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Abstract

The performance of a diffuser in a pump stage depends on its configuration and placement within the stage.

The influence of vane shape on the hydrodynamic performance of a diffuser has been studied. The goal of

this effort has been to improve the performance of a pump stage by optimizing the shape of the diffuser

vanes. The shape of the vanes was defined using Bezier curves and circular arcs. Surrogate model based

tools were used to identify regions of the vane that have a strong influence on its performance.

Optimization of the vane shape, in the absence of manufacturing. and stress constraints, led to a nearly nine
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percent reduction in the total pressure losses compared to the baseline design by reducing the extent of the

base separation.

Keywords: Diffuser, Multiple surrogates, shape optimization, hydrodynamics

1. Introduction

The space shuttle main engine (SSME) is required to operate over a wide range of

flow conditions. This requirement imposes numerous challenges on the design of

turbomachinery components. One concept that is being explored is the use of an expander

cycle for an upper stage engine. A schematic of a representative expander cycle for a

conceptual upper stage engine is shown in Figure 1. Oxidizer and fuel pumps are used to

feed LOX (liquid oxygen) and LH2 (liquid hydrogen) to the combustion chamber of the

main engine. The combustion products are discharged from the nozzle. The pumps are

driven by turbines, which use the gasified fuel as the working fluid.

There is a continuing effort to develop subsystems like turbopumps and turbines used

in a typical expander cycle based upper stage engine. The requirements on the design of

subsystems are influenced by size, weight, efficiency, and manufacturability of the

system. Besides, often the requirements for subsystems are coupled, for example, the

above-mentioned design constraints require turbopumps to operate at high speeds to have

high efficiency with low weight and compact design. This may "require seeking alternate

designs for the turbopumps as the current designs may not prove adequate over a wide

range of operating conditions. Mack et al. [1, 2] optimized the design of a radial turbine

that allows high turbopump speeds, performs comparable to an axial turbine at design

conditions, and yields good performance at off-design conditions.
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Dorney et al. [3] have been exploring different concepts for turbopump design. A

simplified schematic of a pump is shown in Figure 2. Oxidizer or fuel enters from the

left. The pressure increases as the fluid passes through the impeller. The fluid emerging

from the impeller periphery typically has high tangential velocity, which is partially

converted into pressure by passing it over a diffuser. Dorney et al. [3] found that a

diffuser with vanes is more efficient than a vaneless diffuser at off-design conditions.

Over a range of operating conditions, the performance of a pump is driven by the flow in

the diffuser. Generally; the diffuser will stall before the impeller, and the performance of

the diffuser will drop off more rapidly at off-design operating conditions. The main

objectives of the current effort are to improve the hydrodynamic performance of a

diffuser, using advanced optimization techniques, and to study the features of the diffuser

vane that influences its performance.

Improvement in performance via shape optimization has been successfully achieved

in many areas. For example, there are numerous instances of improvement in lift to drag

ratio via airfoil or wing shape design [4-10], shape of blades is optimized to increase the

efficiency of turbines [4, 11] and pumps [12] in past. Shape design typically involves

optimization that requires a significant number of function evaluations to explore

different concepts. If the cost of evaluating a single design is high, as is usually the case,

surrogate models of objectives and constraints are frequently used to reduce the

computational burden.

Surrogate based optimization approach is widely used in the design of space

propulsion systems, such as radial turbines [1, 2], supersonic turbines [4], diffusers [13],

rocket injectors [14, 15], and combustion chamber geometry [16]. Detailed reviews on
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surrogate based optimization are provided by Li and Padula [17] and Queipo et al. [18].

There are many surrogate models, and it is not clear which surrogate model performs the

best for any particular problem. In such a scenario, one possible approach to account for

uncertainties in predictions is to use an ensemble of surrogates (Goel et al. [19]). This

multiple surrogate approach has been demonstrated to work well for several problems

including system identification (Goel et al. [20]), compressor blade design (Samad et al.

[12])

Specifically, the objectives of the present study are: (i) to 'improve the hydrodynamic

performance of the diffuser via shape optimization of vanes, (ii) to identify important

regions in diffuser vanes that help optimize pressure ratio, and (iii) to demonstrate the

application of multiple surrogates based strategy for space propulsion systems.

The paper is organized as follows. We define the geometry of the vanes, and

numerical tools to evaluate the diffuser vane shapes in Section II. We describe the

relevant details in surrogate model based optimization in Section III. The results obtained

for the current optimization problem and a discussion of the physics involved in flow

over optimal vane is presented in Section IV. Finally, we conclude by recapitulating the

major findings of the paper in Section V.

2. Problem description

Representative radial locations in the meanline pump flow path (not-to-scale) are

shown in Figure 3 (Dorney et al. [3]). The fluid enters from the left, and is guided to the

unshrouded impeller via inlet guide vanes assembly. The flow from the impeller passes

through the diffuser before being collected in the discharge collector. In this study, we

focus our efforts on a configuration of 15 inlet guide vanes, seven main and seven splitter
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blades, and 17 diffuser vanes. The length of the diffuser vanes is also fixed according to

the location of the collector. Our goal is to maximize the performance of the diffuser,

characterized by the ratio of pressure at the inlet and the outlet, hereafter called as

`pressure ratio'. The performance of the diffuser is governed by the shape of the diffuser

vane.

21. Vane shape definition

The description of geometry is the most important step in the shape optimization. The

current shape of the diffuser vanes, referred as baseline design, (shown in Figure 4(A))

was created using meanline and geometry generation codes at NASA [21] and yields a

pressure-ratio of 1.074. It is obvious from Figure 4(B) that the existing shape allows the

flow to remain attached while passing on the vanes but causes significant flow separation

while leaving the vane. The separation induces significant loss of pressure recovery that

is the primary goal of using a diffuser. The baseline design was created subject to several

constraints, including: i) the number of vanes was set at 17 based on the number of bolts

used to attach the two sides of the experimental rig, ii) the vanes had to accommodate a

3/8-inch diameter bolt, with enough excess material to allow manufacturing, and 'iii) the

length of the vanes was set based on the location of the collector. These constraints

resulted in an initial optimized design that looked quite similar to the baseline design, and

yielded similar performance in both isolated component and full stage simulations. In an

effort to more thoroughly explore the design space for diffusers (and allowing for future

improvements in materials and manufacturing), the constraints resulting from the bolts

(the number and thickness of the vanes) were relaxed. Other factors that must be

considered in the following optimization include: i) the designs resulting from the
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optimization techniques shown in this paper are based on diffuser-alone simulations

(different results may be obtained if the optimizations were based on full stage

simulations), and ii) no effort was made to determine if the proposed designs would meet

stress and/or manufacturing requirements.

To reduce the separation, we represent the geometry of a vane by five sections using a

circular arc and Bezier curves as shown in Figure 5. Sections 1, 3, and 4 are Bezier

curves, and Section 2 is a circular arc. The shape of the inlet nose (between points B 1 and

B2) is obtained from the existing baseline vane shape. The circular arc in Section 2 is

described by fixing the radius r (r = 0.08), the location of the center Cl (-3.9, 6.1), the

start and end angles [21 ]. The arc begins at angle ;T + Or + 8 / 2 (point Al) and ends at

z + B — 6 / 2 (point A2). Here, we use B = 22.5° and 9 is a design variable. We provide

the information about the coordinates and slope of the tangents at endpoints such that

different Bezier curves (Appendix 1) are generated by varying the length of tangents. The

points AI and A2, shown by red dots in Figure 5, and the tangents to the arc, serve as the

end points location and tangents used to define the Bezier curves in Sections 1 and 3.

Coordinates and the slopes at points B 1 and B2 (obtained using the data of inlet nose of

the baseline design [21]) are used to define Bezier curves in Sections 1 and 4. The Bezier

curve in Section 1 (Figure 5) is defined using the coordinates and slope of tangents at B2

and A2. The lengths of the tangents tl and t2 control the shape of the curve. While one end

point coordinates and slope for Bezier curves in Sections 3 and 4 are known at points AI

and B 1 , the second end point and slope are obtained by defining the location of point P

(Py, PZ). The slope of tangent at point P is taken as five degrees more than the slope of the

line joining points P and B 1 . The additional slope is specified to avoid all the points in
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Section 4 fall in a straight line. The values of the fixed parameters are decided based on

the inputs from designer [21]. The lengths of tangents tl-t6 serve as variables to generate

Bezier curves in Sections 1, 3 and 4.

The ranges of the design variables, summarized in Table 1, are selected such that we

obtain practically feasible vane geometries and the corresponding grids (discussed in next

section). We note that present Bezier curve and circular arc based definition of diffuser

vane shapes provides significantly' different vane geometries than the baseline design,

particularly near the outlet region. The main rationale behind this choice of vane shape is

the relaxation of manufacturing and stress constraints, ease of parameterization and better

control of the curvature of the vane that allows the flow to remain attached.

2.2. Mesh generation, boundary conditions, and numerical simulation

Performance of diffuser vane geometries is analyzed using' the NASA PHANTOM

code [22] developed at Marshall Space Flight Center to analyze turbomachinery flows.

This 3D, unsteady, Navier-Stokes code utilizes structured, overset O- and H-grids to

discretize and analyze the unsteady flow resulting from the relative motion of rotating

components. The code is based on the Generalized Equations Set methodology [23] and

utilizes a modified Baldwin-Lomax turbulence model [24]. The inviscid and viscous

fluxes are discretized using a third-order spatially accurate Roe's scheme, and second-

order central differencing, respectively. The unsteady terms are modeled using a second

order accurate scheme.

