AN OVERVIEW OF ANTENNA R&D EFFORTS IN SUPPORT OF NASA’S SPACE EXPLORATION VISION

Robert M. Manning

This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.
An Overview of Antenna R&D Efforts in Support of NASA’s Space Exploration Vision

Robert M. Manning
NASA Glenn Research Center, Cleveland, OH 44135

Robert.M.Manning@nasa.gov
Tel: 216-433-6750

IDGA’s Military Antenna Systems Conference
September 26-28, 2007
Outline of Presentation

• The Vision for Space Exploration
• Communications Architecture for Exploration
• Asset-Specific Communications Requirements
• Technology Development at Glenn Research Center
• Summary
A Bold Vision for Space Exploration

- Complete the International Space Station
- Safely fly the Space Shuttle until 2010
- Develop and fly the Crew Exploration Vehicle no later than 2014 (goal of 2012)
- Return to the Moon no later than 2020
- Extend human presence across the solar system and beyond
- Implement a sustained and affordable human and robotic program
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

“It is time for America to take the next steps.

Today I announce a new plan to explore space and extend a human presence across our solar system. We will begin the effort quickly, using existing programs and personnel. We’ll make steady progress – one mission, one voyage, one landing at a time”

President George W. Bush – January 14, 2004
Communications Architecture
Assessment of Existing NASA Communications Capability

• Limited lunar coverage
• Existing Earth-based Tracking and Data Relay Satellite System (TDRSS) can presently provide limited Low Earth Orbit (LEO) and translunar backup systems for critical communications in lunar vicinity due to area coverage limitations
• Ground Networks (GN) can provide LEO and translunar short pass duration communications
• Large aperture Deep Space Network (DSN) antennas (26m, 34m, 70m) can provide excellent high-rate coverage in lunar vicinity
• Limited Mars communications data rates and numbers of connections
• Limited precision Mars navigation capability
Space Communication Architecture Working Group (SCAWG)

NASA Space Communication and Navigation Architecture
Recommendations for 2005-2030

15 May 2006
Final Report

Space Communications Architecture Final Report is available.

https://www.spacecomm.nasa.gov/spacecom/nasa.gov/spacecom/
<table>
<thead>
<tr>
<th>Band</th>
<th>Communication Type</th>
<th>Data Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF&S-Band</td>
<td>Tx/Rx to Moon</td>
<td>125 bps to 256 kbps</td>
</tr>
<tr>
<td>S-Band</td>
<td>Tx/Rx direct to Earth</td>
<td>2.186 Mbps QPSK</td>
</tr>
<tr>
<td>Ka-Band</td>
<td>Tx to Earth</td>
<td>>100 Mbps</td>
</tr>
<tr>
<td>VHF/UHF*</td>
<td>Surface Comm.</td>
<td>(Data Rates: TBD)</td>
</tr>
<tr>
<td>S-Band*</td>
<td>Surface Comm. Tx/Rx relay to Earth</td>
<td>(Data Rates: TBD)</td>
</tr>
<tr>
<td>Ka-Band*</td>
<td>Tx to Earth</td>
<td>(Data Rates: TBD)</td>
</tr>
</tbody>
</table>

* Probable communications frequencies
Mars Communications Assets

Mars Reconnaissance Orbiter (MRO)
- **UHF** Tx/Rx to Mars: 100 kbps - 1 Mbps
- **X-Band** Tx/Rx to Earth: 300 kbps
- **Ka-Band** Tx to Earth: 5 Mbps BPSK

Arrival Date: March 10, 2006

Mars Odyssey
- **UHF** Tx/Rx to Mars: 128 kbps
- **X-Band** Tx/Rx to Earth: 128 kbps

Arrival October 24, 2001

Mars Global Surveyor (MGS)
- **UHF** Tx/Rx to Mars: 128 kbps
- **X-Band** Tx/Rx to Earth: 20 kbps
- **Ka-Band** Tx to Earth: 85 kbps (max)

