
Proceedings of Space Nuclear Conference 2007
Boston, Massachusetts, June 24-28 2007

Paper 2047

High Fidelity Thermal Simulators for Non-Nuclear Testing:

Analysis and Initial Results

Shannon M. Bragg-Sitton _, Ricky Dickens _,David Dixon 2

tNASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812
2North Carolina State University, Raleigh, NC

Tel: 256.544.6272, E-Mail: Shannon.M.Bragg-Sitton@nasa.gov

Abstract - Non-nuclear testing can be a valuable tool in the development of a space nuclear

power system, providing system characterization data and allowing one to work through various
fabrication, assembly and integration issues without the cost and time associated with a full

ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from

nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat

transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic

response that would be present in an integrated, fueled reactor system. High fidelity thermal

simulators that match both the static and the dynamic fuel pin performance that would be

observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test

results, With optimized simulators, the integration of thermal hydraulic hardware tests with
simulated neutronie response provides a bridge between electrically heated testing and fueled

nuclear testing, providing a better assessment of system integration issues, characterization of

integrated system response times and response characteristics, and assessment of potential

design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator

designs are determined by simple one-dimensional analysis at a single axial location and at

steady state conditions; feasible concepts are then input into a detailed three-dimensional model

for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a

proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and

comparison is made between the expected nuclear performance and the performance of
conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high

fidelity design can developed. Test results presented in this paper correspond to a "first cut"

simulator design for a potential liquid metal (NaK) cooled reactor design that could be applied

for Lunar surface power. Proposed refinements to this simulator design are also presented.

I. INTRODUCTION

At the NASA Marshall Space Flight Center (MSFC)

Early Flight Fission Test Facility (EFF-TF) electric heaters
are used to simulate the heat from nuclear fuel to test

potential space fission power and propulsion systems. To
allow early utilization, nuclear system designs must be

relatively simple, easy to fabricate, and easy to test using

non-nuclear heaters to closely mimic heat from fission. In

this test strategy, specialized electric heaters are used to

simulate the heat from nuclear fuel, allowing one to

develop an understanding of individual components and
integrated system operation without the cost, time and

safety concerns associated with nuclear testing. Electric

heaters have been used for this purpose in numerous

terrestrial and space reactor test and development
programs. 1-5The thermal simulators (heaters) developed at

the EFF-TF have been applied in a variety of space reactor

concepts for power or propulsion applications, including

heat pipe, direct gas, and liquid metal cooled reactor
systems. 6-9To accurately represent the fuel, the simulators

should be capable of matching the overall properties of the

nuclear fuel elements rather than simply matching the fuel

element temperatures during nominal operation. In

addition to matching the total core power and core power

profile (axial and radial), this includes matching thermal
stresses in the pin, effective radial pin conductivities, and

transient pin characteristics (affected by the effective radial

pin density and heat capacity) during both static and

dynamic test conditions:
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Thermal simulators previously designed and tested at
the EFF-TF were constructed to meet the individual pin

power levels and to roughly emulate the axial power
distribution of specific reactor designs. _°'H The current

design effort focuses on developing thermal simulators that

are fully instrumented and that mimic the transient nuclear

fuel pin performance under typical transient operations.

II. DESIGN PROCESS

A rigorous simulator design process begins with the

definition of the nuclear reactor design and

characterization of the nuclear fuel pin performance. Given

this information, the simulator design can commence with

iterative conceptual design. Comparison of fuel pin and
simulator performance is made at the outer surface of the

fuel pin clad and the thermal simulator sheath, assessing

the temperature variation at the clad or sheath surface as a

function of axial position during steady state operation at

nominal pin power levels and as a function of time during
prescribed transient operations (e.g. ±25% power, :k25%

coolant mass flow rate, and full shutdown).

