
Radio Sources Toward Galaxy Clusters at 30 GHz

K. Coble 1'2'3, M. Bonamente 4'5', J. E. Carlstrom 3'6, K'.' Dawson 7, N. Hasler 5, W. Holzapfel 7,

M. Joy 4, S. LaRoque 3, D. P. Marrone s'3, E. D. Reese 9

ABSTRACT

Extra-galactic radio sources are a significant contaminant in cosmic microwave

background and Sunyaev-Zel'dovich effect experiments. Deep interferometric ob-

servations with the BIMA and OVRO arrays are used to characterize the spatial,

spectral, and flux distributions of radio sources toward massive galaxy clusters

at 28.5 GHz. We compute counts of mJy source fluxes from 89 fields centered

on known massive galaxy clusters and 8 non-cluster fields. We find that source

counts in the inner regions of the cluster fields (within 0.5 arcmin of the cluster

center) are a factor of R o+43..... 2.s times higher than counts in the outer regions of

the cluster fields (radius greater than 0.5 arcmin). Counts in the outer regions

of the cluster fields are in turn a factor of q q+4.1 greater than those in the non-_"_-1.8

cluster fields. Counts in the non-cluster fields are consistent with extrapolations

from the results of other surveys. We compute spectral indices of mJy sources

in cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of

: 0.66 with an rms dispersion of 0.36, where flux _q c< _-_. The distribution

is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of

0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger

field sources measured by other surveys.
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1. INTRODUCTION

Extra-galactic radio sources are a significant contaminant in cosmic microwave back-

ground (CMB) and Sunyaev-Zel'dovich effect (SZE) experiments (e.g., see Holder (2002);

Knox et al. (2004); Tegmark et al. (2000)). Measurements of the cosmic microwave back-

ground and of the Sunyaev-Zel'dovich effect (Sunyaev & Zel'dovich 1970, 1972) have the

potential to yield a wealth of cosmological information if foreground contaminants are well-

understood. Models for the number counts of radio sources as a function of flux (De Zotti

et al. 2005; Toffolatti et al. 1999; Sokasian et al. 2001) have been derived from observations

at lower frequencies and extrapolated to microwave frequencies.

Radio sources are often associated with the clusters of galaxies themselves. This is a

potential source of bias for current and planned SZE surveys such as the Sunyaev-Zel'dovich

Array (SZA) 1, Arcminute Microkelvin Imager (AMI) 2, the Atacama Pathfinder Experiment

Sunyaev-Zel'dovich (APEX-SZ) survey a, the South Pole Telescope (SPT) 4, and the Atacama

Cosmology Telescope (ACT) 5. To understand the impact on planned SZE cluster surveys,

it is critical to characterize the spatial, spectral, and flux distribution of sources associated

with clusters.

Contaminating radio emission from extra-galactic sources at frequencies less than ap-

proximately 100 GHz is attributed to synchrotron radiation from active galactic nuclei (AGN)

and star-forming galaxies. The AGN-powered radio galaxies dominate the source counts at

high luminosities. At higher frequencies, the emission is attributed to dust emission from

star-forming galaxies. Observations of radio sources toward galaxy clusters at very low fre-

quencies (< 5 GHz) (e.g., Slee et al. (1983, 1998); Owen (1996); Ledlow & Owen (1995);

Reddy & Yun (2004)) show a strong central concentration of radio galaxies in clusters. The

distribution of synchrotron-emitting star-forming galaxies is found to be less centrally-peaked

in clusters (Rizza et al. 2003) than that of AGN-powered radio galaxies. At our observing

1SZA website: http://astro.uchicago.edu/§za

2AMI website: http://www.mrao.cam.ac.uk/telescopes/ami/

aAPEX-SZ website: http://bolo.berkeley.edu/apexsz

4SPT website: http://spt.uchicago.edu/

5ACT website: http://www.hep.upenn.edu/act/



frequency of 28.5 GHz and sensitivity level, radio sources powered by AGN dominate and

we refer to them henceforth as radio sources.

Several CMB experiments, such as WMAP (Bennett et al. 2003), DASI (Kovac et al.

2002), VSA (Cleary et al. 2005), and CBI (Mason et al. 2003), have measured microwave

source counts as a function of flux for sources brighter than about i0 mJy. There have

been two prior analyses of radio sources in SZE data taken with the Owens Valley Radio

Observatory (OVRO) 6 and Berkeley-Illinois-Maryland Association (BIMA) 7 arrays. Using a

sample of 56 fields centered on known massive galaxy clusters, Cooray et al. (1998) computed

counts and spectral indices of radio sources. Using the outer regions of 41 cluSter fields,

LaRoque et al. (2002) computed the normalization of source counts as a function of flux for

faint sources in SZE data. Tile data used in Cooray et al. (1998) and in LaRoque et al.

(2002) are subsets of the data presented in this paper.

In this paper we analyse faint (_ mJy) radio sources found serendipitously toward

massive galaxy clusters at 28.5 GHz from the OVRO/BIMA SZE imaging project. Charac-

terizing the spatial, spectral, and flux distribution at this relatively high frequency should

help improve projections for radio source contamination in SZE and CMB experiments at

frequencies of 30 GHz and higher. We use 89 fields centered on known massive galaxy

clusters and 8 non-cluster fields. The paper is organized as follows: Section 2 reviews the

observations, data reduction, field selection, and the measured source fluxes. In Section 3, we

compute spectral indices between 1.4 and 28.5 GHz using fluxes from our data and published

1.4 GHz surveys. In Section 4, we present source counts as a function of flux for cluster and

non-cluster fields as well as the angular radial dependence of counts in cluster fields. We

compare our results with those from other experiments and with theoretical models.

2. OBSERVATIONS

2.1. Observations

The 28.5 GHz observations were carried out with the Berkeley Illinois Maryland Asso-

ciation millimeter array (BIMA) during the summers of 1996 - 2002 and the Owens Valley

Radio Observatory (OVRO) during the summers of 1995 - 2001 as part of the OVRO/BIMA

SZE imaging project (see, for example, Reese et al. (2002) and Grego et al. (2001)). A total

of 62 cluster fields were observed at BIMA and 55 cluster fields were observed at OVRO.

6The OVRO mm-wave array is operated by Caltech with support from the National Science Foundation

7The BIMA array is operated with support from the National Science Foundation
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A total of 28 cluster fields were observed at both BIMA and OVRO, yielding observations

of 89 unique cluster fields. For the BIMA CMB finescale anisotropy project (Dawson et al.

2002, 2006), a total of 18 non-cluster fields were observed.

The BIMA array consists of ten 6.1 meter diameter telescopes with primary beams of

6.6 arcmin FWHM; nine of the ten BIMA telescopes were used for the 28.5 GHz obser-

vations. The OVRO array consists of six 10.4-meter telescopes, with primary beams of 4.2

arcmin FWHM; all six OVRO telescopes were used. The primary beams were measured holo-

graphically and were found to be well-approximated by Gaussians; we use the azimuthally

averaged measured beam responses in our analyses. For CMB observations at BIMA, the

array was set in a compact configuration to maximize brightness sensitivity. For cluster

observations at both OVRO and BIMA, most of the telescopes were also configured in a

compact configuration that provided dense u - v coverage to the shadowing limit, and one

or two telescopes were placed at longer baselines for higher angular resolution monitoring of

sources. The longest baselines used at OVRO and BIMA ranged from 70 to 140 meters for

the data presented here.

The telescopes were outfitted with cm-wave receivers (Carlstrom et al. 1996) equipped

with cryogenically cooled 26 - 36 GHz HEMT amplifiers (Pospieszalski et al. 1995). Typical

receiver temperatures were 11 K to 20 K, and when integrated with the OVRO and BIMA

telescopes yielded typical system temperatures scaled to above the atmosphere of 45 K to

55 K, and as low as 35 K. OVRO observations were correlated with an analog correlator

consisting of two 1 GHz bandwidth channels centered at 28.5 and 30 GHz. The u - v data

from the two channels were not combined before making maps or fitting sources to the data.

The OVRO correlator integration time was four minutes or less. BIMA observations were

correlated with a multi-channel hybrid correlator. After calibration, the u - v data were

reduced to a single 0.8 GHz wide bandwidth centered at 28.5 GHz. The BIMA correlator

integration time was 50 seconds.

Observations of cluster and CMB fields were interleaved every N 20 minutes with ob-

servations of a strong point source for phase calibration. Source data that was not bracketed

in time by phase calibrator data was discarded, as was data from baselines in which one of

the array elements is shadowed by another. Source data was also discarded if the bracket-

ing phase calibrator observations showed a discontinuity in the instrument phase response.

Lastly, source data was discarded if atmospheric phase fluctuations showed a loss of corre-

lation greater than a few percent on the long baseline observations of the phase calibrator.

Observations of the phase calibrators indicate the gain stability was stable to _ 1% over sev-

eral months. The absolute calibration is based on observations of Mars, with the brightness

temperature taken from the Rudy (1987) model. Further details of the observations and the



data reductioncanbe foundin Gregoet al. (2001)andReeseet al. (2002).