Arrival September 12, 1997

Mars Express (ESA)
- **UHF** Tx/Rx to Mars: 128 kbps
- **S-Band** Rx from Earth: up to 2 kbps
- **X-Band** Tx to Earth: 230 kbps

Arrival December 25, 2003
Asset-Specific Communications
Nominal Specifications
Surface Communications Architecture (~2030)

- Surface assets (e.g., nodes) communicate via each other and a centralized hub.
- Surface Wireless Local Area Network (SWLAN) infrastructure to connect astronauts with rovers, probes, habitat, and each other.
- Ad-hoc proximity networking amongst assets.
- Access point (relay) towers to extend communication capabilities range.
Surface Communications Assets

<table>
<thead>
<tr>
<th>Data Services</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio*</td>
<td>8-64 kbps/channel (at least 4 channels)</td>
</tr>
<tr>
<td>TT&C*</td>
<td>< 100 kbps</td>
</tr>
<tr>
<td>SDTV Video</td>
<td>6 Mbps</td>
</tr>
<tr>
<td>HDTV Video</td>
<td>19 Mbps</td>
</tr>
<tr>
<td>Biomedical Control*</td>
<td>70 kbps</td>
</tr>
<tr>
<td>Biomedical Monitoring*</td>
<td>122 kbps</td>
</tr>
</tbody>
</table>

*Must be Reliable Links

Limited power/space availability
UHF/S-Band surface comm. frequencies

- **Reliable links require low BER**
- **Antennas should be small, efficient, and wideband/multiband to accommodate desired frequencies and data services in a restricted space.**
- **Multiband important for Software Defined Ratio (SDR) to reduce size, weight, and Power (SWaP)**
Surface Communications Assets

- Mobile Nodes with data-intensive mission requirements for surface-based exploration.
- Characterized by entities of moderate size and free to move about the lunar surface (e.g., rovers, pressurized vehicles, astronauts, robots)
- Tightly constrained by power, mass and volume.

Antennas should be low/self-powered, small, and efficient, and compatible with communication equipment that can provide high data rate coverage at short ranges (~1.5-3 km, horizon for the moon for EVA).

- Small Nodes: support fixed and mobile nodes, and connect to the network by wired or wireless interface.
- Sensors, small probes, instruments and subsystems of very small size, limited power levels, and short range (~10 m) low data rate communications.

Antennas should be low/self-powered, small, and efficient.

- Large, fixed nodes: Serves as base for surface activities.
- Centralized Hub/Habitat for immediate area coverage
- Transmission of data to surface and space assets
- Can support larger communication hardware and higher data rates over long distances.

Smart/reconfigurable antennas, multibeam antennas, lightweight deployable antennas are viable technologies (10-30 Km)
Space Communications Assets

- Robotic Lunar Exploration Program (RLEP-1,2)
- Lunar Reconnaissance Orbiter (LRO) (RLEP-1)
- Crew Launch Vehicle (CLV)
- Crew Exploration Vehicle (CEV)

➢ **Antenna Requirements: Conformal, Reconfigurable or Multiband antennas, phased arrays (most likely S-band for Initial CEV, with omni or patch antennas).**

- Relay satellites (around the moon (e.g., LRO after its initial prospecting mission, it could be elevated to elliptical orbit for relay purposes); around Mars; etc.)
- Relay satellites (L1/L2)
- The intended orbit will drive the type of antenna technology.

➢ **In Orbit: Gimbaled dish? (slew rate driven), reflectarrays, phased array antennas, deployable/inflatable arrays**
Antenna Technology Summary

<table>
<thead>
<tr>
<th>Surface/ Surface Communications</th>
<th>Potential Frequencies</th>
<th>Desirable Antenna Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVA Suit</td>
<td>UHF/VHF S-band</td>
<td>• Miniature Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-directional (to support mobility)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wearable Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dipole/Monopole (omni-directional coverage)</td>
</tr>
<tr>
<td>Rovers</td>
<td>UHF/VHF S-band</td>
<td>• Miniature Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Omni antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phased Arrays (pitch/roll compensation)</td>
</tr>
<tr>
<td>Probes</td>
<td>UHF/VHF S-band</td>
<td>• Miniature Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dielectric Resonator Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wideband Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solar Cell Integrated Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Retrodirective Antenna</td>
</tr>
<tr>
<td>Habitat/Surface Relays</td>
<td>HF (OTH Propagation) S-band X-band</td>
<td>• Deployable Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-directional coverage (to support mobility)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Smart/reconfigurable Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-beam Antennas (to support connectivity to different nodes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Citizen band antennas</td>
</tr>
</tbody>
</table>
Antenna Technology Summary