The EFF-TF is currently working toward the potential

development of an affordable fission surface power (FSP)

system that could be deployed on the Lunar surface.
Through a strong partnership with engineers at the Los

Alamos National Laboratory (LANL), conceptual reactor

designs are translated into hardware for non-nuclear testing
at NASA MSFC. A liquid metal cooled reactor was

selected for further reactor design and test activities. This

design was derived from the only fission system that the

United States has deployed for space operation, the

Systems for Nuclear Auxiliary Power (SNAP) 10a reactor,
which was launched in 1965.12 This "best estimate"

reactor design was selected in early 2006 to allow

hardware development tests to proceed. Development of
test hardware and test techniques for a "best estimate"

design allows engineers at MSFC to assess the feasibility
of select design features and to work through fabrication

issues associated with potential future hardware

development.
Simulators developed prior to the current effort did

not include instrumentation within the simulator itself;
instead, core temperatures wet:e discerned using

thermocouples (TCs) inserted into open regions of the core

where possible (e.g. heat pipe cooled reactor), mounted to
the outer core vessel or inserted in the coolant flow (gas

cooled and initial liquid metal cooled systems). One of the

primary goals of the simulator development at MSFC is to

develop simulators that can be fully instmmented to

directly measure the axial pin temperatures throughout the
system operation. A full core array might include ~100-

500 pins; while only a fraction of these pins would be

instrumented, careful placement of instrumented simulator

elements that takes advantage of core symmetry will allow

full characterization of the axial and radial core

temperatures. A few select positions should also be
instrumented to ensure that off-nominal performance (e.g.

skewed power profiles) can be detected.

li.A. Baseline Reactor Design

Current simulator development is based on a potential

Fission Surface Power Primary Test Circuit (FSP-PTC)

reactor design. This design is a derivative of the SNAP
reactor designs 12 and could be deployed on the Lunar

surface. The design basis will be referred to as the SNAPf3

concept. The SNAPf3 is a thermal spectrum reactor

designed to operate at 98 kWt (25 kWe) with reactor

cooling provided by pumped liquid metal (sodium

potassium, NaK-78) at inlet and outlet temperatures of 840

K and 880 K, respectively. The SNAPf3 incorporates 114
UZrH fuel pins, yielding an average pin power of 0.86 kW

thermal (kWt); the peak-to-average power ratio of 1.24,

calculated with the neutron transport code MCNPX, yields

a maximum pin power of 1.07 kWt. The overall core

assembly is constructed from stainless steel 316 (SS316).

ILB. Initial Simulator Design

Prior to receiving detailed requirements regarding the

desired thermal simulator performance under static and
transient conditions for the SNAPf3 concept (the first step

in a thorough iterative design process), a design and'

fabrication feasibility study was initiated to allow
hardware work to progress. The primary objective of this

exercise was to scope out potentially feasible design

concepts and to work through any potential manufacturing

issues given the geometry and total power requirements for

a SNAPf3 fuel pin. Note that the main difference between

this and the primary, high fidelity simulator design
development is that the nuclear design is used only to

produce a rough conceptual design for the simulator
without completing the detailed performance optimization

that seeks to achieve transient performance matching. This

"initial" simulator design is then used as a starting point for
the iterative, high fidelity conceptual design while

answering various hardware feasibility questions.
Design criteria established for the initial simulator

design require that the simulator:

1. Meet the geometric and power requirements of the
baseline reactor design;

2. Accommodate testing of various axial power

profiles without full disassembly;

3. Incorporate imbedded instrumentation; and
4. Minimize simulator disturbance of the coolant flow

plenum.