For this problem, we solve incompressible, unsteady, non-rotating, turbulent, single

phase, constant-material-property flow over diffuser vane. The working fluid is water. By

taking the advantage of periodicity, only a single vane is analyzed here. A combination of
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H- and O-grids with 13065 grid points, has been used to analyze diffuser vane shapes. A

typical grid is shown in Figure 6. The boundary conditions imposed on the flow domain

are as follows. Mass flux, total temperature, and flow angles (circumferential and radial)

are specified at the inlet. Mass flux is fixed at the outlet. All solid boundaries are modeled

as no slip, adiabatic walls, with zero normal derivative of pressure. Periodic boundary

condition is enforced at outer boundaries. With this setup, it takes approximately 15

minutes on a single Intel Xeon processor (2.0 GHz, 1.0 GB RAM) to simulate each

design.

3. Methodology

As discussed earlier, the surrogate model based approach is suitable to reduce the

computational cost of optimization. In this section, we discuss different steps and

considerations in surrogate modeling and its application to the design problem(s). A

stepwise procedure of surrogate based analysis and optimization is explained with the

help of Figure 7. Firstly, we identify the objectives, constraints, and design variables.

Next, we develop a procedure to evaluate different designs. In context of the current

problem, we identified design variables, objectives, and numerical procedure to evaluate

different designs in the previous section. To reduce the computational expense involved

in optimization, we construct multiple surrogate models of the objectives and constraints.

A brief description of popular surrogate models is as follows.

3.1. Surrogate modeling

There are many surrogate models e.g., polynomial response surface approximations,

kriging, radial basis neural network, support vector regression etc. A detailed discussion
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of different aspects of surrogate modeling was reviewed by Li and Padula [17] and

Queipo et al. [18]. We give a brief description of different surrogate models as follows.

3. I. I. Polynomial response surface approximation (PRS, [25])

The observed response y(x) of a function at point x is represented as a linear

combination of basis functions f(x) (mostly monomials are selected as basis functions)

and coefficients 8,. Error in approximation s is assumed to be uncorrelated and

normally distributed with zero mean and 62 variance. That is,

y(x) = 1 /jff (x) +s;	 E(E) = 0, V(6) = 62	 (1)
i

The polynomial response surface approximation of y(x) is,

Y(x) _ b, f (x),	 (2)

where bT is the estimated value of the coefficient associated with the iah basis function

fi(x).  The coefficient vector b is obtained by minimizing ` the error in approximation

(e(x) = y(x) — y(x)) at NS sampled design points in a least square sense as,

b = (XT X) -' XT y,	 (3)

where X is the matrix of basis functions and y is the vector of responses at NS design

points. The quality of approximation is measures by computing the coefficient of

multiple determination R2 ; defined as,

2	 2 (NS _ 1)

Radj = 1 — 6aNS	— 
2 '
	 (4)

Y(y'-y)i.1
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NS

where y= (N,)- 
 

y, and RMS error at sampling points is given as
i-1

NS

6Q = (NS — Nfl )
_ 1 

J (y(xi ) - y(x, ))2 . For a good fit, R a, should be close to 1. For more
i=1

details on polynomial response surface approximation, refer to Myers and Montgomery

[25]

3.1.2. Kriging (KRG, [261)

Kriging is named after the pioneering work of D.G. Krige (a South African mining

engineer) and was formally developed by Matheron [26]. Kriging estimates the value of

an objective function y(x) at design point x as the sum of a linear polynomial trend model

N„

[3, f (x) and a systematic departure Z(x) representing low (large scale) and high

frequency (small scale) variations around the trend model.

Y(x) = Y(x) = ,13 f (x) + Z(x).	 (5)
i

The systematic departure components are assumed to be correlated as a function of

distance between the locations under consideration. Gaussian function is the most

commonly used correlation function.

N„

C (Z(x), Z(s), 6) = fl exp (—B, (x, - s; ) 2 ) .	 (6)
i=1

The parameters 83 , 01 are obtained by maximizing a likelihood function that is a

measure of the probability of the sample data being drawn from it. We use an

implementation by Lophaven et al. [27].
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3.1.3. Radial basis neural network (RBNN, [28])

The objective function is approximated as a weighted combination of responses from

radial basis functions (also known as neurons).

NRBF

Y(x) _	 w;a,{x),	 (7)

where ai(x) is the response of the ith radial basis function at design point x and w; is the

weight associated with a;(x). Mostly Gaussian function is used for radial basis function

a(x) as

a = radbas (s — x1l b); radbas (n) = e -n2 .	 (8)

The parameter b in the above equation is inversely related to a user defined parameter

"spread constant" that controls the response of the radial basis function. A higher spread

constant would cause the response of neurons to be very smooth and very high spread

constant would result into a highly non-linear response function. Typically, spread

constant is selected between zero and one. The number of radial basis functions (neurons)

and associated weights are determined by satisfying the user defined error "goal" on the

mean square error in approximation. The usual value of goal is the square of five-percent

of the mean response.

As discussed here, we have many surrogate models and it is unknown a priori, which

surrogate would be most suitable for a given problem. Besides, the choice of best

surrogate model changes with sampling density and nature of the problem [19]. It has

been shown by Goel et al. [19] that in such scenario simultaneously using multiple

surrogate models protects us from choosing wrong surrogates. They proposed using a

weighted averaged surrogate that is described as follows.
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3.1.4. PRESS-based weighted average surrogate model (PWS, [19])

We develop a weighted average surrogate model as,

N
yp , (x) _	 WISi (x),	 (9)

i

where y" (x) is the predicted response by the weighted average of surrogate models,

y; (x) is the predicted response by the i t' surrogate model and w, is the weight associated

with the iffi surrogate model at design point x. Furthermore, the sum' of the weights must

NsM

be one YI w; =1) so that if all the surrogates agree, y,' (x) will also be the same.
i=1

Weights are determined as follows.

E	

R	

w*n,7 = 7 E + a , n';
aVg

	 w'	 (10)
N^

EQVg =	 E, NSM ; ,8 < 0, a < 1,

where Ei is the global data-based error measure for iih surrogate model. In this study,

generalized mean square cross-validation error (GMSE) (leave-one-out cross validation

or PRESS in polynomial response surface approximation terminology), defined in the

Appendix 2, is used as global data-based error measure, by replacing E by GMSE .

We use a= 0.05 and,8 = —1. The above mentioned formulation of weighting schemes is

used with polynomial response surface approximation (PRS), kriging (KRG) and radial

basis neural networks (RBNN) such that,

ypws = W prsyprs + Wkg ykg + W,-h.yrb.' 	 (I 1)
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For more details about the weighted average surrogate model, we refer the reader to Goel

et al. [ 19].

Next, we use these surrogate models to characterize the importance of different

variables and to identify the most and the least 'important variables for different

objectives and constraints. This information is vital to understand the role of the

variables. Also, we can fix the least important variables to reduce the dimensionality of

the problem. We use global sensitivity analysis method proposed by Sobol [29].

3.2. Global sensitivity analysis (GSA, [291)

Sobol [29] presented a variance based, non-parametric approach to perform global

sensitivity analysis. In this approach, the response function is decomposed into unique

additive functions of variables and their interactions such that the mean of each additive

function is zero. This decomposition allows the variance (V) to be computed as a sum of

individual partial variance of each variable (Vi) and partial variance of interactions (ViY) of

different variables. The sensitivity of the response function with respect to each variable

is assessed by comparing the sensitivity indices (Si, Sy) that is the relative magnitude of

partial and total variance of each variable. The details of the method are as follows.

A function Ax) of a square integrable objective as a function of a vector of

independent uniformly distributed random input variables, x in domain [0, 1] is assumed.

The function can be decomposed as the sum of functions of increasing dimensionality as

AX) = fO + EJi(xi) + Jfti( xi 1xj) +
'. + J]2...N,(XIIX21...IX1,)1	 (12)

i	 ki

where fa 
_ o 

f d x. If the following condition
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1

ff, ... t, A, =0,	 (13)
0

is imposed for k = il, is, then the decomposition described in Equation (12) is unique.

