Bi-conic Nosecone confirmed as configuration of choice

♦ Common EDS Diameter and Payload Shroud Diameter is Optimal