In order to match the pin thermal stresses and to adhere to

the core material composition where possible, SS316 was

selected for the simulator sheath (corresponding to the fuel
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Fig. I. Initial instrumented simulator design.
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A schematic of the nuclear fuel pin and simulator
concepts is provided in Fig. 2. The initial thermal simulator
design (Fig. 2b) is constructed using a graphite heater
element, a solid alumina insulator, and a SS316 sheath.
Gaps between the graphite/alumina and aiumina/SS3l6 are
filled by high purity helium gas at 100 torr. TC grooves
(0.280101, 0.011 ") cut into the sheath OD track the sheath
contour and exit through small holes cut into the shoulder;
these holes are continued through the threaded mounting
end and are completely contained within the threads.
Matching grooves are cut into the 00 of the insulator
(0.53nun, 0.021 ") to allow placement of TCs or fiber
optics. An alternate "stage 2" simulator, designed and
procured at the same time as the initial design, reduces the
OD of the solid alumina and allows the second gas gap to
be filled with a material selected to better match the fuel
pin perfomJance. Because the engineering design and
procurement process can be very extended) design
decisions often have to be made very early in the design
process to allow fabrication issues to be addressed while
tbe high fidelity design progresses. Lessons learned
through the initial simulator design and fabrication are
currently being incorporated in high fidelity simulator
design.

(b) (c)
Fig. 2. Conceptual sketches for the (a) UZrH fuel element)

(b) initial simulator design and (c) "stage 2" simulator design.

pin clad material). Additionally, simulator geometric
dimensions (length and outer sheath diameter) were
selected to correspond to that of the fuel pin clad.

Tbe primary purpose in designing for heater swap-out
(requirement 2) is to allow testing of various power
profiles within the same overall core configuration without
requiring tilat NaK be flushed from the system.
Additionally, it is anticipated that the simulator sheaths
will be welded to the full core vessel to ensure reliable
seals, such that it will not be possible to swap out the full
simulator assembly (including sheath and imbedded TCs)
even if the liquid metal is flushed from the core.

The current design allows 13 TCs (or fiber optics) to
be installed in the simulator; 6 TCs on the sheath outer
diameter (OD), 6 TCs on the sheath inner diameter (ill)
and one TC at the centerline of the heater element. TCs
are used for initial simulator tests in a high purity helium
environment and with a water-cooled calorimeter; later
testing in a NaK flow cell, which emulates the NaK flow
path around a single simulator, will incorporate 3 fiber
optics on the ID of the sheath to provide additional
temperature distribution data. Fiber optic instrumentation
can allow temperature measurement at intervals as small as

. IJ bone cenllmeter, ut they have a delayed time response
relative to TCs and, therefore, are not sufficient for real
time feedback control. Control for the NaK flow cell and
future core array testing will rely on TC instrumentation.

A simulator design that incorporates a necked down
region was pursued in accordance with requ.irements 2 and
4 above. In the nuclear fueled design, the fuel pins do not
penetrate the coolant flow plenulll but are instead anchored
at a mounting plate at the plenum boundary. However,
simulators require penetration through this region to allow
power inlet/outlet to the individual pins. Power integration
becomes more complex if the reactor design requires a
pressure vessel or if the selected coolant is electrically
conductive, as in liquid metal cooled systems. Integration
is accomplished by extending the simulator sheath tilrough
the flow plenum, which can impact the flow dynamics. Ln
attempt to minimize this impact, the sheath OD is reduced
as much as possible through the plenum, while still
allowing sufficient clearance for electrical connections and
heater element removal. The current design reduces the
cross sectional area of the simulators in the plenum region
to just one sixth of the area that would be taken if the
simulator OD was held constant through this region,
reducing the impact on the flow distribution within the
NaK plenum. Computational fluid dynamics (CFD)
analysis is planned to quantify this benefit but has not yet
been completed due to limited resource availability. This
simulator design concept is shown in Fig. 1.
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II.C. High Fidelity Simulator Design