<table>
<thead>
<tr>
<th>Surface/Orbit Communications</th>
<th>Potential Frequencies</th>
<th>Desirable Antenna Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEV</td>
<td>S-band</td>
<td>• Phased Arrays</td>
</tr>
<tr>
<td></td>
<td>X-band</td>
<td>• Wideband/Multiband</td>
</tr>
<tr>
<td></td>
<td>Ku/Ka-band</td>
<td>• Conformal Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Frequency Selective Surface (FSS) Antennas</td>
</tr>
<tr>
<td>Satellites</td>
<td>UHF</td>
<td>• Gimbaled Dish</td>
</tr>
<tr>
<td></td>
<td>S-band</td>
<td>• Phased Arrays</td>
</tr>
<tr>
<td></td>
<td>X-band</td>
<td>• Deployable Antennas</td>
</tr>
<tr>
<td></td>
<td>Ku/Ka-band</td>
<td>• Multi-Beam antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High Gain Antennas</td>
</tr>
<tr>
<td>Rovers</td>
<td>UHF</td>
<td>• Miniature Antennas</td>
</tr>
<tr>
<td></td>
<td>S-band</td>
<td>• Phased Arrays</td>
</tr>
<tr>
<td>Probes</td>
<td>UHF</td>
<td>• Miniature Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solar Cell Integrated Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patch antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Retro-directive Antenna</td>
</tr>
</tbody>
</table>
Antenna Technology Development at Glenn Research Center
Technology Readiness Level

- **TRL 9**: Actual system “flight proven” through successful mission operations
- **TRL 8**: Actual system completed and “flight qualified” through test and demonstration (Ground or Flight)
- **TRL 7**: System prototype demonstration in a space environment
- **TRL 6**: System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)
- **TRL 5**: Component and/or breadboard validation in relevant environment
- **TRL 4**: Component and/or breadboard validation in laboratory environment
- **TRL 3**: Analytical and experimental critical function and/or characteristic proof-of-concept
- **TRL 2**: Technology concept and/or application formulated
- **TRL 1**: Basic principles observed and reported
Large Aperture Deployable Antennas
(X-, and Ka-Band: TRL 4)

Benefits
• Reduced mass (~1 kg/m²)
• Low fabrication costs
• High packaging efficiencies (as high as 50:1)
• Proven performance at S-Band & L-Band frequencies

Issues
• Stringent RMS surface accuracy requirements at high frequencies (i.e. Ka-Band)
• Development of reliable deployment mechanisms
• Thermal response
• Rigidization

Potential Applications
• Deep space relay station concept
• Backup satellite antenna systems
• Erectable surface communications relays
Large Aperture Inflatable Antennas

Space Applications

4- by 6-m inflatable offset parabolic membrane antenna inflation test (human in the background)

Deep-space relay station concept

Backup 2-m inflatable Cassegrain reflector for ISS Ku-band system

Surface Applications

Low-cost tracking ground station experiment in collaboration with Goddard Space Flight Center planned for May 2005

2.5-m inflatable membrane antenna in inflatable radome for ground applications

Goals:
- Develop large, lightweight reflector antennas with areal densities <0.75 kg/m², for Lunar, Mars, and deep-space relay exploration applications.
- Develop rigidization techniques (e.g., ultraviolet curing) to eliminate the need for makeup inflation gas.
- Demonstrate a ratio package to deploy volume greater than 1:75.
“Terrestrial” Deployable Antennas

Four 1-meter inflatable membrane antennas under assembly and pedestal array concept
4 Element Inflatable Antenna Array
August 2005