In context of global sensitivity analysis, the total variance denoted as V(t) can be shown

equal to

Nv

V(f)	 V +, ( 14)
i=1	 1_<z,j<_Nv

where V(f) = E((f _ f0)2 ),  and each of the terms in Equation (14) represents the partial

contribution or partial variance of the independent variables (Vi) or set of variables to the

total variance and provides an indication of their relative importance. The partial

variances can be calculated using the following expressions:

V = V (E[.f I xi ]),

Vj =V(E[.f I xi, x; ]>-V - Vj,	 (15)

Vjk =V(E[f I xi , xj,xj])-Vjj -Vk -Vjk -V - Vj -Vk,

and so on, where V and E denote variance and expected value respectively. Note that

E [ f I x;	f,.dx,, and V(E[ f I x, ]) bl f ?dxi	 This formulation facilitates the

computation of the sensitivity indices corresponding to the independent variables and set

of variables. For example, the first and second order sensitivity indices can be computed

as

Under the independent model inputs assumption, the sum of all the sensitivity indices

is equal to one. The first order sensitivity index for a given variable represents the main
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effect of the variable, but it does not take into account the effect of the interaction of the

variables. The total contribution of a variable to the total variance is given as the sum of

all the interactions and the main effect of the variable. The total sensitivity index of a

variable is then defined as

V+YV;+IIV;k+:..
Stotal =
	 J.J#i	 I, j#i k,k#i	 (17)

'	 V(f)

Note that the above referenced expressions can be easily evaluated using surrogate

models of the objective functions. Sobol [29] has proposed a variance-based non-

parametric approach to estimate the global sensitivity for any combination of design

variables using Monte Carlo methods. To calculate the total sensitivity of any design

variable xi, the design variable set is divided into two complementary subsets of xi and Z

(Z = x j , Vj =1, Nv ; j # i) . The purpose of using these subsets is to isolate the influence of

xi from the influence of the remaining design variables included in Z. The total sensitivity

index for xi is then defined as

S, total _ Vi total	

( 18)
t	 IV W I)' 

where

Vi 
total = Vi +.Vi,Z .,	 (19)

where Vi is the partial variance of the objective with respect to x i and Vi z is the measure

of the objective variance that is dependent on interactions between x i and Z. Similarly, the

partial variance for Z can be defined as VZ. Therefore the total objective variability can be

written as
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V = V, + VZ + Vt Z .	 (20)

While Sobol [29] had used Monte Carlo simulations to conduct the global sensitivity

analysis, we use Gauss-quadrature numerical integration of different partial variance

terms in Equation (15) to calculate sensitivity indices.

Surrogate models, which represent objectives and constraints, are used to optimize

the performance of the system. If we use multiple surrogates, we will find more than one

candidate optimal solutions. The performance- of such predicted optimal designs is

validated using numerical simulation. If we are satisfied with the performance of the

subsystem, we terminate the search procedure. Otherwise, we refine the design space in

the region of interest. The design space refinement can be done in multiple ways, (i) we

can fix the least important variables at the optimal values (as ,realized by optimization) or

mean values to reduce the dimensionality of the problem, (ii) we sample more points in

the design space, and (iii) we identify the region where we expect potential improvement

and concentrate on that region. We repeat this optimization procedure till convergence.

4. Results and discussion

We present application of the above-mentioned surrogate based optimization

framework to optimize the performance of diffuser vanes in this section. We also present

a detailed analysis of optimal design.

4.1. Surrogate model construction

First step in surrogate modeling is to sample data in design variable space. Different

design of experiment (DOE) techniques are effective in reducing _ the computational

expense of generating high-fidelity surrogate models. The most popular methods DOE

16



methods are Latin hypercube sampling (LHS) and face-centered central composite

designs (FCCD). The choice of DOE depends on the nature of problem and the number

of samples required.

For this problem, we have nine design variables hence we selected 110 design points

to allow adequate data to evaluate 55 coefficients of a quadratic polynomial response

surface. Since face-centered central composite design requires unreasonably large

number of samples (531 points to approximate 55 coefficients), we use Latin hypercube

sampling (LHS) to construct surrogate models. We generated LHS designs using Matlab

routine `lhsdesign' with 100 iterations for maximize the minimum distance between

points. We evaluated each diffuser vane shape using PHANTOM. This dataset is referred

as `Set A'. The range of the data, given in Table 2, indicated potential of improvement in

the performance of the diffuser by shape optimization. We constructed four surrogate

models, polynomial response surface approximation (PRS), kriging (KRG), radial basis

neural network (RBNN), and PRESS-based weighted average surrogate (PWS) of the

objective pressure ratio. We used quadratic polynomial for PRS, and linear trend model

with Gaussian correlation function for kriging. For RBNN, the spread coefficient was

taken as 0.5 and the error goal was the square of 5% of the mean value of the response at

data points. The parameters a, and,8 for PWS model were 0.05 and -1, respectively. The

summary of quality indicators for different surrogate models is given in Table 2.

All error indicators are desired to be low compared to the response data, except R d, ,

which is desired to be close, to one. The PRESS (Appendix 2) and RMS error (-1.0e-2)

were very high compared to the range of data. This indicated that all surrogate models

poorly approximated the actual response, and were likely to yield inaccurate results if
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used for global sensitivity analysis and optimization. To identify the cause of poor

surrogate modeling, we conducted a lack-of-fittest (refer to Appendix.3) for PRS. A low

p-value (0.017) indicated that the chosen order of the polynomial was inadequate in the

selected design space. Since, the data available at 110 points is insufficient to estimate

220 coefficients in a cubic polynomial, this issue of model inadequacy also reflected lack

of data.

4.2. Design space refinement

We addressed the issue of model accuracy or data inadequacy using two parallel

approaches. Firstly, we added more data in the design space to improve the quality of fit.

We sampled 330 additional points using Latin hypercube sampling such that we had 440

design points to fit a cubic polynomial (220 coefficients). We call this dataset as `Set B'.

Secondly, the low mean value of the response data (1.041) at 110 points compared to the

baseline design (1.074) indicated that large portion of the current design space was

undesirable due to inferior performance. Hence, it might be appropriate to identify the

region where we expect improvements in the performance of the designs, and construct

surrogate models by sampling additional design points in that region (reasonable design

space approach [31]). To identify the region of interest, we used the surrogate models,

constructed with Set A data (110 design points), to evaluate response at a large number of

points in design space. Specifically, we evaluated responses at a grid of four Gaussian

points in each direction (total 4 9=262,144 points). We chose Gaussian points instead of

usual uniform grids because Gaussian points lie inside the design domain, and -are less

susceptible to extrapolation errors than corners of uniform grids that might fall outside

the convex hull of LHS design points used to construct surrogate models. Any point with
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a predicted performance (due to any surrogate model) of 1.08 units . or better (0.5%o

improvement over the baseline design) was considered to belong to the potential region

of interest. This process identified 29,681 unique points (-11%) in the potential good

region. We selected 110 points from this data set using D-optimality criterion in this

smaller region. D-optimal designs were generated using Matlab routine `candexch' with a

maximum of 100 iterations to maximize D-efficiency ([25], pp. 93). This 110 points

dataset is called `Set C'.

As before, we conducted simulations at data points in the Sets B and C ,using

PHANTOM. One point in each set failed to provide an appropriate mesh. The mean,

minimum, and maximum values of the pressure ratio for the two datasets are summarized

in Table 3. We observed only minor differences in the mean pressure-ratio of the Set B

compared to the Set A (Table 2) but the responses in the Set C data clearly indicated high

potential of improvement. This demonstrates the effectiveness of reasonable design space

approach used to identify the region of interest.

We approximated the data in the Set B and the Set C using four surrogates. We

employed a reduced cubic, and a reduced quadratic polynomial for PRS approximation of

the Set B and the Set C data, respectively. As can be seen from different error measures

in Table 3, the quality of surrogate models fitted to the Set B and the Set C data was

significantly better than the surrogate models fitted to the Set A data. This improvement

in surrogate approximation was attributed to the increase in the sampling density (Set B)

allowing a cubic model and the reduction of the design space (Set Q. Both PRS models

did not fail the lack-of-fit test (p-value —0.90+) indicating the adequacy of fitting

surrogate model in the respective design spaces. The PRESS metric and weights
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associated with different surrogates suggested that the PRS was the best surrogate model

for the Set B and the Set C data, unlike kriging for the Set A data.

We used the surrogate models fit to the Set B data for global sensitivity analysis and

the surrogate models fitted to the Set C data for optimization. The optimization of the

performance using the surrogate models fitted to the Set B data was inferior to the

optimal design obtained using the Set C data based surrogates. Some of the optimal

designs from the Set B data based surrogates could not be analyzed. This anomaly arose

because large design space was sampled with limited data such that large regions remain

unsampled; and hence, susceptible to significant errors, particularly near the corners

where optima were found. The same issue restricted the use of surrogate models

constructed using Set C data for global sensitivity analysis as there is large extrapolation

error outside the region of interest where no point was sampled. Hence, surrogate models

constructed using Set B data were more suited for conducting global sensitivity analysis.

4.3. Global sensitivity assessment

We used global sensitivity analysis (GSA) to identify the most and the least important

design variables. We used Gauss quadrature numerical integration scheme with four

Gauss points along each direction (total 49=262,144 points) to evaluate different integrals

in GSA. The response at each point was evaluated using surrogate models fit . to the Set B

data. Corresponding sensitivity indices of main effects of different variables are shown in

Figure 8. Though there are differences in the exact magnitude of sensitivity indices from

various surrogates, all surrogates indicated that the pressure ratio was most influenced by

three variables, PZ, t2, and Py. A comparison of sensitivity indices of total and main effect
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of design_ variables (using PWS) in Figure 9 suggested that the interactions between

variables are small but non-trivial.

4.4. Validation of global sensitivity analysis results

To validate the findings of the global sensitivity analysis, we evaluated the variation

in the response function (pressure ratio) by varying one variable at a time while keeping

remaining variables at the mean values. We specified five equi-spaced levels for each

design variable and used trapezoidal rule to compute the actual variance. The responses at

design points were evaluated by performing actual numerical simulations. The results of

actual variance computations are shown in Figure 10.