After initial simulator designs (Figs. 1, 2) were

complete and procurements placed, detailed pin

performance criteria were received from LANL reactor
designers, allowing the high fidelity simulator design to

officially commence. A "first cut" material selec'_ion is

made based on a simplified one dimensional analysis of

pin performance during steady state operation at a selected

axial position. Applicable equations are provided in

equations (1) and (2).
In equation (1), T,,o_,Fe represents the maximum fuel

element temperature, and each term represents the

temperature rise from the bulk coolant temperature, Tb,/k,

across each subsequent layer of the element. Sequentially,

these terms represent the temperature drop (from T,,_.Fe)

across the fuel, gas gap, clad liner, fuel pin clad, and

convective cooling of the clad. Equation (2) provides the
maximum simulator temperature, T,,_,,s_,,,, and the

individual terms represent tile temperature drop across the

heater element, first gas gap, insulator layer, second gas

gap (Fig. 2b design), slurry material fill (Fig. 2c), sheath,

and convective cooling of the sheath. In each case, the

given symbols are defined as such: k, thermal conductivity;

h, convection coefficient; Rg, average gap radius; Ro, Rj,
outer and inner layer radius.

Following 1-D analysis, feasible concepts are input
into a detailed three-dimensional model developed using
Thermal Desktop (TD). TM Static and dynamic fuel pin

performance is determined using SINDA/FLUINT thermal
analysis software (which interfaces with TD), Is and

comparison is made between the expected nuclear

performance and the performance of conceptual thermal
simulator designs.

For assessment of the initial simulator performance a

symmetric simulator is modeled in TD for SindaJFluiut

analysis; no attempt is made to model end effects. Due to

the additional mass at either end of the simulator (bottle

neck extension and end cap), the model is expected to

predict higher than measured temperatures at either end of
the simulator. This will be shown in the test and analysis

results provided for the initial simulator design (see III.B).

III. CURRENT HARDWARE DEVELOPMENT

AND TESTING

The initial instrumented thermal simulator (Fig. 2b

design) has been fabricated and assembled and initial
testing is currently under way. Theoretical and

experimental analysis of potential fill materials to replace

the second He gas gap (Fig. 2c design) has also
commenced.

IIZA. Initial Simulator Assembly

Simulator hardware currently under test is shown in

Fig. 3, in which the locations for the sheath and insulator

TCs are identified. TCs are run through the TC feed holes
on the bottle neck end of the sheath and lie in grooves

along the length of the sheath. The openings at the
shoulder of the simulator will be brazed closed prior to

final assembly and testing in NaK. The tip of each TC is

held in position using a 0.005 cm (0.002") thick, 2.5 cm

(1") long piece of nickel foil that is tack welded to the
sheath surface.

Assembly of the initial instrumented simulator

hardware is shown in Fig. 4. In the photos shown, the
external TCs have already been installed. The internal TCs

are installed by first aligning the TCs in the grooves on the

bottle neck section of the insulator; these are held in place

temporarily using a small piece of tape that allow the TC
wires to move through the groove without slipping out of
the groove. Once the bottle neck piece is in place, the

straight cylindrical alumina sections can be installed. The
measurement end of each TC is secured at the desired

location on the alumina cylinders using alumina cement.
TCs are located at 1.9, 6.4, 16.5, 26.7, 36.8, and 41.3 cm

(0.75, 2.5, 6.5, 10.5, 14.5 and 16.25") on the insulator and

sheath, with subsequent TCs in adjacent grooves (30 °

apart). After all TCs have been installed, the end cap is

installed at the non-power end of the simulator. Prior to

test, the tape used to aid TC installation is removed and the

central graphite heater element is installed and connected

to the power supply.



Proceedings of Space Nuclear Conference 2007
Boston, Massachusetts, June 24-28 2007

Paper 2047

(a)

(b)
Fig. 3. [nilial instrumented simulator components: (a)

stainless steel sheath and (b) alumina insulators.

1l1.B. Initial Simulator Tests

To prevent any potential deformation of the simulator
sheath due to rapid heatulg, rapid cooling, or localized
heating, the power levels are approached in ramp fashion
over 30 minutes to minimize thermal stresses on the pin
and the maximum allowed sheath temperature is set to
650'C for tests in which no active cooling is provided to
the element. In the actual core environment, the clad
tempcrature is not expected to exceed 6l5'C (888 K) with
the fuel pin operating at 1075 W, as predicted by
SINDAIFLUTNT. The bare instrumented thermal simulator
is tested up to 625 W in a 100 torr belium environment.
The maximum tested power level will be increased to the
nominal operating levels of 860 and 1075 W (nomu,al
average and peak pin power in the SNAPf.l design) during
later tests that incorporate active beat removal using a
water cooled calorimeter or a flowing NaK environment.
but the same temperature limit will be imposed.