• Georgia Tech “GCATT” building adaptive array algorithm verification Experiment with the SAC-C satellite August 22-25, 2005
Large Aperture Deployable Antennas

(X-band: TRL 3)

Hybrid Inflatable Antenna

- Combines traditional fixed parabolic dish with an inflatable reflector annulus
- Redundant system prevents “all-or-nothing” scenarios
- Based on novel shape memory composite structure
- High packing efficiency

(1) Low cost fabrication and inflation of an annulus antenna
(2) Overall surface accuracy 1 mm
(3) Negligible gravity effects
(4) Elimination of large curve distortions across the reflector surface (i.e. Hencky curve)

JHU/APL under NASA Grant
Phased Array Antennas
(K-, and Ka-Band: TRL 9)

Benefits
- Electrically Steerable
- Conformal
- Graceful degradation
- Multi-Beam
- Fast Scanning/acquisition
- S-, X-, Ku-, K-, and Ka-Band

Issues
- Low MMIC efficiency (thermal management problems)
- Cost per module
- FOV (limited to +/- 60°)

Potential Applications
- CLV, CEV
- Robotic Rovers
- Satellite Systems
- Surface Communications
GRC Low Cost Electrically Steerable Array Antenna Road Map

1990 - 1998

Past Significant GRC Ka-band phased array developments

- Mechanically steered Array proof-of-concept
- 32 element breadboard proof-of-concept
- 91 element breadboard proof-of-concept

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Forward Link</th>
<th>Return Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ka-band Frequency Plan</td>
<td>30°</td>
<td>20°</td>
</tr>
<tr>
<td>Channel Bandwidth</td>
<td>9.6Kbps (NB)</td>
<td>9.6 – 128 Kbps (NB)</td>
</tr>
<tr>
<td></td>
<td>1.5Mbps (WB)</td>
<td>1.5Mbps (WB)</td>
</tr>
</tbody>
</table>

2000 - 2006

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Forward Link</th>
<th>Return Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Bandwidth</td>
<td>50 MHz</td>
<td>650 MHz</td>
</tr>
</tbody>
</table>

• 1990-1998 : Funding Source ACTS
• 2000-2003 : Funding Source SCDS
256-Element Ka-Band Phased Array Antenna (PAA)

Summary Array Specification (Boeing)

<table>
<thead>
<tr>
<th>Array Number of Elements</th>
<th>256 Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequencies</td>
<td>25.5-27.5 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>> 1 GHz</td>
</tr>
<tr>
<td>Gain (CP)</td>
<td>28 dBi</td>
</tr>
<tr>
<td>Antenna EIRP</td>
<td>Peak 36.5 dBW</td>
</tr>
<tr>
<td></td>
<td>@ 60 Degrees 33 dBW</td>
</tr>
<tr>
<td>Antenna 3 dB - Beam width</td>
<td>Nominal 5 Degrees</td>
</tr>
<tr>
<td>RF Input Drive Level</td>
<td>130 mW (1 beam)</td>
</tr>
<tr>
<td>Array Total DC Power</td>
<td>90 Watts (1 beam)</td>
</tr>
<tr>
<td>DC Power Supply</td>
<td>+28 V</td>
</tr>
<tr>
<td></td>
<td>(± 7V)</td>
</tr>
</tbody>
</table>
Two Principal Planes Cuts Antenna

(Beam 1)

- AR < 1.1
- Directivity (estimated from pattern measurements) : 27.6 dBi
- Directivity (predicted no M-coupling) : 28.2 dBi
- Beamwidth: 6.7 deg

LHCP w/RHCP off, phi = 0
(Measured by Boeing)

LHCP w/RHCP off, phi = 90
(Measured by Boeing)

- AR < 1.1
- Directivity (estimated from pattern measurements) : 27.6 dBi
- Directivity (predicted no M-coupling) : 28.2 dBi
- Beamwidth: 7.7 deg
Ferroelectric Reflectarray Development
(K-band: TRL 3)

Benefits
- High efficiency
- Zero manifold loss
- Electronically steerable
- Lightweight, planar reflector