2.2. Field Selection

The cluster fields of the OVRO/BIMA SZE imaging project were chosento obtain
precisemeasurementsof the SZEin massivegalaxyclusters.Potentialtargetswerescreened
for strongradiosourcesusingarchivaldataat lowerfrequenciessuchasNVSS(Condonet al.
1998)andFIRST (White et al. 1997).In addition, if a strongsource(> 10- 20mJy) was
detectednearthe clustercenterin the initial 28.5GHzobservations,observationsceasedin
favorof other lesscontaminatedtargets. Dueto the constraintsof this fieldselection,wedo
not attemptto characterizethedistribution of sourcesbrighterthan 10mJy in this analysis.

The cluster fieldswerechosenmainly from X-ray catalogsand oneoptical survey,in-
cluding: (1) the ROSATBrightestClusterSurvey,BCS (Ebelinget al. 1997,1998,2000a;

Crawford et al. 1999), (2) the Einstein Observatory Extended Medium Sensitivity Survey,

EMSS (Gioia et al. 1990; Stocke et al. 1991; Gioia & Luppino 1994; Maccacaro et al. 1994),

(3) the ROSAT X-ray Brightest Abell Clusters, XBACS (Ebeling et al. 1996b,a), (4) the

Wide Angle ROSAT Pointed Survey, WARPS (Scharf et al. 1997; Jones et al. 1998; Fairley

et al. 2000; Ebeling et al. 2000b), (5) the Massive Cluster Survey, MACS (Ebeling et al.

2001a), and (6) the Red-Sequence Cluster Survey, RCS (Gladders & Yee 2005).

Clusters were selected from the BCS, EMSS, and XBACS X-ray catalogs on the basis

of high X-ray luminosity. Clusters from the WARPS and MACS surveys were selected for

X-ray l(lminosity and high red shiR. The 8 clusters selected for SZE observations from the

MACS survey form a complete redshift-selected flux-limited X-ray sample and were chosen

regardless of possible radio source contamination (LaRoque et al. 2003). A few optically

selected clusters were also provided by the RCS team. Table 1 lists the coordinates of the

pointing centers for the cluster fields.

The BIMA array was also used to observe 18 non-cluster fields for CMB anisotropy

measurements (Dawson et al. 2002, 2006). The pointing center coordinates for these fields

are provided in Table 2. Of these fields, only the 8 fields BDF14-BDF21 (Dawson et al.

2006) were chosen without regard to possible radio source contamination. The fields BDF4,

.and BDF6-BDF13 (Dawson et al. 2002) were chosen from the NVSS survey to have minimal

contamination from strong radio sources. The field HDF is centered on the Hubble Deep

Field and was also selected to have no strong radio sources. Only the 8 fields selected without

regard to source contamination are used in the analysis presented in this paper.
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2.3.. Source Fluxes

The positions and fluxes of 28.5 GHz sources and SZE decrements are determined using

the DIFMAP software package (Pearson et al. 1994). The SZE data consist of positions in

the Fourier domain (also called the u - v plane) and the visibilities--the complex Fourier

component pairs as functions of u and v, which are the Fourier conjugate variables to right

ascension and declination. DIFMAP is used to create a map from the u - v data using all

baselines and natural weighting (_ or-2). Source and decrement positions are determined

from this map. Emission sources are initally assumed to be pointlike, while the SZE decre-

ment (if any) is approximated with an elliptical, isothermal/3 model. The fourier transforms

of the model components are jointly fit to the observed visibilities. The image of the residuals

is searched for additional sources at greater than five times the image rms and any sources

found in this way are added to the model and jointly refitted. Noise estimates are extracted

from the final residual images.

The source fluxes determined in this way depend on the coverage of the u - v plane for

sources with structure on scales larger than that probed by the longest baselines (30 arcsec

to 15 arcsec for the 70 to 140 meter maximum baselines employed here). To enable a uniform

comparison with lower frequency data from the NVSS, which has an angular resolution of

45 arcsec, we repeat the u - v fitting procedure considering only baselines shorter than 4 kA.

This provides matched angular resolution at a cost of typically 40- 50% of our data, yielding

a sensitivity loss of 30 - 40%. We also measured the flux within an extended area centered

on each radio source in the CLEANed maps made from the 4 kA cut and full u - v data. We

compared the fluxes obtained from the u - v model fits and the analysis of the CLEANed

maps from both the cut and full u - v data. We find the fluxes found with the four methods

agree for 104 out of 122 sources, double-counting sources detected with both arrays because

of the difference in sensitivity and u - v coverage. In these cases we conclude that the point

source approximation is adequate for our angular resolution and sensitivity and we report

the fluxes and noise levels determined from all baselines in Tables 1 and 2. The remaining

18 sources have best-fit point source fluxes that depend on our choice of u - v range. We

find, however, that the total flux recovered by the CLEAN algorithm in the region around

each source in the full data set matches that obtained for the flux found with only the short

baselines for all but one of these sources. In these cases we use the flux measured in the

CLEANed map made from the full data set. Finally, in one case (MACS J0717.5+3745,

source 1) we do not recover the full short-baseline flux when cleaning the image of the full

data set. In this case we have used the flux and noise measured for just the baselines shorter

than 4 kA for both sources in the field.

Table 1 lists the 28.5 GHz beam attenuation-corrected fluxes for sources detected in



the BIMA and OVROclusterfields and the centroidof the SZdecrement,if any. Noiseis
reportedfor the field centerin column 7, while the uncertainty in the flux of each source

(column 15) properly accounts for the beam profile. The radial distance from the pointing

center, or the SZ decrement if observed, to each source is also provided. At the 5(7-level or

greater we detect 62 sources in the 62 BIMA cluster fields and 56 sources in the 55 OVRO

cluster fields. A total of 23 sources are detected at both BIMA and OVRO, yielding 95

unique sources in the 89 cluster fields. For sources observed at both BIMA and OVRO,

the flux measurements are in good agreement. Source fluxes, positions, and noise levels for

the non-cluster fields are given in Table 2. We detect two sources at _> 5(7 in the 8 BIMA

non-cluster fields which were selected without regard to possible source contamination.

The fluxes in Tables 1 and 2 do not account for attenuation due to temporal and spectral

averaging of the u - v data, efl'ects which are far less significant than the beam attenuation.

Averaging of interferometric data in the u - v plane leads to attenuation of the amplitude

response as a function of angular distance from the field center that depends on the telescope

array configuration. However, these effects have been restricted to insignificant levels as part
B A_

of the experimental design. Tile bandwidth constraint translates to @ × _ < i, where -V-

is the fractional bandwidth, D is the diameter of an array element and B is the baseline.
B

For the longest baselines we find values of @ × _ to be 0.32 - 0.64 and 0.24 - 0.47 for the

BIMA and OVRO observations, respectively. For measurements using only short baselines

(< 4k_) these values decrease to 0.18 and 0.13, respectively. The correspondence between our

measured fluxes using all baselines and just the short baselines also suggests that bandwidth
27r B

smearing is not important. The integration time constraint translates to _-_tint × _ < I,

where tint is the u - v averaging time in hours. For the longest baselines and integration
27r B

times we find values of _tint x _ to be less than 0.0035 and 0.001 for the BIMA and OVRO

observations, respectively.

3. SPECTRAL INDICES

We use the results of surveys at lower observing frequency to constrain the spectral

indices of radio sources detected with the BIMA/OVRO observations. Fluxes at 1.4 GHz

are taken primarily from the NVSS catalog, which has a resolution of 45 arcsec and limiting

peak source brightness of 2.5 mJy. We obtain 1.4 GHz fluxes from the FIRST catalog

(limiting flux of 1 mJy and resolution of 5 arcsec) for several additional sources which were

below the NVSS detection threshold. We obtain 1.4 GHz fluxes from VLA archival maps for

several sources which were not in the NVSS or FIRST catalogs. Of the 95 sources in cluster

fields, 88 of them have unambiguous counterparts in the NVSS, FIRST, or VLA archival
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data. All 28.5 GHz sources within 0.5 arcmin of the cluster centers were confirmed to have

_fiounterparts at 1.4 GHz. The 1.4 GHz fluxes and the results of a literature search for low

frequency measurements of sources not identified in the NVSS, FIRST, or VLA surveys are

given in Table i. Unless otherwise noted, the tabulated 1.4 GHz fluxes are from NVSS.

For the 7 sources that do not have unambiguous 1.4 GHz counterparts in NVSS, FIRST,

or the VLA archive, we assume a 1.4 GHz flux equal to three times the survey noise. In

reality, the true 1.4 GHz fluxes typically will be weaker and the true spectral indices of

these sources more shallow. However, because there are only 7 sources lacking 1.4 GHz

detections, the bias in the resulting mean spectral index for all sources in cluster fields

computed below is small. Furthermore, because the 1.4 and 28.5 GHz measurements were

not made contemporaneously, variability of the sources may contribute to a broadening in

the distribution of spectral indices.

We compute spectral indices between 1.4 and 28.5 GHz for sources in cluster fields

(selected at 28.5 GHz) where index c_ is defined by S e( p-_. If we use only the 88 sources

with detections in NVSS, FIRST, or the VLA maps and omit the 7 sources lacking 1.4 GHz

detections, the resulting mean spectral index is c_ = 0.66 with an rms dispersion of 0.36.

If we include limits for the 7 sources lacking 1.4 GHz detections, the mean spectral index

c_ = 0.60 with an rms dispersion of 0.42, and a median index of 0.71, indicating that the

bias due to omitting these 7 sources is small. We use the 88 sources with NVSS, FIRST, or

VLA counterparts for the remainder of our spectral index analysis. A histogram of spectral

indices for these 88 sources is shown in Figure I. Characterizations of the spectral index

distribution are given in Table 3. The distribution has a tail at low-ct and is not well fit by

a Gaussian. We therefore also compute the median of the distribution, as well as the 25th

and 75th percentiles and find them to be 0.72, 0.51, and 0.92, respectively.