As seen in the comparison of the data presented in
Fig. 5, tbe predicted simulator sbeatb temperatures suggest
a relatively flat and symmetric axial temperature profile.
This results from tbe model representation of the simulator
as a purely symmetric geometry with constant diameter; no
attempt was made to represent the bottle-shaped end
section at the power lead end of tbe simulator or tile end
cap at the opposite end. A more accurate, detailed
representation of the axial simulator geometry is currently
heing added to the model to more accurately represent the
simulator and to better validate the thermal model.
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Initial transient testing of the thermal simulator has
been completed. Two cases were considered: a 25% power
increase from steady state operation at 500 W (to 625 W)
and a 20% power decrease from steady state operation at
625 W (to 500 W). Results are provided in Fig. 6 for
thermocouples located at 16.5 cm (6.5", TC9) and 26.7 cm
(10.5", TClO) on the simulator sheath, along with the

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

AxIal Posltlon (m)

Fig. 5. Analysis and experimental results for steady state
testing of the initial instrumented simulator.
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Fig. 4. Initial instrumented simulator assembly process.
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predicted simulator response at the axial midpoint from
SindaJFluint (transient initialized at time zero).

The analysis and experimental data indicate that the

simulator temperature returns to the original temperature
after a transient (see temperature at 500 W in Fig. 6a,b),

demonstrating that the simulator is not permanently

modified by operation at increased power and temperature.

Transient tests have been repeated on 4 separate test days;

representative results are presented in Fig. 6.
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Fig. 6. Transient thermal analysis and test data for (a) 25%

power increase from 500 to 625 W and (b) 20% power decrease

from 625 to 500 W.

Thermal analysis predicts slightly more rapid

heating/cooling of the element than observed

experimentally, suggesting that some of the parameters and

material properties used in the model may differ somewhat

from the actual configuration. Properties such as thermal
conductivity, density and specific heat are taken from the
literature, and emissivities (used in radiation calculations

across the gas gaps or from the outer sheath surface) are
estimated based on literature values and the visible

condition of the emiRing material. In the experimental

data, TCs 9 and 10 are located symmetrically about the

axial midpoint of the simulator. However, TC 10 was

consistently hotter in the transient data; this is also true of

the steady state data, in which the power lead end of the

simulator is approximately 40°C cooler at the power inlet

end at 625 W and at 500 W; the temperature difference

was reduced to -21°C at 250 W resulting from the lower

operating temperature. The asymmetry is likely due to the

larger heat sink at the power feed end of the simulator,

causing the temperature to be slightly more depressed at

that end. Additionally, the power feed end is "open,"

allowing radiation heat loss from the element in addition to

conductive losses (along the sheath and through the power

leads), although the view factor from the heater element to

the cool chamber wall is relatively small due to the

extended bottle shape.

III. C. Fill Material Analysis and Testing

Thermal analysis of a single fuel pin with a flowing

NaK boundary condition, having an inlet and outlet NaK

temperature of 567 and 607°C (840 and 880 K),

respectively, was compared to the predicted performance

of a thermal simulator with the same boundary condition.
As is evident from the results presented in Fig. 7, the

theoretical simulator performance is vastly improved by

omitting the second gas gaP and replacing the gas with a

thermal coupling material, such as powdered alumina.

610 ]
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"Powder'; solid + poe_er AI2Oa, Fig. 2(¢) -- Powder

605 "Solid'; solid AI20_. Fig. 2(b) -- Solid

-- Fuel Clad
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du Iil]_ a shutdovm transient, modelihg the

_95 simulator _th both constant power, QC,

and a shaped Q, as delived tom the f_el

590 pin analysis.