The one-dimensional variance computation results also indicated that variables PZ, t2,

and Py were more important than all other variables. This validated the findings of the

global sensitivity analysis. The differences in the results of one-dimensional variance

computation and global sensitivity analysis can be explained as follows: (i) the number of

points used to compute one-dimensional variance is small, (ii) one-dimensional variance

computation does not account for interactions between variables, and (iii) there are

approximation errors in using surrogate models for global sensitivity analysis.

Nevertheless, the main implications of the finding clearly show that the performance of

the diffuser vane was pre-dominantly affected by the location of point P and the length of

tangent t2 in Section 1 (Figure 5).

4.5. Preliminary optimization of diffuser vane performance

Next, we used surrogate models, fit to the Set C data, to maximize the pressure-ratio

by exploring different diffuser vane shapes. To avoid the danger of large extrapolation

errors in the unsampled region, we employed the surrogate model (PRS surrogate) from
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the Set A as a constraint (all points in the feasible region have predicted response greater

than a threshold value of 1.08). Our use of PRS from the Set A as the constraint was

motivated by the simplicity of the constraint function, and the fact that PRS contributed

to the most number of points in the potential region of interest.

We used sequential quadratic programming optimizer to find the optimal shapes. The

optimal configuration of blade shapes obtained using different surrogate models as

function evaluators is shown in Figure 11, and the corresponding optimal design

variables are given in Table 4. The optimal designs obtained from all surrogates were

close to each other in both function and design space. A few minor differences were

observed in relatively insignificant design variables (refer to the results of global

sensitivity analysis). Notably all design variables touched the bounds for PRS and were

close to the corner for other surrogate models. The small value of 0 indicated sharper

nose, as was used in the baseline design. Also, most tangents were at their lower bounds

that resulted in low curvature sections. Near the point P, the tangents were on their upper

limits to facilitate gradual transition in the slope. The optimal vane was thinner in the

middle section and was longer compared to the baseline design (Figure 11). The central

region of the optimal design was non-convex compared to the convex section for the

baseline design.

We simulated all four candidate optimal designs from different surrogate models to

evaluate the improvements. The actual and predicted performances from different

surrogates are compared in Table 5. We observed that the error in approximation for

different surrogates was comparable to their respective PRESS errors. Nevertheless, PRS

was the most accurate surrogate model and furnished the best performance shape. RBNN
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was the worst surrogate model. PRESS-based weighted average surrogate model

performed significantly better than the worst surrogate. The best predicted diffuser vane

yielded significant improvements in the performance (1.117) compared to the baseline

design (1.074). We refer to this design as `intermediate optimal' design.

It is obvious that the design space refinement in the region of interest based on

multiple surrogates has pay-offs in the improved performance . of surrogates and the

identification of optimal design. The high confidence in the optimal predictions was also

derived from the similar performance of all surrogate models. The results also showed the

incentives (protection against the worst _design, proper identification of the reasonable

design space) of investing a small amount of computational resources in constructing

multiple surrogate models (less than the cost of a single simulation) for computationally

expensive problems, and then the extra cost of evaluating multiple optima.

We compared instantaneous (at the end of simulation) and time-averaged flow fields.

from the intermediate optimal design (from PRS) with the baseline design in Figure 12.

The intermediate optimal design allowed smoother turning of the flow compared to the

baseline design, and reduced the losses due to separation of the flow, which were

significantly high in the baseline design. Consequently, the pressure at the outlet was

higher for this intermediate optimal design. We also noted the increase in pressure on the

vane for the intermediate optimal design.

4.6. Design space refinement via dimensionality reduction

We used first design space refinement by identifying the region of interest. This

helped in identifying the intermediate optimal design. Since most design variables in the

optimal design were at the boundary of the design space (Table 4), further improvements
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in the performance of the diffuser might be obtained by refining the design space. To

reduce the computational expense, we reduce the design space by utilizing the findings of

the global sensitivity analysis. We fixed six relatively insignificant design variables at the

optimal design (predicted using PRS), and expanded the range of the three most

important design variables. The modified ranges of the design variables and the fixed

parameters are given in Table 6. We selected 20 design points using a combination of

face-centered central composite design (15 points FCCD), and LHS designs (5 points) of

experiments. The range of pressure ratio at 20 design points is given in Table 7. Note that

all the tested designs in the refined design space perform better than the intermediate

optimal design.

As before, we constructed four surrogate models in the refined design space. The

performance metrics, specified in Table 7, indicated that all surrogate models

approximated the response function very well. The weights associated with different

surrogate models, suggested that a quadratic PRS approximation represents the data the

best. This result is not unexpected since any smooth function can be represented by a

second order polynomial if the domain of application is small enough. As before, PWS

model was comparable to the best surrogate model.

4.7. Final optimization

The. design variables for the four optimal designs of the diffuser vane obtained using

different surrogate models and corresponding surrogate-predicted and actual (CFD

simulation) pressure ratio are listed in Table 8. The error in predictions of surrogate

models compared well with the quality indicators and all surrogate models had only

minor differences in the performance. Also, the optimal vane shapes from different
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surrogates were similar. In this case also, polynomial response surface approximation

conceded the smallest errors in prediction. While the performance of the optimal diffuser

vane has improved compared to the intermediate optimal design (compare to Table 5),

the contribution of the optimization process was insignificant. One of the data points (t2 =

0. 60, Py -2.00, PZ = 6.00) resulted in a better performance (P-ratio = 1.151) than the

predicted optimal. This result was not surprising because the optimal design existed at a

corner that was already sampled leaving little scope for further improvement.

Nevertheless, the optimizers correctly concentrated 'on the best region. As expected, the

optimized design is thinner and streamlined to further reduce the losses, and to improve

the pressure recovery. We analyzed the optimal diffuser vane shape according to the flow

structure and the other considerations as follows.

4.8. Flow structure

The instantaneous and time-averaged pressure contours for the optimal vane shape

(best data point) are shown in Figure 13. We observed further reduction in separation

losses, and smoother turning of the flow compared to the intermediate optimal design

obtained before design space refinement (Table 5). Consequently, the pressure rise in the

diffuser was higher. The optimal vane shape had a notable curvature in the middle section

on the lower side of the vane (near the point P). This curvature decelerated the flow and

led to faster increase in pressure (notice the shift of higher pressure region towards the

inlet in Figure 12 and Figure 13).

4.9. Vane loadings

The shapes and pressure loads on the baseline, intermediate optimal, and final optimal

vanes are shown in Figure 14. We noted the increase in the mean pressure on the diffuser
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vane for the optimal design. The pressure loads near the inlet tip, and the pressure loading

on the diffuser vane, given by the area bound by the pressure profile on the two sides, had

reduced by optimization. However, the optimized diffuser vane might be susceptible to

high stresses as the optimal design was thinner compared to the baseline vane. The

intermediate optimal design served as a compromise design with relatively higher

pressure ratio (^-4%) compared to the baseline design and lower pressure loading on the

vanes compared to the optimal design.

In the future, this problem would be studied by accounting for manufacturing and

structural considerations like, stresses in the diffuser vanes. One can either specify a

constraint to limit stress to be less than the feasible value or alternatively, one can solve a

multi-objective optimization problem with two competing objectives, minimization of

stress or pressure loading in the vane, and maximization of pressure ratio.

4.10. Empirical considerations

Typically, the vane shape design is carried out using empirical considerations on the

gaps between adjacent diffuser vanes as shown in Figure 15. The empirical suggestions

on the ratio of different gaps [32] and actual values obtained for different vanes are given

in Table 9. Contrary to the empirical relations, the ratio of length to width gap (L/Wl),

and ratio of width gaps (W2/WI ) decreased as the pressure ratio increases, though the

actual magnitude of length and width of the gaps increase. The discrepancies between the

optimal design and the empirical optimal ratios [32] are explained by multiple design

considerations used for the empirical optimal. Firstly, we note that the optimization was

carried out for a 2D diffuser vane not for the combination of vanes and flow for which

empirical ratios are provided. This allowed a variable height of the vane for optimization.
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However, the empirical ratios are obtained by assuming a constant channel height so that

the area ratio of the channel reduces to the ratio of width gaps (W2/WI ). Nevertheless,

this requires further investigation to understand the cause of discrepancies between

empirical ratios and that obtained for optimal design.

5. Summary

We used surrogate model based optimization strategy to maximize the hydrodynamic

performance of a diffuser, characterized by the increase in pressure ratio, by modifying

the shape of the vanes. The shape of the diffuser vanes was defined by a combination of

Bezier curves and a circular arc. Firstly, we defined the shape of the vane using nine

design variables and used surrogate models to represent the pressure ratio. We used lack-

of-fit test to identify the issues of model inadequacy, and insufficiency of the data to

represent the pressure ratio. We addressed these issues by, (i) adding more data points,

and (ii) identifying the region of interest using the less-accurate surrogate models. More

samples were added in the region of interest using the information from multiple

surrogate models.

The surrogate models, constructed with increased data and/or in smaller design space,

were significantly more accurate than the initial surrogate models. Also, during the

course of design space refinement, the best surrogate model changed from kriging (initial

data) to polynomial response surface approximation (all subsequent results). Had we

followed the conventional approach of identifying the best surrogate model with the first

design of experiments, and then using that surrogate model for optimization, we might

have not captured the best design. Thus, we can say that the results reflect the
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improvements in the performance using the design space refinement approach, and using

multiple surrogates constructed by incurring a low computational cost.