While the beam attenuation factor is potentially a significant source of uncertainty for

the 28.5 GHz sources, we find that excluding sources at large radius (attenuation factor

greater than 5.0) does not change the results. We choose a maximum cutoff outer radius of

6.6 arcmin for BIMA and 4.2 arcmin for OVRO, corresponding to a beam attenuation factor

of about 30 and spanning a region twice the FWHM of the primary beam. When a source

has observations from both BIMA and OVRO, we choose the one with the best combination

of sensitivity and survey area.

The radial distribution of spectral indices is shown in Figure 2; there is no apparent

trend in spectral index with radius from the cluster center. We compare the spectral index

distribution of the central regions of cluster fields (r < 0.5 arcmin) with the distribution of

the outer regions of cluster fields (r > 0.5 arcmin) and find no significant differences. The

mean spectral index for the central regions of cluster fields is _ = 0.75 with an rms dispersion
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of 0.24 and the mean spectral index for the outer regions of cluster fields is c_ = 0.63 with an

rms dispersion of 0.38. The medians are 0.76 [0.56 (25%), 0.94 (75%)] for the q_ntral regions

and 0.71 [0.42 (25%), 0.88 (75_,)] for the outer regions. The results of a Kolmogorov-Smirnov

(KS) test indicate that the distribution of spectral indices of sources in the inner regions of

cluster fields is consistent with that of the outer regions. The maximum distance between

their cumulative distribution functions is 0.18, corresponding to an 64% probability that the

two samples are drawn from the same distribution. Since we have few sources in non-cluster

fields, we do not compute an average spectral index for this group.

We compare the spectral index distribution of our mJy cluster sources to those of some-

what brighter field sources measured by other groups (Mason et al. 2003; Waldram et al.

2003; Bolton et al. 2004); a summary is given in Table 3. The CBI group (Mason et al.

2003) finds a spectral index from 1.4 to 31 GHz of 0.45 with an rms dispersion of 0.37. As

a follow-up to the 9C survey (Waldram et al. 2003), BoRon et al. (2004) compute indices

between several frequencies from 1.4 to 43 GHz, distinguishing between weak and strong

sources. The mean spectral index for the lower flux sample is _ 0.4 for the lower frequen-

cies, and steepens to _ 0.9 from 15.2 to 43 GHz. Waldram et al. (2003) and BoRon et al.

(2004) also find a greater percentage of the strong sources have a flat or rising spectrum.

Our spectral indices are somewhat steeper than the spectral indices measured by CBI

and much steeper than those of the _ Jy sources (c_ _ 0) measured by WMAP (Bennett et al.

2003). When comparing source surveys, it is essential to consider the flux and frequency

at which the sources are selected. We expect a survey of strong sources selected at high

frequency to have a flatter spectral index than a survey of low flux sources selected at lower

frequency. Our results are for a relatively low flux survey selected at high frequency, and it

is interesting that the spectral index is relatively steep. The sources in our survey primarily

lie in the environments of rich. galaxy clusters and it is possible that there are significant

differences between this population of sources and that which is found in surveys that do not

target clusters. Our spectral indices for radio sources towards clusters are similar to those

found towards clusters at 2.7 GHz by Slee et al. (1983). They find that spectral indices

are steeper in clusters than in the field and note a trend of shallower spectral indices with

increasing cluster radius. Using our mean spectral index of 0.66, the lower flux limit of 0.12

Jy at 2.7 GHz from Slee et al. (1983) translates to 25 mJy at 28.5 GHz, which is slightly

stronger than the upper limit of our source sample.

As we look at sources witlh higher redshift, the emission frequency of the radiation in-

creases. We might, therefore, expect these sources to have steeper spectral indices. However,

the sources are selected at higher frequency which might bias the sample toward flatter spec-

tral indices. In Figure 3, we plot spectral index as a function of cluster redshift and see no
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cleartrend. Themeanandrmsdispersionin thespectralindexare0.67and0.37for z < 0.5,

.... compared to 0.64 and 0.29 for z > 0.5, and 0.76 and _.20 for z > 0.8.

4. SOURCE COUNTS

4.1. Analysis

With the field selection effects in mind from Section 2.2, we compute the differential

source counts as a function of flux, dN/dS, in several flux bins, accounting for the varying

noise levels from field to field. We chose the flux bins in order to maximize the number of

sources used and to have a similar number of sources in each bin.

The survey boundary of each field for a given flux bin is set by the noise level of the

field. For each flux bin and field, the minimum level in the flux bin sets the allowable

beam-corrected noise level and the corresponding maximum attenuation radius for the field.

For example, for > 5a sources in a flux bin of 1.5 - 2.5 mJy, the allowable beam-corrected

noise level is 1.5/5 = 0.3 mJy. This noise level sets the attenuation radius for the field, the

radius at which the beam attenuation factor = (beam corrected noise level)/(uncorrected

noise level). We set an outer boundary on the survey area for the field using the lesser of the

attenuation radius or a maximum cutoff outer radius away from the field pointing center. We

choose a maximum cutoff outer radius of 6.6 arcmin for BIMA and 4.2 arcmin for OVRO,

corresponding to a beam attenuation factor of about 30 and spanning a region twice the

FWHM of the primary beam. We treat this as a hard maximum cutoff; even if the noise is

sufficiently low to allow us to go to greater radii in our sampling of a field, we do not. The

outer boundary is measured relative to the field pointing center.

We further break the data into radial bins from the cluster center. The cluster center

is determined by the location of the SZE decrement. For fields without a SZE decrement

detection, the pointing center is used as the center of the field. For each field, flux bin, and

radial bin, we compute the survey area within the boundary set by the radial bin and the

noise level for the field. Typically the survey region for a given field, flux bin, and radial bin

is a circle or annulus, sometimes cut off by the noise boundary. We compute the total survey

area for each flux bin by adding up the area in all the fields. When a field has observations

from both BIMA and OVRO, we choose the one with the best combination of sensitivity

and survey area.

For each field we identify all __ 5_ sources in the survey area that fall between the

minimum and maximum fluxes of each flux bin. We count up the sources in each flux bin

to get raw total source counts in the total survey area. The errors for the raw counts in



-11-

eachbin areassumedto bePoissondistributed. Differentialsourcecounts(dN/dS) andthe
associatederrorsarecalculatedby dividing the total raw countsin eachbin by the total
surveyareafor the correspondingflux bin and by the flux bin width.

4.2. Results and Discussion

Differentialsourcecounts(dN/dS), the numberOfsources,andthe surveyareafor each
flux bin aregivenin Figure4 and Table4 for the centralregionsof the clusterfields (radii
< 0.5 arcmin), the outer regions of the cluster fields (radii > 0.5 arcmin), and for the non-

cluster fields. The error bars on dN/dS are the Poisson errors on the raw source counts and

do not include other sources of uncertainty. Typical raw counts of sources are _ 4 in each

flux bin for the inner regions of the cluster fields and _ 8 for the outer cluster regions. We

only detect two _> 5o sources in the 8 non-cluster fields that were selected without regard to

possible radio source contamination.

The differential source counts can be described by a power law , dN(S)/dS = No(S/So) -'_ ,

where So = i mJy for this analysis. Best fits using a Markov chain algorithm which simulta-

neously estimate the normalizations for the inner, outer, non-cluster regions, and a common

power law index are shown with the data in Figure 4 and are given in Table 5. The best fit

common power law index is 7 := -1.98 i 0.20. Best fit power-laws for the central and outer

cluster regions individually are also shown in Figure 4 and Table 5. As a cross-check, we

compute dN/dS for the BIMA and OVRO fields separately and find good agreement; see

Figure 5. All uncertainties represent 68% confidence intervals unless otherwise noted.

Source counts are found to be greatly elevated toward the central core of the cluster

fields. Using the normalizations from the best simultaneous fit, source counts are found to be

a factor of _ o+4.a higher in the central regions than in the outer regions of the cluster fields._'_'--2.8

Counts are also elevated in the outer regions of the cluster fields relative to the non-cluster

fields by a factor of u u+4.1 +297_5% of in the inner.... 1.s. These overdensities imply that sources
7N+16o/regions are cluster members, as are ---37/o of sources in the outer regions. A comparable

overabundance of radio sources toward galaxy clusters is also seen at lower radio frequencies

(e.g., Slee et al. (1983, 1998); Owen (1996); Ledlow & Owen (1995); Reddy & Yun (2004);

Rizza et al. (2003)).

We considered the possibility that gravitational lensing of background radio galaxies

could produce the overabundance of detected radio sources in the direction of massive galaxy

clusters. A gravitational lens with magnification factor # will modify the source counts

to dN'(S)/dS = (dN(S/p)/dS}/# 2. If the unlensed source counts can be described by a
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power law, dN(S)/dS o( S -s, then the source counts will be changed by a factor B =

(dN'(S)/dS)./(dN(S)/dS) = #-2+s (Blain 2002). The mean magnifigation in the BIMA and

OVRO cluster fields is estimated by Cooray et al. (1998) to be # _ 1.4. In this analysis, we

temporarily assume that all sources.are background sources drawn from the same distribution

and capable of being lensed. Using the best joint fit power law index of 7 = 1.98 + 0.20

we expect a factor of B a oQ+ 0.0r i.e., no change in source counts in the direction ofz ..... 0.06,

the clusters due to lensing. Therefore we conclude that, regardless of the magnification,

gravitational lensing can not be responsible for the significant excess of sources seen in the

direction of clusters.