Potential Applications
- Satellite Antenna Systems
- Ground-based Deep Space Network Array

- 19 GHz 615 Element Prototype
- 28 cm Active Diameter

Expected

EIRP (dBW)

SQR of Number of Radiating Elements

G(Hz)

Element Prototype

Power Consumed (W)

Reflectarray

MMIC

Ferroelectric Reflectarray

Direct Radiating MMIC Array
Next Generation Deep Space Network Concept

- Achieving required Ka-band surface tolerance difficult for very large apertures
- Large antenna cost proportional to \((\text{diameter})^2\)
- Advances in Digital Signal Processing make arraying a large number of “small” antennas feasible

GRC Antenna Farm Concept
Based on Reflectarray Technology

Flat panels containing printed microstrip patch radiator arrays assembled into circular aperture to save weight and manufacturing cost. Benefits cascade because of simplified gimbal drive systems and reduced maintenance.
Multi-Beam Antennas
(S-, Ka-band: TRL 4)

Benefits
• No manifold losses
• Capable of multiple beams
• Pseudo conformal

Potential Applications
• Smart Antenna Systems
• Ground-based Communications (i.e., Habitat, Relays)
• Satellite Constellations

Collaboration with Dr. Z. Popovic
University of Colorado, Boulder
TDRSS-C Antenna Development
(S-band: TRL 4)

- Next generation TDRSS to implement beam forming between S-band Single Access and Multiple Access antennas
- GRC responsible for antenna element design, construction and characterization of candidate antennas for next generation Multiple Access phased array

Potential Applications
- Satellite Antenna Systems

<table>
<thead>
<tr>
<th>Specification</th>
<th>Bandwidth</th>
<th>Directivity</th>
<th>Directivity at</th>
<th>Axial Ratio</th>
<th>Pol. Isolation</th>
<th>Return Loss</th>
<th>Mounting Footprint (Diameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cup Waveguide (Wideband)</td>
<td>NB Meets 2.0 - 2.3 GHz WB</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets LHCP, RHCP</td>
<td>Meets</td>
<td>11.5 in</td>
</tr>
<tr>
<td>Cup Waveguide (Narrowband)</td>
<td>NB Meets 2.2 - 2.3 GHz NB</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets LHCP, RHCP</td>
<td>Meets</td>
<td>10.6 in</td>
</tr>
<tr>
<td>Horn</td>
<td>NB Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets LHCP, RHCP</td>
<td>Meets</td>
<td>DNM* 14.5 in</td>
</tr>
<tr>
<td>Helix</td>
<td>NB Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets LHCP</td>
<td>Meets</td>
<td>Meets 6.0 in</td>
</tr>
<tr>
<td>Cup Patch</td>
<td>WB Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets</td>
<td>Meets LHCP, RHCP</td>
<td>Meets</td>
<td>Meets 12.5 in</td>
</tr>
</tbody>
</table>
SMALL ANTENNAS
TRL 1-3
Antenna Technologies for Future NASA Exploration Missions

Description and Objectives:

• Develop new design concepts and candidate miniature antenna structures capable of supporting the communication needs of future Lunar and Martian surface exploration activities.
• Develop compact, self-powering, self-oscillating communications package utilizing miniature antenna development effort.
• Perform trade-off studies among in-house miniature antenna designs and state-of-the-art commercial off-the-shelf (COTS) antennas for Exploration Missions.
• Develop processing algorithm for a randomly distributed antennas for Exploration Missions.

Application: Lunar Surface Exploration Missions

- Robots and Rovers
- Surface Sensors/Probes
- Astronaut EVA
- Nanosatellites

Technology Products:

1. Folded Hilbert Curve Fractal Antenna
 - TRL in = 2
 - TRL out = 3

2. Compact Microstrip Monopole Antenna
 - TRL in = 2
 - TRL out = 3

3. Solar Cell Integrated Antenna
 - TRL in = 2
 - TRL out = 3

4. Miniatuized antenna for Bio-MEMS Sensors
 - TRL in = 2
 - TRL out = 3

5. Two-layer Sector Miniature Antenna
 - TRL in = 2
 - TRL out = 3

6. MEMS Integrated Reconfigurable Antenna
 - TRL in = 2
 - TRL out = 3
Miniature Antennas
(S-, Ku-/Ka-band: TRL 3)

Benefits
- Provides optimal radiation patterns for surface-to-surface and surface-to-orbit communications at relevant frequencies without switches