We conducted a surrogate model based sensitivity analysis to identify the most

important design variables in the entire design space. Three design variables controlling

the shape of the upper and lower side of the vane were found to be most influential. We

used surrogate model in the reduced design space to identify the optimal design in nine

variable design space. This intermediate optimal design improved the pressure ratio by

more than four percent compared to the baseline design.

Since all the design variables for intermediate optimal design hit the bounds, we

further refined the design space by fixing the least important variables on optimal values

to reduce the design space, and relaxing the bounds on the most important design

variables. The optimal design obtained using the surrogate models in the refined design

space further improved the performance of the diffuser by more than seven percent

compared to the baseline design. The pressure losses in the flow were reduced, and a

more uniform pressure increase on the vane was obtained. However, the optimal vane

shape might be susceptible to fail due to high stresses. This behavior was attributed to the

absence of stress constraint that allowed using thinner vanes to maximize the

performance. In the future, the optimization would be carried out by considering the

multi-disciplinary analysis accounting for stress constraint, manufacturability, and

pressure increase.

In terms of the vane shapes, thin vanes helped improve the hydrodynamic

performance significantly. The interesting aspect was the change in the sign of curvature
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of the vane on the suction side that allows an initial speeding of the flow followed by a

continuous pressure recovery without flow separation.
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Appendix 1: Bezier Curve

A typical parametric Bezier curve f(x), shown in Figure 16, is defined with the help of

two end points Po and Pl, and two control points P2 and P3 as follows.

f (x) = P (1- x)3 +3Px(1- x)2 + 3P x2 (1- x) + Px3 , x E [0, 1].	 (21)

The co-ordinate of any point on the Bezier curve is obtained by substituting the value

of x accordingly. In this study, the location of control points is obtained by using the

information about the slope and the length of the tangents at end points (Papila et al. [4]).

Appendix 2: Generajized Mean Square Cross-Validation Error (GMSE or PRESS)

In general, the data is divided into k subsets (k-fold cross-validation) of

approximately equal size. A surrogate model is constructed k times, each time leaving out

one of, the subsets from training, and using the omitted subset to compute the error

measure of interest. The generalization error estimate is computed using the k error

measures obtained (e.g., average). If k equals the sample size, this approach is called

leave-one-out cross-validation (also known as PRESS in the polynomial response surface
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approximation terminology). Equation (22) represents_a leave-one-out calculation when

the generalization error is described by the mean square error (GMSE)

k

GMSE = _I 
(Y; 	 '^) 2 ,	 (22)

k ;_l

where	 represents the prediction at x( ' ) using the surrogate constructed using all

sample points except (x(O , yz ). Analytical expressions are available for that case for the

GMSE without actually performing the repeated construction of the surrogates for both

polynomial response surface approximation (Myers and Montgomery [25], Section 2.7)

and Kriging (Martin and Simpson [30]) however here we used brute-force. The

advantage of cross-validation is that it provides nearly unbiased estimate of the

generalization error and the corresponding variance is reduced (when compared to split-

sample) considering that every point gets to be in a test set once, and in a training set k-1

times (regardless of how the data is divided).

Appendix 3: Lack-of-Fit Test With Non-replicate Data for Polynomial Response
Surface Approximation

A standard lack-of-fit test is a statistical tool to determine the influence of bias error

(order of polynomial) on the predictions [25]. The test cor'Apares the estimated

magnitudes of the error variance and the residuals unaccounted'' for by the fitted model.

Lets say, we have M unique locations of the data and at jth' location, we repeat the

experiment nj times, such that total number of points used to construct surrogate model is

M

N = in . The sum of squares due to pure error is given by,
1=1

n
2

SS Pe = I I (Y;k Y1)	
(23)

1=1 k=1
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where –. is the mean response at the 'th sample location given as _
	

1 YiYJ	 p	 J	 p	 g	 Yj =—Yk
n j 

The sum of square of residuals due to Tack-of-fit of the polynomial response surface

model is,

M	 2ssof = In j (Axj) —'yj)	 (24)
j=1

where y(x
j
) is the predicted response at the sampled location x In matrix form, the

above expressions are given as,

M
SS	 T I – '	

IT
, 	

(25

	

Pe " ^ yn	 n. n nJ n.
^Y n
	l )

j=1	 i	 j

M	 1
SSlof = yT ( N - X(XTX)-1 XT )y-1 Yn. 

I
nJ n in. ln. yn '	 (26)

j=1	 i	 J

where 1
n j	 nj	 J

is the (n x 1) vector of ones, I is (n . x n J . 	
Ns

) identity matrix, I is
J 

(Ns x Ns ) identity matrix.

We formulate F-ratio using the two residual sum of squares as,

F = (
SS

lof I dlof)
(SS /d 
	 (27 )

	

Pe	 pe

where dlof = N - N , and d Pe = NS M , are the degrees of freedom associated with

SS,O f and SSpe , respectively. The lack-of-fit in the surrogate model-is detected with a-

level of significance, if the value of F in Equation (27), exceeds the tabulated Fa,dlof' pe

value, where the latter quantity is the upper 100a percentile of the central F-distribution.
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When the data is obtained from the numerical simulations, the replication of

simulations does not provide an estimate of noise (SSpe), since all replications return

exactly the same value. In such scenario, the variance of noise can be estimated by

treating the observations at neighboring designs as "near" replicates ([33], pp. 123). We

adopt the method proposed by Neill and Johnson [34], and Papila [35] to estimate the

lack-of-fit for non-replicate simulation. In this method, we denote a near-replicate design

point xjk (as the e replicate of the /h point xi ) such that

X .
Jk	 ^	 ^=X.	 .k+6 ,	 (28)

where 6,k represents the disturbance vector. Then, the Gramian matrix is written as

X = X + 0,,	 (29)

where X matrix is constructed using ac i for near replicate points and matrix 0 = X —X .

Now the estimated response at the design points (including near-replicates) is given as

y = y - Ob,	 (30)

where b is given in Equation (3). Now, we compute SSpe and SSlof by replacing y, yn

and X in Equations (25) and (26) with y, yn and X.

32



7. References

1.Mack Y, Goel T, Shyy W, Haftka RT, Surrogate model based optimization

framework: A case study in aerospace design. In: Yang S, Ong YS, Jin Y, editors.

Evolutionary Computation in Dynamic and Uncertain Environments. Springer Kluwer

Academic Press, 2005.

2. Mack Y, Shyy W, Haftka RT, Griffin L, Snellgrove L, Huber F, Radial turbine

preliminary aerodynamic design optimization for expander cycle liquid rocket engine.

In: 42nd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Sacramento

CA, 9-12 July, 2006; AIAA-2006-5046.

3.Dorney DJ, RothermelJ,"Griffin LW, Thornton RJ, Forbes JC, Skelley SE, Huber FW,

Design and analysis of a turbopump for a conceptual expander cycle upper-stage

engine. In: Symposium of advances in numerical modeling of aerodynamics and

hydrodynamics in turbomachinery, Miami FL, 17-20 July, 2006; FEDSM2006-98101.

4. Papila N, Shyy W, Griffin L, Dorney DJ, Shape optimization of supersonic turbines

using global approximation methods. Journal of Propulsion and Power. 2002; 18(3):

509-518.

5.Obayashi S, Sasaki D, Takeguchi Y, Hirose N, Multi-objective evolutionary

computation for supersonic wing-shape optimization. IEEE Transactions on

Evolutionary Computation. 2000; 4(2): 182-187.

6. Sasaki D, Obayashi S, Sawada K, Himeno R, Multi-objective aerodynamic

optimization of supersonic wings using Navier-Stokes equations. In: European

33



congress on computational methods in applied sciences and engineering (ECCOMAS),

Barcelona Spain, September, 2000.

7. Sasaki D, Morikawa M, Obayashi S, Nakahashi K, Aerodynamic shape optimization

of supersonic wings by adaptive range multi-objective genetic algorithms. In: 1St

international conference on evolutionary multi-criterion optimization, Zurich, March,

2001; pp 639-652.

8.Huyse L, Padula SL, Lewis RM, Li W, Probabilistic approach to free-form airfoil

shape optimization under uncertainty. AIAA Journal, 2002; 40(9):.1764-1772.

9.Giannakoglou KC, Design of optimal aerodynamic shapes using stochastic

optimization methods and computational intelligence. Progress in Aerospace Sciences,

2002; 38: 43-76.

10.Emmerich MJ, Giotis A, Ozdemir M, Back T, Giannakoglou K, Metamodel-assisted

evolutionary strategies. In Parallel problem solving from nature VII conference,

Granada Spain, September, 2002; pp 361-370.

11.Mengistu T, Ghaly W, Mansour T, Global and local shape aerodynamic optimization

of turbine blades. In: Il th multidisciplinary analysis and optimization conference,

Portsmouth VA, 6-8 September, 2006; AIAA-2006-6933.

12. Samad A, Kim K-Y, Goel T, Haftka RT, Shyy W, Shape optimization of

turbomachinery blade using multiple surrogate models. In: Symposium of advances in

numerical modeling of aerodynamics and hydrodynamics in turbomachinery, Miami

FL, 17-20 July, 2006; FEDSM 2006-98368.

13.Madsen JI, Shyy W, Haftka RT, Response surface techniques for diffuser shape

optimization. AIAA Journal, 2000; 38(9): 1512-1518.