In Figure 6, we compare our measurements of dN/dS with the De Zotti et al. (2005)

30 GHz model and with measurements from other experiments, including WMAP, DASI,

VSA, and CBI, which all examine non-cluster fields. We present source counts in terms

of lOglo(S5/2dN/dS), for ease of comparison. Counts in our non-cluster fields are consistent

with those expected from the model and from extrapolations from other experiments, though

with only two _> 5_ sources in those fields, the sample variance is large. Thesource counts

toward cluster fields have a similar power law slope, but have a higher normalization than

expected from extrapolations of measurements of sky not concentrated on clusters.

5. CONCLUSIONS

From deep interferometric observations at 28.5 GHz of unresolved radio sources toward

89 fields centered on massive galaxy clusters and 8 non-cluster fields, we find that differential

source counts are greatly elevated in the centers of cluster fields. Counts are a factor of _ o+4.a_"_-2.8

higher in central regions (radii _< 0.5 arcmin) than in the outer regions (radii >_ 0.5 arcmin)

of the cluster fields. Counts in our non-cluster fields are consistent with those expected from

models and from extrapolations from other experiments. Additionally, source counts in the

outer regions of cluster fields are a factor of q q+4.1 higher than counts in non-cluster fields._,.o_1. 8

Using the NVSS and other surveys, we find a mean spectral index for sources in cluster

fields between 1.4 and 28.5 GHz of c_ = 0.66 with rms dispersion of 0.36, where flux S c_ u -_.

The distribution is skewed, with a median spectral index of 0.72 [0.51 (25%), 0.92 (75%)].

This is steeper than spectral indices of stronger (_ 20 mJy) field sources, and much steeper

than those of much stronger (_ Jy) field sources measured by other surveys. No significant

differences are found between the distributions of the spectral indices of sources in the inner

and outer regions of the clusters.

These results can be used for improving forecasts for radio source contamination of SZE
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and CMB experiments.The clusterfieldsusedin this workwerechosento containmassive
clustersand the sourceswereidentifiedat 28.5GI-Iz.We anticipatethat the SZAand other
instrumentswill beableto extendthis workto lessmassiveclustersandto sourcesidentified
at yet higherfrequencies.

We gratefully acknowledgethe excellentsupport of the BIMA and OVRO staff over
the manyyearsof the OVRO/BIMA SZEprogram,including J.R. Forster,C. Giovanine,
R. Lawrence,S. Padin, R. Plambeck,S. Scott and D. Woody. We thank C. Alexander,
A. Cooray,L. Grego,G. Holder,A. Miller, J. Mohr, S. Patel and P. Whitehousefor their
contributionsto the SZEinstrumentation,observations,andanalysis.WethankG. DeZotti
for providingthe modelof differentialsourcecounts.

This workwassupported!inpart by NASA LTSA grant NAG5-7985,NSFgrantsPHY-
0114422andAST-0096913,the David andLucilePackardFoundation,the McDonnellFoun-
dation, and a MSFC director's discretionaryaward. Researchat the OwensValley Radio
Observatoryand the Berkeley--Illinois-MarylandArray wassupportedby NSF grantsAST
99-81546and 02-28963.KC wassupportedby NSF grant AST-0104465under the Astron-
omy andAstrophysicsPostdoctoralFellowshipprogramwhile at the Universityof Chicago
and the Adler Planetariumand AstronomyMuseum. SL acknowledgessupport from the
NASA GraduateStudentResearchersProgram.

REFERENCES

Allen, S.W. et al. 1992,MNRAS,259,67

Bennett,C. L. et al. 2003,ApJS, 148,97

Blain, A. W. 2002,MNRAS,330,219

BShringer,H. et al. 2000,ApJS, 129,435

Bolton,R. C. et al. 2004,MNRAS, 354,485

Carlstrom,J. E., Joy, M., & Grego,L. 1996,ApJ, 456,L75

Cleary,K. A. et al. 2005,MNRAS,360,340

Condon,J. J., Cotton, W. D., Greisen,E. W., Yin, Q. F., Perley,R. A., Taylor, G. B., &
Broderick,J. J. 1998,AJ, 115,1693

Cooray,A. R., Grego,L., Holzapfel,W. L., Joy, M., & Carlstrom,J. E. 1998,AJ, 115,1388



- 14-

Crawford,C. S., Allen, S. W., Ebeling,H., Edge,A. C., & Fabian,A. C. 1999,MNRAS,
3Q6,857

Crawford, C. S., Edge,A. C., Fabian,A. C., Allen, S. W., Bohringer,H., Ebeling, H.,
McMahon,R, G., & Voges,W. 1995,MNRAS,274, 75

Dahle, H., Kaiser, N., Irgens, R. J., Lilje, P. B., & Maddox, S. J. 2002, ApJS, 139, 313

Dawson, K. S., Holzapfel, W. L., Carlstrom, J. E., Joy, M., & LaRoque, S. J. 2006, ApJ, in

press

Dawson, K. S., Holzapfel, W. L., Carlstrom, J. E., Joy, M., LaRoque, S. J., Miller, A. D., &

Nagai, D. 2002, ApJ, 581, 86

de Zotti, G., Ricci, R., Mesa, D., Silva, L., Mazzotta, P., Toffolatti, L., & Gonzalez-Nuevo,

J. 2002, A&A, 431,893

Donahue, M., Voit, G. M., Scharf, C. A., Gioia, I. M., Mullis, C. R., Hughes, J. P., & Stocke,

J. T. 1999, ApJ, 527, 525

Dressier, A., Smail, I., Poggianti, B. M., Butcher, H., Couch, W. J., Ellis, R. S., & Oemler,

A. J. 1999, ApJS, 122, 51

Ebeling, H., Edge, A. C., Allen, S. W., Crawford, C. S., Fabian, A. C., & Huchra, J. P.

2000a, MNRAS, 318, 333

Ebeling, H., Edge, A. C., Bohringer, H., Allen, S. W., Crawford, C. S.; Fabian, A. C., Voges,

W., & Huchra, J. P. 1998, MNRAS, 301,881

Ebeling, H., Edge, A. C., Fabian, A. C., Allen, S. W., Crawford, C. S., & Boehringer, H.

1997, ApJ, 479, L101

Ebeling, H., Edge, A. C., & Henry, J. P. 2001a, ApJ, 553, 668

Ebeling, H., Jones, L. R., Fairley, B. W., Perlman, E., Scharf, C., &Horner, D. 2001b, ApJ,

548, L23

Ebeling, H. et al. 2000b, ApJ, 534, 133

Ebeling, H., Voges, W., Bohringer, H., Edge, A. C., Huchra, J. P., & Briel, U. G. 1996a,

MNRAS, 283, 1103

• 1996b, MNRAS, 281,799



- 15-

Edge,A. C., Ebeling,H., Bremer,M., RSttgering,H., vanHaarlem,M. P., Rengelink,R.,
& Courtney,N. J. D. 2003, MNRAS, 339, 913

Fairley, B. W., Jones, L. R., Scharf, C., Ebeling, H., Perlman, E., Homer, D., Wegner, G.,

& Mall(an, M. 2000, MNRAS, 315, 669

Gioia, I. M., & Luppino, G. A. 1994, ApJS, 94, 583

Gioia, I. M., Maccacaro, T., Schild, R. E., Wolter, A., Stocke, J. T., Morris, S. L., & Henry,

J. P. 1990, ApJS, 72, 567

Gladders, M. D., Hoekstra, H., Yee, H. K. C., Hall, P. B., & Barrientos, L. F. 2003, ApJ,

593, 48

Gladders, M. D., & Yee, H. K. C. 2005, ApJS, 157, 1

Grego, L., Carlstrom, J. E., Reese, E. D., Holder, G. P., Holzapfel, W. L., Joy, M. K., Mohr,

J. J., & Patel, S. 2001, ApJ, 552, 2

Henry, J. P. et al. 1997, A J, 114, 1293

Holder, G. P. 2002, ApJ, 580, 36

Hughes, J. P., &: Birkinshaw, M. 1998, ApJ, 501, 1

Jones, L. R., Scharf, C., Ebeling, H., Perlman, E., Wegner, G., Malkan, M., &Horner, D.