575 _

570

560

Time (s)

Fig. 7. Comparison of thermal analysis results for the

nuclear fuel pin and two proposed simulator designs (detailed in

Fig. 2).

A small test fixture (Fig. 8) was fabricated to

experimentally assess the performance of several thermal
coupling materials that could be used in simulator buildup

in attempt to match the effective fuel pin thermal

conductivity and thermal diffusivity with an electrically

heated simulator. The width of the container gap was

selected to be 0.18 cm (0.070"), corresponding to the gap

width in the Fig. 2c simulator design (shown with "powder
or slurry" label). TCs are installed in grooves on the inner
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and outer diameter of the vessel. with the measurement
point at the axial midpoint of the beated region. A sbort
high resistance heater element is installed at the center of
the test fixture to indirectly heat the powder.

0..1<.,

A series of tests indicate that packing fractions
acbieved for the tested powders range from 28% (AI,O,) to
53% (diamond) when compared to the theoretical material
density, resulting in measured thennal conductivities that
were approximately an order of magnitude less than
predicted values. Temperature measurements made with an
empty vessel indicated a reduced temperature drop relative
to the powder filled gap. This result suggests a higher
conductivity across thc gap if it is only filled with helium
gas and suggesting that the individual powder particles do
not make good thermal contact with one another and,
therefore, act more like a series of radiation shields that
inhibit heat transfer across the gap. However, the inner and
outer vessel walls were not thermally isolated, such that
that there was no mechanism preventing heat now along
the container walls (Fig. 9). This could potentially cause an
artificially high gap conductivity measurement if the heat
transfer along the container walls (from tbe ID to the aD
of the container) is significant relative to the heat transfer
across the container gap. Subsequent testing of alternate
fill materials will consider a redesigned test vessel in
which the chambcr walls are thermally isolated to further
clarify the test results.

TCLOUollOfl

PosSIble Heat P<lthl
f,onl He.llft Elftlwom.
MldMufit'd by It'd .I"OWl

I,
I,
I,
I,
I,
I

I,
I

I
Fig. 9. Ulustration of Potential Heat Paths from Heated TC

in Interior Wall to TC on Outer Wall of Test Vessel.

Cop

Due to the relatively poor performance of the tested
powder materials, an additional test was conducted for a
carbonaceous cement slurry (UCAR Grade C-34,
purchased from GrafTech, www.graflech.com). C-34 is
composed of powder and liquid components that can be
poured/injected into the test article gap using a small
syringe. In this case, the density calculated from the fill
volume and the mass of the test article before and afler fill
was approximately 94% of the predicted density. However,
lhe thermal conductivity determined from temperature
measurements across the cement filled contained was

Materials considered in this initial testing include
alumina (AI,O,), boron nitride (BN), aluminum nitride
(AIN) and natural diamond powders. Properties are
generally reported by vendors for the solid form of tbese
materials, but thermal properties can be highly dependent
on the packing fraction of a powder, and methods must be
established fill the region to a specified density
consistently each time a simulator is assembled.
Theoretical fill material properties are reported in Bragg
Sitton et al10 Powder fill for initial tests is completed
manually, with the aid of a metal "tamping" rod sized to fit
the region; the fill material is further compacted by a metal
gasket that is squeezed into place when the test fixture cap
is screwed onto the filled container.

(a)

(b)
Fig. 8. Thennal coupling test vessel (a) engineering design

and (b) hardware, prior to heater installation.



approximately one quarter that of the vendor reported
properties.