Potential Applications
- Sensors/probes
- Robotic rovers
- Astronaut EVA
Design Concept:
- Fractal antenna geometry allows for unique wideband/multi-band operation due to pattern-repetitive nature of fractal shapes. Geometry also allows for antenna miniaturization, similar to meander lines, but with more efficient space utilization.
- Develop an antenna based on a 3^{rd} order Hilbert curve geometry folded upon itself (multilayer) to further decrease antenna footprint.

Results:
- fHCFA exhibits multi-resonant behavior.
- Two modes of operation with optimized radiation pattern diversity for surface-to-surface and surface-to-orbit communications at relevant frequencies without switching.

\[\frac{\lambda}{30} \]

Miniature Antennas

(S-band: TRL 3)

Benefits
- Performance comparable to an S-band dipole, but at less than 1/6 the size

Potential Applications
- Sensors/probes
- Robotic rovers
- Astronaut EVA

E-plane Pattern

H-plane Pattern

Compact Microstrip Monopole Antenna
Compact Microstrip Monopole Antenna (CMMA)

Design Concept:
• Reduce operating frequency of patch antenna through use of grounding wall and increased perimeter with a compact footprint.
• Adjust for inherent decrease in directivity with vertical wall.
• Combine a microstrip patch with a 3-dimensional structure to attain a highly directive, broadband, compact antenna which radiates like a miniature monopole antenna.

Results:
• End-fire radiation pattern allows for lunar surface-to-surface communications with an antenna structure 1/6th the size of a monopole antenna.

\[TRL_{in} = 2 \]
\[TRL_{out} = 3 \]

Self-Powered Antennas
(X-band: TRL 3)

Integration of solar cell and local oscillator with antenna provides self-powering communications system package

Potential Applications
- Distributed sensors/probes
- Robotic rovers
- Astronaut EVA
Solar Cell Integrated Antennas

Design Concept:

- Integrate solar cell, local oscillator and miniature antenna for complete, compact, self-powering communications system.
- Integrated antenna radiating element/oscillator generates its own RF power.
- Demonstrate prototype active oscillator solar cell array antenna modules capable of beam steering based on multi-junction GaAs solar cell and oscillator antenna technologies.
- Foundation for larger aperture, beam-steerable antennas using coupled oscillator approach.
- The proposed system will enable the development of low-cost, lightweight satellites with high directivity communication links for Flexible Access Networks.

Miniature Antenna

Provides compact structure to transmit RF signal

Local Oscillator

Provides modulation of frequency carrier for relevant data transmission

Solar Cell

Provides power for communications system. Can be integrated on antenna layer, or on oscillator layer.

Results:

Fabricated integrated antenna/oscillator using Duroid RT 6010 microwave laminate (dielectric constant = 10.2), with pseudomorphic high electron mobility gallium arsenide transistors

\[
\text{TRL in} = 2
\]

\[
\text{TRL out} = 3
\]
Miniaturized Reconfigurable Antenna for Planetary Surface Communications

Program Goals

- Develop electrically small (i.e., miniaturized) antennas with moderate bandwidths for planetary surface communications between remote sites sensors or orbiters.

- The technology is intended to enable low-risk sensing and monitoring missions in hostile planetary and/or atmospheric environments.

- These antennas are needed for Planetary and Moon Exploration and Monitoring Missions.