1998, ApJ, 495, 100

Knox, L., Holder, G. P., & Church, S. E. 2004, ApJ, 612, 96

Kovac, J. M., Leitch, E. M., l?ryke, C., Carlstrom, J. E., Halverson, N. W., & Holzapfel,

W. L. 2002, Nature, 420, 772

LaRoque, S. J. et al. 2003, ApJ, 583, 559

LaRoque, S. J., Reese, E. D., Carlstrom, J. E., Holder, G., Holzapfel, W. L., Joy, M., &

Grego, L. 2002, astro-ph/0204134

LaRoque, S. L., Bonamente, M., Carlstrom, J., Joy, M. K., Nagai, D., Reese, E. D.,

Dawson, K. S. 2006, ApJ, 652, 917L

Ledlow, M. J., & Owen, F. N. 1995, AJ, 109, 853

Luppino, G. A., & Gioia, I. M. 1995, ApJ, 445, L77



- 16-

Maccacaro,T., Wolter,A., McLean,B., Gioia,I. M., Stocke,J. T., dellaCeca,R.,Burg, R.,
& Faccini,R. 1994Astrophys.Lett., 29,267

Mason,B. S.et al. 2003,ApJ, 591,540

Owen,F. N. 1996,IAUS, 175,305

Partridge,R. B., Hilldrup, K. C., & Rather,M. I. 1986,ApJ, 308,46

Patel,S.K. et al. 2000,ApJ, 541,37

Pearson,T. J. et al. 1994,BAAS, 185,0808

Pospieszalski,M. W., Lakatosh,W. J., Nguyen,L. D., Lui, M., Liu, T., Le, M., Thompson,
M. A., & Delaney,M. J. 1995,IEEE MTT-S Int. MicrowaveSymp.,1121

Reddy,N. A., & Yun, M. S.2004,ApJ, 600,695

Reese,E. D., Carlstrom,J. E., Joy, M., Mohr, J. J., Grego,L., & Holzapfel,W. L. 2002,
ApJ, 581,53

Rizza,E., Morrison,G. E., Owen,F. N., Ledlow,M. J., Burns, J. O., & Hill, J. 2003,AJ,
126,119

Romer,A. K. et al. 2000,ApJS, 126,209

Rudy,D. J. 1987,PhD thesis,CaliforniaInstitute of Technology

Scharf,C. A., Jones,L. R., Ebeling,H., Perlman,E., Malkan,M., & Wegner,G. 1997,ApJ,
477,79

Schindler, S. et al. 1995, A&A, 299, L9

Slee, O. B., Wilson, I. R. G., & Siegman, B. C. 1983, Aust. J. Phys, 36, 101

Slee, O. B., Roy, A. L., & Andernach, H. 1998, Aust. J. Phys, 51,971

Sokasian, A., Gawiser, E., & Smoot, G. F. 2001, ApJ, 562, 88

Stoeke, J. T., Morris, S. L., Gioia, I. M., Maccacaro, T., Sehild, R., Wolter, A., Fleming,

T. A., & Henry, J. P. 1991, ApJS, 76, 813

Struble, M. F., & Rood, H. J. 1999, ApJS, 125, 35

Sunyaev, R. A., & Zel'dovich, Y. B. 1970, Comments Astrophys. Space Phys., 2, 66

.... - .........



- 17-

--. 1972, Comments Astrophys. Space Phys., 4, 173

Tegmark, M., Eisenstein, D. J., Hu, W., & dE Oliveira-Costa, A. 2000, ApJ, 530, 133

Toffolatti, L., De Zotti, G., Argiieso, F., & Burigana, C. 1999, in ASP Conf. Ser. 181:

Microwave Foregrounds, ed. A. de Oliveira-Costa & M. Tegmark, 153

Waldram, E. M., Pooley, G. G., Grainge, K. J. B., Jones, M. E., Saunders, R. D. E., Scott,

P. F., & Taylor, A. C. 2003, MNRAS, 342, 915

White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479

This preprint was prepared with the AAS LATEXmacros v5.2.



18-

k.

E

Z

25

2O

15

I0

5

0

_tiLj,ii

............. All

..... Outer

............ Inner

-I .0 -0.5

j i t I '

I

i J I i i i

0.0 0.5 1.0 1.5 2.0

Spectral Index

Fig. i.-- Histogram of the spectral index distribution for radio sources in cluster fields. The

spectral index _ is defined by S _ _-_. The distribution for 88 sources is shown with a solid

(green) line, the distribution for the 67 sources in the outer regions of cluster fields (r > 0.5

arcmin) is shown with a dashed (black) line, and the distribution for the 21 sources in the

inner regions of cluster fields (r < 0.5 arcmin) is shown with a dotted (blue) line. The overall

mean spectral index is _ --- 0.66 with an rms dispersion of 0.36. The mean spectral index for

the outer regions of cluster fields is (_ -- 0.63 with an rms dispersion of 0.38 and the mean

spectral index for the the inner regions of cluster fields is _ -- 0.75 with an rms dispersion

of 0.24. The medians are 0.72, 0.71, and 0.76 for all, outer, and inner, respectively.
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point, the beam attenuation f_ctor becomes a potentially important source of systematic

uncertainty. When a source has observations from both BIMA and OVRO, we choose the

field with the best combination of sensitivity and survey area; repeat sources are not shown

here.
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cluster fields (r > 0.5 arcmin), and non-cluster fields. Solid lines are the best fit power laws

for each set individually and dotted lines are the best fits using a Markov chain algorithm'

to simultaneously estimate the normalizations and a common power law index. Using the

best joint fit normalizations, we find that counts toward the outer regions of clusters are a

factor of _.'_-l.s__+4.1 higher than counts in the field. Counts toward the inner regions of clusters

are a factor of _ o+4.3.... 2.s higher than the outer regions. The outer boundary used for the outer

regions of cluster fields is set by the noise levels in the fields as described in Section 5.1.

Error bars on the data come from Poisson errors on raw counts and do not include other

sources of uncertainty.
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Table1. RadioSourcesin ClusterFields

Field

Pointing Center 30GHz SZ 28.5 GHz Source 1.4GHz

RMS Flux

ref _(J2000) 6(J2000) Array (mJy) AC_(tl) A6(//) src _(J2000) 6(J2000) Radius (") Flux (mJy) Uric, (mJy) (mJy)

CL 0016+16

CL J0018.8+1602

MACS J0025--12

CI 0024+1654

Abell 68

0.546 1 00;18:34.6 +16:26:18.2

0.541 2 00:18:47.9 +16:02:22.0

0.586 3 00:22:57.8 -12:39:06.6

0,393 4 00:26:35.8 +17:09:41.0

0.255 5 00:37:06.6 +09:09:18.6

MACS JOlll+08

Abell 267

...... 01:11:34.3 +08:55:53.0

0,230 5 01:52:41,9 +01:00:24.1

CL J0152.7-- 1357 0.830 6 01:52:43.0 -13:57:29.0

Abell 348 0.274 5 02:23:59.0 -08:35:39.4

P_CS J0224.5--0002 0.773 7 02:24:34.1 -00:02:30,9

Abell 370 0,375 5 02:39:52.5 -01:34:20.1

Abell 383 0.187 5 02:48:03.6 -03:32:00.6

MS 0302.7+1658 0.426 8 03:05:31.7 +17:10:02.8

MACS J0329--02 0.467 9 03:29:40.5 -02:11:40.0

Ab¢ll 478 0.088 5 04:13:26.2 +10:27:57.6

RX J0439.0+0715

MS 0451.6--0305

Abell 520

0.244 10 04:39:01.2 +07:15:36.0

0.550 8 04:54:10.8 -03:00:56,8

0.202 5 04:54:12.7 +02:55:23.9

MACS J0647.7+7015 0.584 1i 06:47:50.0 +70:14:55.0

MACS J0717.5+3745 0,555 12 07:17:33.8 +37:45:20.0

Abell 586 0.171 5 07:32:20.3 +31:38:02.0

MS 0735.6+7421 0.216 8 07:41:45.0 +74_14:36.7

MACS J0744.8+3937 0.686 11 07:44:52.5 +39:27:30.0

Abell 611

Abell 665

0.288 5 08:00:56.7 +36:03:21.7

0.182 5 08:30:59.3 +65:50:09.5

Abell 697

C1 0847.2+3617

Zw 2089

Abell 750

0.282 5 08:42:57.6 +36:21:59.4

0.373 13 08:50:10.1 +36:05:09.6

0.235 14 09:00:37.9 +20:54:57.6

0.180 5 09:09:11.8 +10:59:20.4

B 0.131 -21 -14 1 00:18:31.2 +16:20:42.6 322.7 12.06 1.22 26_.8

O 0.074 ..................

B 0.180 ...... 1 00:18:41.4 +16:02:08.5 94.7 2.65 0.21 26.6

B 0.312 .........................

O 0.236 1 00:22:59.9 -12:39:40.2 46.0 1.43 0.26 a

B 0.085 ........................

B 0.097 -17 30 i 00:37:07.6 +09:08:23.4 90.4 1.60 0.10 59,1

B 0.097 2 00:37:07.0 +09:07:58.7 111.9 1.38 0.11 b

B " 0.097 3 00:37:06.6 +09:07:31.4 137.7 1,20 0.12 40.2

B 0.133 ........................

B O.101 5 2 1 01:52:54,7 +01:02:11.4 214.5 7.55 0.24 4.2

B 0.101 2 01:52:29.2 +00:59:38.5 201.4 2.75 0.20 30.0

O 0.073 1 01:52:54.6 +01:02:10.6 212.4 5.53 0.73 4.2

B 0.183 -1 -9 ..................

O 0.102 ........................

B 0.112 -17 -1 ..................

O 0.094 ..................

B 0.152 -2 -24 1 02:39:55.5 -01:34:05.6 60.3 1,18 0,16 10.5

O 0.072 1 02:39:55,5 -01:34:06.7 59.5 0.76 0.08 1_.5

B 0.465 ...... 1 02:48:03.4 -03:3i:44.6 25.2 4.40 0.47 4029

B 0.267 ...... 1 03:05:31.5 +17:10:03.7 2,7 2.70 0.27 498

O 0.047 1 03:05:31.7 +17:10:02.4 0.4 1,70 t_ 0.05 4]8

O 0.165 ........................