34



14.Vaidyanathan R, Papila N, Shyy W, Tucker KP, Griffin LW, Haftka RT, Fitz-Coy N,

Neural network and response surface methodology for rocket engine component

optimization. In: 8' AIAA/USAF/NASA/ISSMO symposium on multidisciplinary

analysis and optimization conference, Long Beach CA, 6-8 September, 2000; AIAA-

2000-4480.

15. Goel. T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker KP, Response

surface approximation of Pareto optimal front in multi-objective optimization.

Computer Methods in Applied Mechanics and Engineering, doi

10.1016/j . cma.2006.07.010.

16.Mack Y, Goel T, Shyy W, Haftka RT, Queipo NV, Multiple surrogates for shape

optimization for bluff-body facilitated mixing. In: 43 rd AIAA aerospace sciences

meeting and exhibit, Reno NV, 10-13 Jan, 2005; AIAA-2005-0333.

17.Li W, Padula S, Approximation methods for conceptual design of complex systems.

In: Chui C, Neaumtu M, Schumaker L, editors. Approximation Theory XI: Gatlinburg,

Nashboro Press, Brentwood TN, 2005; pp 241-278.

18. Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker KP, Surrogate-

based analysis and optimization. Progress in Aerospace Sciences, 2005; 41: 1-28.

19. Goel T, Haftka RT, Shyy W, Queipo NV, Ensemble of surrogates. Structural and

Multi-disciplinary Optimization Journal, doi 10.1007/s00158-006-0051-9 (a different

version was presented at 11' AIAA/ISSMO multidisciplinary analysis and

optimization conference, Portsmouth VA, 6-8 September, 2006; AIAA-2006-7047).

20. Goel T, Zhao J, Thakur SS, Haftka RT, Shyy W, Surrogate model-based strategy for

cryogenic cavitation model validation and sensitivity evaluation. In: 42"d

35



AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Sacramento CA, 9-

12 July, 2006; AIAA-2006-5047.

21. Dorney DJ, Personal communications. 2006.

22. Dorney DJ, Sondak DL, PHANTOM: Program user's manual. Version 20, April

2006.

23. Sondak DL, Dorney DJ, General equation set solver for compressible and

incompressible turbomachinery flows. In: 39th AIAA/ASME/SAE/ASEE joint

propulsion conference and exhibit, Huntsville AL, 20-23 July, 2003; AIAA-2003-4420.

24. Baldwin BS, Lomax H, Thin layer approximation and algebraic model for separated

flow. In: 16"' aerospace sciences meeting, Hunstville AL, 16-18 January, 1978; AIAA-

1978-257.

25. Myers RH, Montgomery DC, Response Surface Methodology, John Wiley and Sons,

Inc 1995.

26. Matheron G, Principles of geostatistics. Economic Geology, 1963; 58: 1246-1266.

27. Lophaven SN, Nielsen HB, Sondergaard J, DACE: A Matlab kriging toolbox.

Version 2,0, Information and mathematical modeling, Technical University of

Denmark, 2002.

28. Orr MJL, Introduction to radial basis function networks. Center for cognitive

science, Edinburg University, EH 9LW, Scotland UK. 1996,

hitp://www.anc.ed.ac.uk/—mjo/rbf.html.

29. Sobol IM, Sensitivity analysis for ' nonlinear mathematical models. Mathematical

Modeling & Computational Experiment, 1993; 1(4): 407-414.

36



30. Martin JD, Simpson TW, Use of kriging models to approximate deterministic

computer models. AIAA Journal, 2005; 43(4): 853-863.

31. Balabanov VO, Giunta AA, Golovidov O, Grossman B, Mason WH, Watson LT,

Haftka RT, Reasonable design space approach for response surface approximation.

Journal of Aircraft, 1999; 36(1): 308-315.

32. Stepanoff AJ, Centrifugal and Axial Flow Pumps, 2n d Edition, Krieger Publishing

Company, Malabar FL, 1993.

33. Hart JD, Non-parametric Smoothing and Lack of Fit Tests, Springer-Verlag,

NewYork, 1997.

34.Neill JW, Johnson DE, Testing linear 'regression function adequacy without

replications. The Annals of Statistics, 1985; 13(4): 1482-1489.

35. Papila M, Accuracy of Response Surface Approximations for Weight Equations

Based on Structural Optimization, PhD Thesis, The University of Florida, 2002.

37



O.daw Pump	fins %rbm foes Pump

Ww

Figures

N-1l

Figure 1 A representative expander cycle used in the upper stage engine (courtesy wikipedia).

Splitber	 Diffuser
blade .—vane

Inlet guide
vane	 Main impeller

blade
Figure 2 Schematic of a pump.

1

Main/Splitter' G

IGV	
blade

Figure 3 Meanline pump flow path (IGV: Inlet guide vane).

38



68

66

6.4

6.2

6

58

56

8

7

6

RHO

5000
2000
9000
60.00
3000
0000
70.00
40.00

8

7

6

	

a.4	 -4	 -2	 0

	

-5	 -4	 -3	 -2	 -1	 0	 1

	(A)	 Shape of the diffuser vane	 (B) Streamlines and time-averaged pressure

Figure 4 Baseline diffuser vane shape and time-averaged flow.

Figure 5 Definition of the geometry of the diffuser vane (refer to Table 1 for variable description).

Figure 6 A combination of H- and 0-grids to analyze diffuser vane. Body-fitted 0-grids are shown in
green and algebraic H-grid is shown in red.
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Figure 10 Actual partial variance of different design variables (no interactions are considered).

Figure 11 Baseline and optimal diffuser vane shape obtained using different surrogate models. PRS
indicates function evaluator is polynomial response surface, KRG stands for kriging, RBNN is radial
basis neural network, and PWS is PRESS -based weighted surrogate model as function evaluator.
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Figure 12 Comparison of instantaneous and time-averaged flow fields of intermediate optimal (PRS)
and baseline designs.

(A) Instantaneous pressure	 (B) Time-averaged pressure

Figure 13 Instantaneous and time-averaged pressure for the final optimal diffuser vane shape.
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Figure 14 Different vane shapes and corresponding pressure loadings.
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Tables

Table 1 Design variables and corresponding ranges. Angle 0 controls the size of circular arc, tl-t6
define the lengths of the tangents of Bezier curves and determine its curvature, and (Py, Pz) are the
coordinates of the point P in the middle of the section. Angle 0 is given in degrees and all other
dimensions are scaled according to the baseline design.

Minimum Maximum
0 60	 110
tl	1.25	 2.50
t2 0.75	 1.50
t3 0.05	 0.30
U 0.50	 1.00
t5 0.50	 1.00
t6 1.00	 2.00
Py -2.50	 -2.00
PZ 5.70	 5.85

Table 2 Summary of - pressure ratio on data points and performance metrics for different surrogate
models fitted to Set A. We tabulate the weights associated with the surrogates used to construct
PRESS-based weighted surrogate (PWS). PRS: Polynomial response surface, KRG: Kriging, RBNN:
Radial basis neural networks, RMSE: Root mean square error, PRESS: Predicted residual sum of
squares. Here we give the square root of PRESS so as to facilitate each comparison with RMSE.

Surrogate I Parameter Value Weight
Pressure # of points 110
ratio Minimum of data 1.001

Mean of data 1.041
Maximum' of data 1.093

R d 0.863
RMSE 8.00e-3

PRS PRESS 1.33e-2 0.32
Max Error 2.62e-2
Mean Absolute Error 4.40e-3
Process Variance 1.09e-4KRG PRESS 1.02e-2 0.41

PRESS - 1.58e-2
RBNN Max Error 2.03e-2 0.27

Mean Absolute Error 3.33e-3

PWS
Max Error 1.39e-2
Mean Absolute Error 1.95e-3
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Table 3 Range of data, quality indicators for different surrogate models, and weights associated with
the components of PWS. PRS: Polynomial response surface, KRG: Kriging, RBNN: Radial basis
neural networks, PWS: PRESS-based weighted surrogate, RMSE: Root mean square error, PRESS:
Predicted residual sum of squares (in PRS terminology), Here, we give the square root of PRESS so
as to facilitate each comparison with RMSE. We used a reduced cubic and a reduced quadratic
polynomial to approximate the Set B and Set C data, respectively.

Set B Set C
Surrogate Parameter Value Weights Value Weights

4 of points 439 109
Minimum of data 1.000 1.052
Mean of data 1.040 1.075
Maximum of data 1.097 _ 1.105

R d,. 0.959 0.978
RMSE 4.07e-3 1.65e-3

PRS PRESS 4.84e-3 0.44 8.74e-3 0.36
Max Error 1.02e-2 3.84e-3
Mean Absolute Error 2.67e-3 1.05e-3
Process Variance 1.1le-4 0.37 1.05e-4KRG

'
0.34

PRESS 5.89e-3 9.47e-3
PRESS 1.17e-2 1.07e-2

RBNN Max Error 1.53e-2 0.19 2.57e-2 0.30
Mean Absolute Error 1.47e-3 2.89e-3

PWS Max Error 6.85e-3 7.91e-3

Mean Absolute Error 1.30e-3 1.04e-3

Table 4 Optimal design variables and pressure ratio (P-ratio) obtained using different surrogates
constructed using Set C data. PRS is polynomial response surface, KRG is Kriging, RBNN is radial
basis neural network, and PWS is PRESS-based weighted surrogate.