After completing tests at various power levels to
obtain approximate properties over a range of
temperatures, 3D x-ray analysis using computed
tomography (CT) was conducted for the cement filled test
article to further assess the uniformity of the filled region
of the test container (minimum CT slice tbickness and
pixel resolution is 0.1092 mm). As sbown in Fig. 10, the
CT images qualitatively reveal that the cement density was
not uniform in the gap, resulting in the marbling effect
seen in the images. It is uncertain if the lower density
regions resulted from a heterogeneous composition of the
cement mixture (due to poor blending of the components)
or from entrained air bubbles (resulting from manual
mixing conducted in a glass beaker in room air). Entrained
air bubbles could become voids when a vacuum
environment is attained for testing, or could be filled with
belium gas during test in the 600 torr helium environment
that was selected for tbis application.

Cb)
Fig. 10. CT results for the C-34 filled lest article; Ca) x-y

cross section with qualitative plot of material density at the
selected profile and (b) x-y and x-z images showing poor material
distribution (crosshairs on x·y show selected plane for x-z
image).

The calculated material packing fractions and
measured temperature data acquired for the tested
materials suggest that a slurry material, versus dry powder,
can be used to more effectively and reliably fill a narrow
gap in a simulator design, allowing one to attain properties
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much closer to theoretical values. However, CT analysis
indicates the need to refine the mixing and fill techniques
to provide uniform material composition and density in the
filled region. Although thermal analysis indicates that the
Ulemlal diffusivity (a = klpCp) of the tested cement is
lower than desired to match the fuel element performance,
a similar type of material (e.g. a conductive slurry) is being
sought for the high fidelity simulator design study. A slurry
hardens to become a permanent structure afIer it is baked
in, but because it is contained between the insulator
preform and the SS316 sheath it does not inhibit the ability
to swap out the central heating element to study alternate
power distributions. CT analysis will be used to develop a
fill technique that produces uniformilY in the filled region
and reproducibility between test articles.

IV. CO CLUSIO S AND FUTURE HIGH FlDELTY
SIMULATOR DEVELOPMENT

Fabrication of the initial advanced simulator hardware
has demonstrated the ability to install instrumentation
within the simulator structure without impinging on the
simulator performance, while maintaining the option of
heater element swap-out. However, the bottle shaped
region of Ule simulator has proven to be difficult to
fabricate for both the metal and ceramic components. Input
from the individual component vendors is being sought to
assist in refining and simplifying the design for the next
stage in simulator development. Base element testing of
the initial advanced simulator is now complete and testing
with active heat removal in a water cooled calorimeter is
set to commence, allowing testing to proceed at power
levels typical of a fuel element in the baseline reaclor
design.

Advanced thermal simulator designs are currently
being developed to further enhance the simulator
performance relative to the predicted nuclear fuel pin
performance. A variety of materials are currently being
studied via thermal analysis to determine an optimal
simulator design for transient performance matching,
focusing on slurry materials to avoid the problems noted
for powdered materials in the test results presented.

All initial testing has been conducted with constant
diameter graphite heater elements. Graphite heating
element designs with a modified cross section are now
being refined to precisely match the approximate cosine
shaped axial power distribution observed for a nuclear fuel
pin in the baseline reactor design, and il is anticipated that
multiple heater designs will be tested in the simulator
housing with active heat removal in the representative
NaK now cell. Although the central graphite heating
element has been adopted for baseline simulator design,
alternate heater designs are also being considered and, if
available in sufficient time, could also be incorporated in
the tesl plan for the current simulator dcsign.
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NOMENCLATURE

Tbulk: bulk coolant temperature (K)

Tinax: centerline temperature of fuel element or

simulator (K)

q': liner heat rate (W/m)

k: thermal conductivity (W/m-K)

R: radius (Note: Rg is an average gap radius) (m)
h: convective heat transfer coefficient (W/m2-K)

81: fuel element liner thickness (m)

9: material density (kg/m 3)

Cp: specific heat capacity (J/kg-K)

a: thermal diffusivity (m2/s)

Subscripts:
FE: fuel element

Sim: Simulator

f: fuel

l: liner

g: fuel gas gap
c: clad

s: sheath

x: simulator fill material

gl, g2: inner and outer simulator gas gaps
ei, co: clad, clad inner, clad outer

si, so: sheath, sheath inner, sheath outer
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