B 0.116 -6 -9 1 04:13:25.3 +10:27:54.8 9.9 2.43 0.12 36.9

B 0.116 2 04:13:38.3 +10:28:06.9 185.0 2.17 0.20 47.7

O 0.059 1 04:13:26.5 +10:27:63.8 11.5 1.96 0.06 36,9

O 0.059 2 04:13:40.3 +10:28:05.3 215.0 2.95 0.47 47.7

B 0.207 ...... 1 04:39:01.2 +07:15:28.9 7.1 1.18 0.21 30.6

O 0.050 11 4 1 04:54:22.1 -03:01:25.0 161.6 1.80 0.19 14.4

B 0.103 -42 -44 1 04:54:01.1 +02:57:46.7 228.3 7.83 0.25 6.3

B 0.103 2 04:54:16.9 +02:55:32.3 118.4 0.84 0.11 14.4

B 0.103 3 04:54:20.3 +02:54:56.2 158.0 1.00 0.13 26.5

O 0,078 1 04:54:01.3 +02:57:46.3 226.6 4.42 0.88 6.3

O 0.078 2 04:54;16.8 +02:55:31.9 116.2 1.09 0.09 14.4

O 0.078 3 04:54:20.4 +02:54:56.8 159.1 0.74 0,14 26.5

O 0.061 3 1 ..................

B 0.172 -42 0 1 07:17:37.2 +37:44:22.7 100.4 3.29 0,19 6.5 c

B 0.172 2 07:17:41.1 +37:43:17,5 178.0 2.28 0.25 19.8

B 0,113 " -10 -7 1 07:32:20.3 +31:41:21.0 205.9 4.42 0.23 7.9 c

O 0.209 ........................

B 0.241 -2 3 ..................

O 0.069 ..................

O 0.041 -3 1 ..................

B 0.1Ol -11 40 1 08:31:30.8 +65:52:36.2 229.8 4.95 0.29 30.2

O 0.076 ..................

O 0.041 3 -5 ..................

B 0,160 ...... I 08:50:13,0 +36:04:22.9 58.3 1.19 0.17 20.8

B 0.232 ........................

B 0.160 ...... 1 09:09;03.4 +11:02:50.3 243.1 3.69 0.46 22.8



Table 1--Continued

Field

Pointing Center 30GHz SZ 28.5 GHz Source 1.4GHz

RMS Flux

z ref _(J2000) 5(J2000) Array (mJy) Aa(H) A_(H) src _(J2000) 5(J2O0O) Radius (") Flux (mJy) U_:z. (mJy) (mJy)

MACS J0913+40

Abell 773

AbeI1 781

Abell 851

Zwicky 2701

Abell 959

Zwicky 3146

0:452 15 09:13:46.0 +40:56:20.0

0.217 5 09:17:54.5 +51:43:43.5

0.298 5 09:20:28.8 +30:31:08.4

0,407 5 09:42:56.6 +46:59:20.4

0.214 16 09:52:47.5 +51:53:27.6

0.353 5 10:17:35.9 +59:34:65.6

0.291 17 10:23:39,7 +04:11:11.6

Abell 992

Abell 990

MS 1054.4--0321

0.247 5 10:22:33.7 +20:29:29.8

0.144 5 10:23:39.8 +49:08:38.5

0.826 18 10:56:59.5 -03:37:28.2

MACS Jl108+09

MACS Jl115+53

Zwicky 5247

MS 1137+66

Abell 1351

0.480 19 11:08:55.5 +09:06:00.0

0,510 20 11:15:14.9 +53:19:56.0

0,229 21 12:34:17.3 +09:46:12.0

D.782 22 11:40:23.9 +66:08:19.1

0.322 5 11:42:24.6 +58:32:06.5

MACS Jl149.5+2223 0.544 ii 11:49:34.3 +22:23:42,5

Abell 1413 0.143 5 11:55:18.0 +23:24:18.9

CL 1226+33 0.890 23 12:26:58.0 +33:32:45.0

Abel] 1576 0.279 5 12:36:59.3 +63:11:10.3

Abell 1682 0.234 5 13:06:57.2 +46:32:42.0

MACS Jl311.O--O311 0.519 24 13:11:01,7 -03:10:39.0

Abell 1689 0.183 5 13:11:30.3 -01:20:25.4

Abell 1703 0.258 5 13;15:05.3 +51:49:01.9

Abell 1704 0.221 5 13:14:26.0 +64:34:41.2

Abell 1722 . 0.328 5 13:20:09.1 +70:04:38.6

RCS J1324,5+2844 0.997 25 13:24:28.3 +28:44:58.5

RCS J1326.5+2903 0.952 25 13:26:31.1 +29:03:19.8

Abell 1763 0.228 5 13:35:20.2 +41:00:04.0

RX J1347.5-1145 0.451 26 13:47:30.7 -11:45:08.6

MS 1358.4+6245 0.327 8 13:59:50.6 +62:31:05.3

Abell 1835 0.253 5 14:01:02.0 +02:52:41.7

B 0.117 2 7 1 09:13:45,4 +40:56:26.7 9.5 0.69 0.12 15.9

O 0.236 ..................

B 0.134 -15 6 ..................

0 0.078 ..................

B 0.235 ...... 1 09:20:22.6 +30:29:44.5 116.1 5.33 0.30 73.1

B 0.149 1 -10 1 09:42:57.5 +46:58:49.2 22.3 1.06 0.15 2,1 c

B 0,474 ...... 1 99:52:43.1 +51:51:20.6 133.3 18.70 0.64 3.0

O 0.089 ........................

B 0,163 5 6 1 10:23:45.0 +04:10:40.8 82.4 5.35 0.18 95.8

B 0.163 2 10:23:37.2 +04:99:04.5 139.4 2.03 0.22 31.5

O 0.074 1 10:23:45.0 +04:10:40.3 82.7 5.70 0.10 95.8

O 0.074 2 10:23:37.1 +94:69:08.0 136.7 2.12 0,15 31.5

O 0.074 3 16:23:44.9 +04:11:45.4 78.2 0.85 0.i0 7.1

O 0,074 4 10:23:39.3 +04:11:11.5 12.8 0.41 0,67 3.6

0 0.071 ........................

B 0.852 ........................

O 0.060 -5 -8 1 10:56:59.5 -03;37;26.9 11.0 0.94 0.06 14.1

O 0.060 2 10:56:48.8 -03:37:26.5 156,3 1.79 0.19 18.2

0 0,060 3 10:56:57.9 -03:38:55.2 81,2 0.54 0.08 3.11

O 0,113 ....................... bO

O 0.077 -4 14 1 11:15:17.2 +53:19:07.3 67.1 1.06 0.09 7. _[_I

O 0.077 2 11:15:21.3 +53:18:46.0 103.7 0.75 0.11 4.5_

B 0.379 ........................

B 0.081 -12 -14 ..................

O 0.122 ...... 1 11:42:24.4 +58:32:04.5 2.4 6.37 0.12 74.6 c

• O 0.122 2 11:42:13,7 +58:31:23.3 95.9 1.86 0.18 10.0 c

O 0.122 3 11:42:22.9 +58:31:25.9 42.7 0.84 0.13 7.2 c

B 0.113 10 12 1 11:49:22.3 +22:23:29.2 177.4 3.40 0.18 15.8

O 0,243 ..................

B 0.146 -4 21 1 11:55:08.7 +23:26:17.0 158.0 2.36 0.25 28.1

B 0,116 1 13 1 12:27:18.8 +33:32:06.0 264.4 5.83 0.41 29.8

O 0,102 ...... 1 12:36:57.6 +63:11:11.7 12.0 0.88 O.10 18.4

O 0.102 2 12:36;32.4 +63:11:58,6 188.4 2,93 0.52 65.9

B 0.422 ...... 1 13:06:45.9 +40:33:30.7 126.7 8.10 0.55 193,6

B 0.123 9 -6 ..................

B 0.169 -18 -4 1 13:11:31.2 -01:19:34.5 63.2 1,30 _ 0.18 59.6

O 0.059 1 13:11;31.5 -01:19:32.0 67.9 1.43 0.07 59.6

O 0.243 ...... 1 13:15:08.5 +51:48:53.7 30.7 1.74 0.25 45.0

0 0.098 ........................

O 0.124 ...... i 13:20:14.6 +70:05:46.2 73.0 0.93 0.15 8.4

O 0.065 ........................

B 0.140 -4 -15 ..................