Surrogate 0	 ti	 t2	 t3	 t4	 t5	 t6	 py PZ
Predicted

P-ratio

PRS 1 00 .^	 ' :... 1.120
KRG 63.58	 0.80	 0.81	 0.88	 1.43 1.111y
RBNN 64.49	 1.32	 0.78	 0.07	 0.94	 0.54	 1.08	 -2.04 5.84 1.105
PWS 63.65 0.53	 1.09	 , ,d , lY 1.109
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Table 5 Comparison of actual and predicted performance of optimal designs obtained from multiple
surrogate models (Set Q. Each row shows the results of optimal design using a particular surrogate
and different columns show the prediction of different surrogate models at each optimal design. PRS
is polynomial response surface, KRG is kriging, RBNN is radial basis neural network, and PWS is
PRESS-based weighted surrogate.

Surrogate-prediction using

Design by I Actual P-ratio PRS KRG RBNN PWS

PRS 1.117 1.103 1.084: 1.103
KRG 1.113 1.112 1.IaN 1.085 1.104
RBNN 1.106 1.106 1.104 JU 1.105
PWS 1.114 1.116 1.108 1.102
Average absolute error	 10.0014 0.0060 0.0186 0.0072

Table 6 Modified ranges of design variables, and fixed parameters in refined design space.

Variables Min Max Fixed Value Fixed Value
parameters parameters

t2 0.60 0.75 0 600 t4 1.00
Py -2.00 -1.50 tl 1.25 t5 1.00
PZ 5.85 6.00 t3 0.05 t6 1.00

Table 7 Range of data, summary of performance indicators, and weights associated with different
surrogate models in the refined design space. PRS: Polynomial response surface, KRG: Kriging,
RBNN: Radial basis neural networks, PWS: PRESS-based weighted surrogate, RMSE:. Root mean
square error, PRESS: Predicted residual sum of squares (in PRS terminology). Here we give the
square root of PRESS so as to facilitate each comparison with RMSE.

Surrogate Parameter Value Weights

# of points 20
Minimum of data 1.117
Mean of data 1.136
Maximum of data 1.151

-,Ra ; 0.956

RMSE 1.75e-3
PRS PRESS 2.74e-3 0.59

Max Error 2.53e-3
Mean Absolute Error 1.1 le-3
Process Variance 1.2le-4

KRG
PRESS 7.14e-3

0.25

PRESS l . l l e-2
RBNN Max Error <1.Oe-6 0.16

Mean Absolute Error <1.Oe-6
PRESS 4.21 e-3

PWS Max Error 1.51e-3
Mean Absolute Error 6.62e-4

46



Table 8 Design variables and pressure ratio at the optimal designs predicted by different surrogates.
PRS is polynomial response surface, KRG is kriging, RBNN is radial basis neural network, and PWS
is PRESS-based weighted surrogate.

Surro ate predictions using
t2	P	 PZ Actual P-ratio PRS KRG RBNN PWS

PRS 0.60	 -1.99	 6.00 1.150 1.151 1.155 1.152
KRG 0.60	 -1.87	 6.00 1.149 1.150 1.152 1.151
RBNN 0.61	 -1.97	 5.99 1.150 1.150

W

1.150 .w 1.151
PWS 0.60	 -1.96	 6.00 1.150 1.151 1.152 1.154 `w
Average absolute error 7.5E-04	 1.50E-03 4.25E-03 1.75E-03

Table 9 Actual and empirical ratios of gaps between adjacent diffuser vanes.

W1	 W2 L L/W I	W2/WI	 P-ratio
Empirical relations 4.00	 1.60
Baseline vane	 0.66	 0.94 2.09 3.15	 1.42 1.074
Intermediate optimal 	 0.79	 1.07 2.03 2.55	 1.35 1.117
Optimal vane	 0.94	 1.11 2.02 2.15	 1.19 1.150
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Introduction

• Upper-stage expander cycle employs
radial turbines - allow higher pump Splitter
speeds, improve efficiencies at design blade

and off-design operating conditions

• Diffuser pump with vanes was found to
be more efficient than the vaneless
design

• The objectives of the current work are

• to maximize the ratio of static
pressure at inlet and outlet in a
diffuser pump via shape optimization Inlet guide
of the vanes vane

• to demonstrate a multiple surrogate
model based optimization frame
work for design and analysis

Diffuser
vane

Main impeller
blade
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Surrogate-based optimization approach

Define optimization
problem

Minf(xl' x2,,·xJ
s.t. C(x) < 0

L...-__H....;,.(x) _0__....

Evaluatej{x),
C(x), H(x) Numerical

simulations

3

Stop

No

Refine design
space

f
H
C

Perform
optimization

Surrogate
models

• Department of Mechanical and Aerospace Engineering •

Identify most and
least important

variables using GSA

I
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Surrogate modeling

Design of
experiments

Construct surrogate
models

Run simulations at
sampled points

Surrogate construction

• Surrogate model
• functional relationship between design

variables and response y :::: f(x)

• Advantages
• computationally inexpensive
• easy coupling with optimization

software
• facilitates sensitivity analysis

• Popular surrogates
• polynomial response surface
• kriging
• radial basis neural network
• ensemble of surrogates

• Department of Mechanical and Aerospace Engineering • 4



Polynomial response surface approximation

Nv ~ ~

y(X) = 130 + Lf3iXi + Lf3iiX: + L L f3ijXiXj + ... + £
i=l i=l i<j=2

-+----------_x

y == xp + E, Y== Xb

b = (XX)-t Xy y

• Assumption: Normally distributed
uncorrelated noise

• In presence of noise, response surface
may be more accurate than observed
data

Sampling
data points

l~·•••••••••••• • ••••..- .... .
• ••• ••... . /.... . -.•

Response
surface

••> I \:1\ 11,,' [ ,\! I

~
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Kriging (KRG)

N
v

y(x) = Y(x) L P/;i (x)
'=1

~__-----.. Systematic departure

Trend model

Nv

C(Z(x),Z(S),O) =IIexp (-()i (Xi -Si)2)
i=l

• Assumption: Systematic departures
Z(x) are correlated, noise is small

• Gaussian correlation function C(x,
5,9) is most popular

y
Sampling
data points

Sys ematic
Departure

Linear Trend
Model

I .............

Kriging
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Radial basis neural networks (RBNN)

y(X)

t

Input

o
---=-o--=.a=-:33=-+--------'-------b-----+--=0::--:.a=-=3""=-3

Radial basis function

----+-"""?""i-~--+--1

i=l

N RBF

y(x) = ~ w.a.(x)L...J I I

----2------- ----------------- -------~.~

a = y xradbas (lis - xii b) ; radbas (n) = e-
n

• Neurons (radial basis functions) at some of
data points are used to approximate
response. Other points are used to estimate
error

• User-defined constants:
• spread constant: radius of influence 1/b W 2 ~I--"'"
• error goal: minimum sum of square of errors x

• Good for modeling fast-changing responseslnput 3 a Output
Radial basis functions

;."'" l "\ j\ I I, [1 I \ 'j

~
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Weighted average surrogate

PWS: PRESS-based weighted surrogate

PRESS: redicted residual sum of s uares

S: polynomial response surface

KRG: kriging

RBNN: radial basis neural network

• Best surrogate model for the given
problem is unknown

• Use a weighted sum of responses
from Nsm surrogates

NSM

Y (x) =~w.jJ.(x)
pws ~ I I

I

• Choice of weights Wi should reflect
• confidence in ith surrogate model

• good surrogate 7 high weight

• protection against lucky surrogate
(that models data well but is
inaccurate)

Sampling
points

Test
points

RBNN

-~ .... I '\ 1\ ! I, .[ J'J \ \1

~
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PRESS-based weighting strategy

Here a = 0.05

Protects against data
modeling surrogate

i

N
SM

E - ""E N . O<a<l
avg- ~ i 8M'

i=l

• We use PRESS-based weighting strategy E. = .JPRESS
I

• Example of PRESS-based weighted surrogate (PWS) with
polynomial response surface, kriging, and radial basis
neural network

• Parametric weighting strategy based on error Ej
-1

~* = Ei~ +a ,/Eavg

Y pws (x) = wprsYprs (x) + WkrgYkrg (x) + wrbnnYrbnn (x)

,

••"i- t ".1\ I ], ·11', \ II

~
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Global sensitivity analysis
• Global sensitivity analysis (Sobol, 1993) is used to assess the

contribution of different variables to total variability - can identify
the importance of variables

v.s - lJ
ij - V(f)

Sensitivity index of main effect Sensitivity index of total effect

Variance

Mean

• Department of Mechanical and Aerospace Engineering • 10



Shape definition

S«tion4
P (PY' PJ

• Shape of diffuser vane is defined
using parametric Bezier curves and
circular arcs

• Nine design variables
• angle 8

• lengths of tangent vectors t1-t6
• coordinates of P: Py' Pz

• Performance of a diffuser vane is
assessed using 3D unsteady N-S
code PHANTOM with Baldwin-Loma
turbulence model

• Each 3D simulation takes nearly 20 -+- _

minutes - use surrogates for
optimization to avoid high cost

.. .:- ". \ f ' • •i

~
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Surrogate approximation of pressure ratio

• High errors in approximations P-ratio ~

• Lack of fit test revealed that the
# of training points 110

order of polynomial is insufficient

Not enough data to fit higher
Minimum of data 1.001•

order polynomial Mean of data 1.041

• Large region in design space is Maximum of data 1.093

undesirable (P-ratio < 1.074) Baseline design 1.074

• Improve surrogate quality via PRS R2
adj 0.863

design space refinement
PRESS 1.33e-2 0.320

PRS: Polynomial response surface KRG PRESS 1.02e-2 0.410
KRG: Kriging RBNN PRESS 1.58e-2 0.270
RBNN: Radial basis neural
network PWS PRESS 1.12e-2

PRS: PRESS-based wei~ted •
surrogate oor qualIty of surrogates
~.>"l \.1\11,'" IJ

~
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Design space refinement

• Identify the region of interest
P-ratio K';

using existing surrogates
• identify the region where we # of training points 109

observe at least 0.5% Minimum of data 1.052
improvement over baseline

Mean of data 1.075
• sampled 110 points using 0-

optimality criterion Maximum of data 1.105

• One simulations failed PRS R2
adj 0.978

• Higher potential of improvement PRESS 8.74e-3 0.36

• Fit surrogate models KRG PRESS 9.47e-3 0.34
• reduced quadratic polynomial RBNN PRESS 1.07e-2 0.30

response surface
PWS PRESS 7.53e-3

no lack of fit•

• Quality of surrogate models
improved

••~ I \.1\ I 1 11 I \ I!