Collaboration with Dr. Jennifer Bernhard (University of Illinois)
Concept:

- Develop electrically small antennas and self-healing, adaptive decision algorithms for coherent signal detection and transmission from an array of randomly distributed planetary sensors. The sensor array will configure itself to form a beam in a general direction that can be intercepted by a passing orbiter or directed to a particular satellite or planetary surface-based receiver.
- Develop miniaturized antennas and beam forming algorithm for random sensor arrays that enable the sensor to work together to communicate their data to remote collection sites without the need for a base station.
- Develop miniaturized antennas with moderate bandwidths for planetary surface communications between remote sites sensors or orbiters.
- The technology is intended to enable low-risk sensing and monitoring missions in hostile planetary and/or atmospheric environments.
- Development of distributed Bayesian Algorithm based fault tolerant, self organizing random sensor detection.

Approach allows randomly distributed Lunar surface sensors to work together as an array and thus enhances communication capabilities by decreasing the probability of single point communication failure.

Projected Network Operation - Flowchart:

1. “Pod” of low-cost sensors launched from orbiter and scattered randomly on the surface.
2. Beacon signal sent from orbiter to sensors used for calibration and time synchronization.
3. Sensors form surface-level network to determine relative locations of sensors to make calculations for beamforming and to exchange data.
4. Signal processing algorithms on the sensors determine the relative phase and amplitude of each sensor’s signal to form a beam in the direction of the orbiter.
5. Sensors cooperatively send data back to orbiter without the need for single-point of failure base station on the surface.

Simulated Beam forming Achieved Using Bayesian Estimation Method For a Random Sensor Array

Prototype Miniaturized Antenna

TRL\(_\text{in}\) = 2
TRL\(_\text{out}\) = 3
Target Technology:
Reconfigurable antenna elements capable of producing multiple beams, multiple frequencies, and array scan angles from broadside to horizon. Intended for inter-satellite, satellite-mobile and satellite-ground communication with a single array.

Antenna Elements:
Spiral microstrip patch antenna with reconfigurable switch elements activated by DC bias. Broadside to end-fire pattern reconfiguration by respective switch activation.

IC Compatible Prototype Square Element
For monolithic MEMS integrated fabrication

Reconfigurable Antennas for High Data Rate Multi-Beam Communication
PI: Prof. Jennifer Berhard, U. Illinois, Grant # NAG3 2555

Measured patterns (φ=0) from 4x4 array in broadside and end-fire configurations
NASA seeks to develop telemetry based implantable sensing systems to monitor the physiological parameters of humans during space flights.

A novel miniature inductor and pick-up antenna for contact-less powering and RF telemetry from implantable Bio-MEMS sensors has been developed.

Contact-less powering and telemetry concept

Schematic of a capacitive pressure sensor.

Schematic of miniature spiral inductor on SOG/HR-Si wafer and Photomicrograph of inductor/antenna.

Contact-less powering and telemetry application in biosensors

Measured received relative signal strength as a function of frequency.
(a) Pick-up antenna at a height of 5 cm. (b) Pick-up antenna at a height of 10 cm.
Miniature Antennas
(TRL 2)

- Artificially manufacturable Metamaterials: Magnetic Photonic Crystals (MPC).

- These MPCs exhibit the following properties:
 (a) considerable slow down of incoming wave, resulting in frozen mode.
 (b) huge amplitude increase.
 (c) minimal reflection at the free space interface.
 (d) large effective dielectric constant, thus enabling miniaturization of the embedded elements.

Collaboration with Dr. John Volakis and Mr. Jeff Kula (OSU)
Conclusions

- By 2030, 1 Gbps deep space data rates desired. Choosing the proper antenna technology for future NASA exploration missions will rely on: data rate requirements, available frequencies, available space and power, and desired asset-specific services. Likewise, efficiency, mass, and cost will drive decisions.

- Viable antenna technologies should be scalable and flexible for evolving communications architecture.

- Enabling technologies include: large aperture deployable/inflatable antennas (reduce space/payload mass), multibeam antennas (reduce power consumption), reconfigurable antennas (reduce space), low loss phased arrays (conformal/graceful degradation), and efficient miniature antennas (reduce space/power).

- Efficient miniature antennas will play a critical role in future surface communications assets (e.g., SDR radios) where available space and power place stringent requirements on mobile communications systems at the envisioned UHF/VHF/S-band surface comm. frequencies (i.e., astronaut suits, probes, rovers).