O 0.065 I 13:26:31.9 +29:63:36.5 34.8 0.66 0.07 2.8

O 0.407 ...... 1 13:35:20.0 +41:00:02.3 2.6 31.20 0.41 857.2

B 0.188 -2 4 i 13:47:30.6 -11:45:09.2 4.5 10.68 0.19 45.9

O 0.235 1 13:47:30.6 -11:45:07.7 2.9 9.93 0.23 45.9

B 0.084 -6 2 1 13:59:50.7 +62:3h05.6 6.6 1.67 0.08 2.6 c

O 0,089 1 13:59:50.6 +62:31:04.6 6.5 1.51 0.09 2.6 c

B 0.137 -3 4 1 14:0h02.1 +02:52:43.0 4.3 3.31 0,14 31.2 c



Table 1 Continued

Field

Pointing Center 30GHz SZ 28.5 GHz Source 1.4GHz

RMS Flux

z ref a(J2O00) 6(J2000) Array (mJy) A_(H) A6(H) src c_(J2OOO) 6(J2OO0) Radius (") Flux (mJy) Unc. (mJy) (mJy)

RCS J1419.2+5326 0.640 7 14:19:12.1 +53:26:11.4

MACS J1423.8+2404 0.545 Ii 14:23:48.3 +24:04:47.5

Abell 1914 0.171 5 14:26:03.5 +37:49:46.5

Abell 1995 0.318 27 14:52:57.6 +58:02:55.7

MS 1455.0+2232 0.258 8 13:15:05.3 +5h49:01.9

R,X J1532.9+3021

Abell 2111

Abell 2142

Abell 2146

0,345 14 15:32:54.2 +30:21:10.8

0,229 5 15:39:41.8 +34;25:01.2

0,091 5 15;58:20.2 +27:13:52.0

0.234 5 15:56:14.4 +66:20:56.2

Abell 2163 0.203 5 16:15:46.0 -06:08:55.0

R,CS J1620.2+2929 0.870 7 16:20:10,0 +29:29:21.5

MACS J1621.3+3810 0.465 12 16:21:24.0 _28:10:02.0

Abell 2204 0.152 5 " 16:32:46.9 +05:34:32.4

Abell 2218 0.176 5 16:35:49.5 +66:12:44.4

Abell 2219

RXJ 1716+67

RX J1720.1+2637

Abell 2259

AbelI 2261

Abell 2294

MS 2053.7 0449

Abell 2345

0.226 5 16:40:20.7 +46:42:39,8

0.813 28 17:16:49.2 +67:08:23.5

0.164 10 17:20:08.9 +26:38:06.0

0.164 5 17:20:09.7 +27:40:08.4

0,224 5 17:22:27.1 +32:07:58.6

0.178 5 17:23:55,3 +85:53:24.0

0.583 8 20:56:2L8 -04:37:51.6

0.177 5 21:27:13,6 -12:09:45.4

MACS J2129.4--0741 0.570 11 21:29:26,0 -07:41:28.0

RX J2129,6+0005 0.235 10 21:29:37.9 +00:05:38.4

B 0.137 2 14:01:00.4 +02:51:51,0 58.6 1.26 0.14 1.6 c

O 0.073 1 14:01:02.1 +02:52:44,5 4.6 2,88 0.07 31.2 c

O 0.073 2 14:01:00.5 +02:51:51,2 57.7 1.36 0.08 1.6 c

O 0,117 ...... 1 14:19:24,2 +53:23:15,5 206.4 . 15.66 0.89 122.3

B 0.121 -9 -10 1 14:23:47,7 +24:04:43.1 5.9 1.49 0,12 8.0

B 0.150 -32 -8 ..................

B 0.096 7 1 1 14:52:47,5 +58:01:56.1 106.1 0.62 O.ll 4.9

O 0.051 2 14:53:00,6 +58:03:19.4 27,9 0.60 0.05 7.7

B 0.321 1 14:56:59.3 +22:18:59.2 239.0 6.35 0.89 19.3

O 0.037 1 14:56:59.2 +22:19:01.1 239.5 4.88 0.69 19.3

O 0.037 2 14:57;15.1 +22:20:34.8 0.7 0.96 0,04 16.5

O 0,037 3 14:57:08,3 +22:20:14.7 96.8 0,95 0.05 13.2

O 0.037 4 14:57:10,8 +22:18:45.6 124.1 0,99 0.07 3.9

B 0.176 34 -8 1 15:32:50.9 +30:19:46.2 108.3 6.58 0,20 7.9

B 0.176 2 15:32:53.8 +30:20:59.4 39.2 3,25 0.18 22.8

B 0.091 -23 1 ..................

B 0,159 17 20 1 15:58:14,1 +27:16:20.2 161.9 7.81 0.26 107.3

O 0.063 i 15:58:14.1 +27:16:21.5 163.2 6.54 0.23 107.3

O 0.148 ...... 1 15:56:13.8 +66:20:53,5 4.5 2,19 0,15 15,_

O 0.148 2 15:56:04.2 +66:22:13.9 98.8 3.01 _ 0,22 40 ._;k_

O 0.148 8 15:55:58.0 +66:20:04.4 111.4 1,43 0.25

B 0.169 38 8 1 16:15%3.6 -06:08:42.3 74.5 1,31 0.17 4.8_

O 0.071 1 16:15:43.3 -06:08:40.5 79.0 1,47 0.08 4,8 e

O 0.106 ........................

B 0,127 26 1 ..................

O 0.089 ..................

B 0.129 -7 -11 1 16:82:47.0 +95:34:33.2 14.4 8.79 0.13 69,3

B 0.124 12 -16 1 16:35:22.3 +66:13:20.4 183.8 5.17 0.20 f

B 0.124 2 16:36:15.0 +66:14:23,6 183.2 3,09 0.22 12.1 e

B 0.124 3 16:35:47.6 +66:14:44,6 138.4 1.41 0.16 4,8 e

O 0.054 1 16:35:22.1 +66:13:22.2 185.6 4,45 0.20 f

O 0,054 2 16:36:15.8 +66:14:22.3 186,5 2.22 0.27 12.1 e

O 0.054 3 16:35:47.7 +66:14:45.6 139.3 1.49 0,1O 4.8 e

O 0.165 ...... 1 16:40:22.0 +46:42:47,0 15.4 14.87 0.17 239.1

O 0.165 2 16:40:23,6 +46:42:15.3 38.9 0.97 0,17 7,9

B 0.109 30 -34 1 17:16:38.4 +67:08:20.5 98.2 6,60 0.12 149.6

B 0.109 2 17:16:35.6 +67:08:39,1 120.1 5,24 0.12 95.6

B 0.109 3 17:16:52.1 +67:08:53,9 65.7 0.75 -0.11 g

B 0.167 ...... I 17:20:09,9 +26:37:32.1 36.6 2.99 0.17 87.7

B 0,167 2 17:20;01,1 +26:36:34.7 138.7 1,68 0.23 4.1

B 0.131 -10 i ..................

B 0,154 -3 1 1 17:22:17.0 +32:09:12.6 144.8 9.32 0,22 23.0

O 0,062 1 17:22:17.1 +32:09:14.1 144.8 10.48 0.16 23,0

B 0.345 ........................

O 0.031 -13 -4 ..................

O 0.194 ...... 1 21:27:09,7 -12:10:00.9 59.9 5.07 0,22 57,6 e

O 0.194 2 21:27;12.0 -12:09:49,5 24.8 3,84 0.20 38.2 e

O 0.069 -16 -4 1 21:29:30,2 -07:42:30.2 98.0 1,18 0,1O 0,6 h

B 0.095 30 -26 1 21:29:39.9 +00:05:21.8 9.4 2.33 0.10 25.4



Table 1--Continued

Pointing Center

Field z ref c_(J2000) 5(J2000) Array

30GHz SZ 28.5 GHz Source

t_MS

(mJy) Ac_(H) AS(H) src c_(J2000) 5(J2000) Radius (") Flux (mJy) Uric. (mJy)

1.4GHz

Flux

(mJy)

B 0.095 2 21:29:55.1 +00:08:01.7 284.2 3.68

Abcll 2409 0.148 5 22:00:54.5 +20:57:32.4 B 0.106 -18 34 1 22:01:11.3 +20;54:55.6 316.4 3.40

B 0.106 2 22:01:18.0 +20:57:51.9 346.9 4.47

• MACS J2214.9-1359 0.483 29 22:14:57.5 -14:00:15.0 B 0.159 14 4 1 22:14:39.4 -14:00:58.2 281.6 107.1

B 0.159 2 22:14:59.2 -13:56:45.8 205.4 3.51

O 0.128 ............

MACS J2228.5+2036 0.418 30 22:28:34.4 +20:36:37.0 B 0,110 -20 37 1 22:28:32.6 +20:35:15.7 118,6 0.84

B 0.11O 2 22:28:28.5 +20:31:33.3 346.6 5.21

MACS J2243.3- 0935 0.444 31 22:43:21.0 -09:35:25,0 B 0.618 -35 12 ............

O 0.121 1 22:43:17.8 -09;35:08,4 12,5 0.93

Abell 2507 0.198 5 22:56:51.6 +05:30:12.2 O 0,072 ...... 1 22:56:44.0 +05:31:15.5 130.5 8.15

0.48 34.3

0.46 3,9

0.85 i

0.58 58.0

0.35 24.2

0.12 7.2

0.72 50.4

0.13 J

0.15 14.4

aNo detection found in the literature. Using the 3 times the NVSS noise level, we set an upper limit on the 1.4 GHz flux of 1,35 mJy and an upper limit on the 1.4 to

bNo detection found in the literature. Using the 3 times the NVSS noise level, we set an upper limit on the 1.4 GHz flux of 1.35 mJy and an upper limit on the 1.4 to

CFIRST catalog.

dNo detection found in the literature. Using the 3 times the NVSS noise level, we set an upper limit on the 1.4 GHz flux of 1.35 mJy and an upper limit on the 1.4 to

eVLA map. Fluxes are obtained by CLEANing the images in AIPS.

fUsing the 3 times the VLA map noise level, we set an upper limit on the 1.4 GItz flux of 0.45 mJy and an upper limit on the 1.4 to 28.5 GHz spectral index of -0.7.

by Partridge et al. (1986) with a flux of 2.59 mJy. which yields a spectral index of -0.4 from 5 to 28.5 GHz.

28.5 GHz spectral index of 0.0.

28.5 GHz spectral index of 0.0.

28.5 GHz spectral index of[0.0.

b_

The source is detected at _'_zm

I

gNo detection found in the literature. Using the 3 times the VLA map noise level, we set an upper limit on the 1.4 GHz flux of 1.32 mJy and an upper limit on the 1.4 to 28.5 GHz spectral index of

+0.2,

h FIRST map. z

iNo detection. Using the 3 times the NVSS noise level, we set an upper limit on the 1.4 GHz flux of 1.35 mJy and an upper limit on the 1.4 to 28.5 GHz spectral index of -0.4.

JNo detection. Using the 3 times the FIRST noise level, we set an upper lhnit on the 1,4 GHz flux of 0.45 mJy and an upper limit on the 1.4 to 28.5 GHz spectral index of -0.4.

Note. -- P_eferences:

1. Stocke et al. (1991)

2, Hughes 8z Birkinshaw (1998)

3. From Chandra X-ray spectrum (observations 3521+5010, 45 ksec exposure) we obtain z = 0.586 fl= 0.01.

4. Dressler et al. (1999)

5. Struble 8z Rood (1999)

6. Romer et al. (2000)

7, Gladders et al. (2003)



8.Gioia_Luppino(1994)
9.FromChandraX-rayspectrum(observations3257+3582+6108,70ksecexposure)weobtainz = 0.467 __ 0.005.

10. Ebeling et al. (1998)

11. LaRoque et al. (2003)

12. Edge et al. (2003)

13. Crawford et al. (1999)

14. Dahlc et al. (2002)

15. From Chandra X-ray spectrum (observation 509, 10 ksec exposure) we obtain z -- 0.452 ± 0.005.

16. Crawford et al. (1995)

17. Allen et al. (1992)

18. Luppino & Gioia (1995)

-- n A_÷ 0-03
19. From Chandra X-ray spectrum (observations 3252+5009, 35 ksec exposure) we obtain z -- _'_-0.06"

-- n al+ 0.04
20. From Chandra X-ray spectrum (observations 3253+5008+5350, 35 ksec exposure) we obtain z ..... -0.05"

21. B6hringer et al. (2000)

22. Donahue et aI. (1999)

23. Ebeling et al. (2001b)

24. From Chandra X-ray spectrum (observations 3258+6110, 85 ksec exposure) we obtain z _ 0.519 =i=0.007.

25. Gladders 8z Yee (2005)

26. Schindlcr et al. (1995)

27. Patel et al. (2000)

28. Henry et d. (1997)

29. LaP_oque et al. (2006)

30. From Chandra X-ray spectrum (observation 3285, 20 ksec exposure) we obtain z _ 0.42_0+° 0102.

31. From Chandra X-ray spectrum (observation 3260, 21 ksec exposure) we obtain z = 0.44 =}= 0.01.

I
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Table 2. Radio Sources in Non-Cluster Fields.

Pointing Center

Field c_(J20O0) 5(J2000)

30GHz

RMS

(mJy)

28.5 GHz Source

a(J2000) ($(J2000) Radius (") Flux (mJy) Vnc. (mJy)

BDF4 00:28:04.4 +28:23:06.0

BDF4 00:28:04.4 +28:23:06.0

HDF 12:36:49.4 +62:12:58.0

BDF6 18:21:00.0 +59:15:00.0

BDF6 18:21:00.0 +59:15:00.0

BDF7 06:58:45.0 +55:17:00.0

BDF8 00:17:30.0 +29:00:00.0

BDF9 12:50:15.0 +56:52:30.0

BDFI0 18:12:37.2 +58:32:00.0

BDFII 06:58:00.0 +54'.24:00.0

BDF12 06:57:38.0 +55:32:00.0

BDF13 22'.22:45.0- +36:37:00.0

1.4GHz

Flux

(mJy)

0.075 ..................

0.115 ..................

0.084 12:36:45.7 +62:11:30.2 91.5 0.48 0.10 0.00

0.074 ..................

0.059 ..................

0.083 ..................

U.U/Z ..................

0.084 ..................

0.086 18:12:16.6 +58:29:10.1 234.2 1.54 0.23 0.00

0.090 ..................

0.104 ..................

0.097 ..................

BDF14 00:26:04.4 +28:23:06.0 0.093 ..................

BDF15 06:56:45.0 +55:17:00.0 0.076 06:56:44.0 +55:11:38.4 321.7 7.07 0.55 4.50

BDF16 12:34:49.4 +62:12:58.0 0.092 ..................

BDF17 18:19:00.0 +59:15:00.0 0.090 ..................

BDF18 00:15:30.0 +29:00:00.0 0.087 ..................

BDF19 06:55:38.0 +55:32:00.0 0.084 ..................

BDF20 12:48:15.0 +56:52:30.0 0.088 12:48:45.2 +56:52:46.0 247,7 1.36 0.27 4.30

BDF21 18:10:37.2 +58:32:00,0 0,083 ..................

I
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I



Table 3. Spectral indices.

Data Set Frequency Range No. Sources Mean Index =k RMS Median Index [25%, 75%] Flux Limits

Overall cluster (r > 0.5 arcmin) 1.4 to 28.5 GHz 88 0.66 =t=0.36 0.72 [ 0.51, 0.92] N 0.6 - 10.0 mJy at 28.5 GHz (see text)

Inner cluster (r _ 0.5 arcmin) 1.4 to 28.5 GHz 21 0.75 i 0.24 0.76 [ 0.56, 0.94] _ 0.6 - 10.0 mJy at 28.5 GHz (see text)

Outer cluster (r k 0.5 arcmin) 1.4 to 28.5 GHz 67 0.63 ± 0.38 0.71 [ 0.42, 0.88] _ 0.7 - 8.0 mJy at 28.5 GHz (see text)

Mason et al. 2003 (CBI)

Bolton et al. 2004 (9C follow-up)

Bolton et al. 2004 (9C follow-up)

Bolton et al. 2004 (9C follow-up)

Bolton et al. 2004 (9C follow-up)

Botton et al. 2004 (9C follow-up)

Bolton et al. 2004 (9C follow-up)

1.4 to 31 GHz 56

1.4 to 4.8 GHz 124

4.8 to 15.2 GHz 124

15.2 to 43 GHz 124

1.4 to 4.8 GHz 70

4.8 to 15.2 GHz 70

15.2 to 43 GHz 70

0.45 -4- 0.37

0.44 [ 0.05, 0.76]

0.39 [ 0.06, 0.95]

0.87 [0.42, 1.20]
0.24 [-0.12, 0.64]

0.27 [0.02,0.70]
0.67 [ 0.38, 1.03]

21 mJy at 31 GHz

25 mJy at 15.2 GHz

25 mJy at 15.2 GHz

25 mJy at 15.2 GHz

60 mJy at 15.2 GHz

60 mJy at 15.2 GHz

60 mJy at 15.2 GHz

I
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Table 4. Number counts for >_ 5or sources at 28.5 GHz.

logl0(S) (mJy) radius range (arcmin) a raw counts area (arcmin 2) loglo(dN/dS) (arcmin -2 mJy -1) field type

-0.15 : 0.00 > 0.5 iO

0.00 : 0.15 _> 0.5 6

0.15 : 0.30 > 0.5 i0

0.30 : 0.45 >_ 0.5 6

0.45 : 0.60 _>0.5 11

0.60 : 0.75 > 0.5 8

0.75 : 0.90 > 0.5 7

-0.20 : 0.10 __ 0.5 4

0.10 : 0.40 __ 0.5 6

0.40 : 0.70 < 0.5 3

0.70 : 1.00 < 0.5 2

0.13 : 0.50 > 0.0 1

0.50 : 0.87 > 0.0 1

783 --1.35+_0:_ 5 cluster

1541 -2.03+_°:_ 0 cluster

2420 -2.15+°:I 5 cluster

3306 -2.66+_°:220 cluster

4217 --2.65+_0J_ cluster

5104 --3.02+_00:I 7 cluster

5951 --3.29+0:219 cluster

42.0 -0.82_+_:_ cluster

63.4 -1.12+_0120 cluster

69.0 -1.76+_°i 30 cluster

69.5 -2.24+01375 cluster

_o on+ U-52 non-cluster438 .... -o.76
724 _x Ao +°.52 non-cluster

.... -0.76

aMax radius varies for individual fields since set by noise; See text.

I

b-a



Table 5. Power law fits to dN/dS.

Field type Best indiv, fit index Best indiv, fit normalization Best joint fit index Best joint fit normalization

_ 1_ ')+108 17A+60Inner cluster (r _ 0.5 arcmin) -1.67 =E 0.37 .... 41 x 10 -3 mJy -1 arcmin -2 -1.98 q-0.20 _-45 x 10 -3 mJy 1 arcmin-2

_ o+5"4 19 _+4.0Outer cluster (r > 0,5 arcmin) --2.02 4- 0.22 20.__4. 3 × 10 -3 mJy -1 arcmin -2 -1.98 i0.20 '_-5.0 × 10-3 mJY -1 arcmin-2
Non-cluster ....... 1.98 4.0,20 _ oa+6"7°.... 3.15 x 10 -3 mJy -1 arcmin -2

t_