~
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Optimization results

• Optimization using SQP using different surrogates to evaluate objective

• Optimized variables:

e t1 t2 t3 t4 t5 t6 Py Pz

PRS 60.00 1.25 0.75 0.05 1.00 1.00 1.00 -2.00 5.85

KRG 63.58 1.25 0.80 0.05 0.81 0.88 1.43 -2.00 5.85

RBNN 64.49 1.32 0.78 0.07 0.94 0.54 1.08 -2.04 5.84

PWS 63.65 1.25 0.75 0.05 1.00 0.53 1.09 -2.00 5.85

• Optimized designs from different surrogates are in the same vicinity

• Moderately high cost of evaluating multiple optimal designs but
significantly less than the cost of getting data

• Many variables hit bounds -7 more improvement by relaxing ranges

• Department of Mechanical and Aerospace Engineering • 14



Optimal vane shape

Actual Yprs Ykrg Yrbnn Ypws 6.6 - Baseline

P ratio
PRS

-KRG
6.4 •• -. RBNN

PRS 1.117 1.120 1.103 1.084 1.103
-pws

6.2

KRG 1.113 1.112 1.111 1.085 1.104 6

RBNN 1.106 1.106 1.104 1.105 1.105
5.8

PWS
5.6 .. _.- ....- _.- .-.

1.114 1.116 1.108 1.102 1.109
5.4 ...

Average error 1.4e-3 6.0e-3 1.ge-2 7.2e-3 -4.5 -4 -3.5 -3 -2.5 -2 ·1.5 ., -0.5 0 0.5

• Yxxx: Predicted pressure ratio using polynomial response surface, kriging, radial
basis neural network and weighted average model

• PRS is the most accurate surrogate and it results in the best improvement

• RBNN was the worst surrogate

• All surrogates yield similar optimal design that has a bend in the middle

• Significant improvements in the P-ratio (nearly 4% over baseline P ratio of 1.074)

... '.'! "

~
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Global sensitivity analysis

t1 t2
0.7% 20.3% t3

0.8% 4
0.4%

ts
0.0%

is
P 0.2%

y

13.7%

Pz
63.2%

12

11

e

I.
pz

0.1% Py e
16

0.6%

III IS • Talai effecl..
:c

o Main effeci"' 14'1::

"'> 13

Main effects Total effects Validation

• Results are shown using PWS surrogate constructed with 440 points
• Location of point P and length of left tangent in Section 1 were found to

be the most important variables

• Interactions among variables were not negligible but small
• Validation using actual simulations without considering interactions

show similar trends

• Department of Mechanical and Aerospace Engineering • 16



Dimensionality reduction
• Shape definition is same as used

earlier

• We fix six design variables near
to their optimal values as
observed for PRS design

• Fixed variables

• 8 = 60°

• t1 = 1.25

• t3 = 0.05

• t4 = 1.00

• t5 = 1.00

• t6 = 1.00

• Three design variables with
expanded range are -7

Section 1

Section 3

p (P" P,)

Min Max

~ 0.60 0.75

P -2.00 -1.50

Pz 5.85 6.00

• Department of Mechanical and Aerospace Engineering • 17



Optimization results
• Optimization using sap when different surrogates approximate

response

• Optimized variables and responses

t2 Pv Pz Actual Y Yprs Ykrg Yrbnn Ypws

PRS 0.60 -1.99 6.00 1.150 1.151 1.151 1.155 1.152

KRG 0.60 -1.87 6.00 1.149 1.150 1.152 1.152 1.151

RBNN 0.61 -1.97 5.99 1.150 1.150 1.150 1.155 1.151

PWS 0.60 -1.96 6.00 1.150 1.151 1.152 1.154 1.152

Average absolute error 7.5e-4 1.5e-3 4.3e-3 1.7e-3

• All optimized designs are in the same region of design space and
significantly better than the baseline design but a data point is better!

• The optimal design appeared at a corner that was already sampled

• PRS was the most accurate surrogate

• Department of Mechanical and Aerospace Engineering • 18



Flow fields

o·2
Y

·4

RHO

560.00 RHO

8 52000 560.00
490.00 8 520.00
460.00 490.00
430.00 460.00
40000 430.00
370.00 400.00

7 340.00 37000
N 7 340.00

Baseline Optimal design

6
6

• Less separation and recirculation in the optimal design compared to
the baseline design

• High pressure rise near the exit for optimal design
• More smooth turning of the flow

Optimal design reduce separation losses

• Department of Mechanical and Aerospace Engineering • 19



Vane loadings

-';--4~--'--';;--3~~~?""""--"'----'---';-1~-'---'--*'0 5.2

650

5.8

6
N

5.6

6.2

Vane loadings

.....---.... Vane shapes 6.6
~__ 6.4

=== Baseln. vane
Irtennediatll optimal

----- Optimal vane

== Baselne vane
Irtermedlatll optima!

----- Optimal vane
400

450

550

600

• High pressure load near the inlet

• Pressure increases with decrease
in area in the channel and vice
versa

• Reduction in inlet tip load and
pressure loading on the vane (area
bound by the pressure profile) by
optimization

• Optimal vane shape experiences
highest mean pressure 
susceptible to failure because of
the least material

• Department of Mechanical and Aerospace Engineering • 20



Summary

• Shape optimization of diffuser vane resulted in significant
improvements in pressure rise - nearly 7% improvement over
baseline design

• The optimal vane is thinner than baseline, allows smooth turning
of the flow from both edges, and reduces separation but is
susceptible to stress failure, and may not accommodate
manufacturing requirements

• Surrogate based optimization process helps
• identify the most important design variables

• identify region of high performance and the near optimal design

• provide accurate predictions in the desired region

• Best surrogate model can change during optimization, hence
using multiple surrogates is advantageous

;.""1'\1\11\ 11 ' \lj .

~
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Appendix
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Shape definition

Min Max

e 60 110

t1 1.25 2.50

t2 0.75 1.50

t3 0.05 0.30

t4 0.50 1.00

ts 0.50 1.00

ts 1.00 2.00

Py -2.50 -2.00

Pz 5.70 5.85

Sec:tion4

Sec:tion 1

Section 3

• ine design variables
• define angle e
• define lengths of tangent vectors t1-t6
• coordinates of P: PY1 Pz

• Mesh generation using CORGRD - 13065 points
• Each simulation takes nearly 20 minutes - use surrogates for optimization

• Department of Mechanical and Aerospace Engineering • 23



Global sensitivity analysis
• Global sensitivity analysis (Sobol, 1993) is used to assess the

contribution of different variables to total variability - can identify
the importance of variables

Variance ..... V(f)=E((f-fof) Mean ..... / 0 =!!... !/(x)dxt dx2 ...dx
Nv

Variance V(f) = INv
V I V ... v. H t t V V ??

d 't' .+ .. + + 1 N ow 0 ge ,', ,ii,' •.•.ecomposl Ion i=1 ' l5,i5,j5,N
v

Ij ... v J

Function 1 (x) = 10 + LJ;(xJ + LJ;j (xi,x j)+ ... + J;2... Nv (x"x2 , ••• ,xN,)

decomposition ~ !<j ,
main effects intera~tions

such that 1fl...isdxk=O then v= .[ f2 dx.
I n J i I

• Department of Mechanical and Aerospace Engineering • 24
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Design space refinement

• Two ways of design space refinement
• add 330 more samples - total 440 points (Set B)

• use poor quality surrogates to identify the region where we may
have improved performance (at least 0.5% improvement over
baseline) and add samples in that region -:- sampled 110 points
(Set C)

• Simulations at these locations - one simulation for each
case failed

• Fit surrogate models to individual data sets
• reduced cubic polynomial response surface to the Set B data

• reduced quadratic polynomial response surface to the Set C data

~.~ ! \.1\ I I I:' \'1

~
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Quality of surrogates in refined domains

Set B wP
I SetC we

I

# of training points 439 109

Minimum of data 1.000 1.052

Mean of data 1.040 1.075

Maximum of data 1.097 1.105

PRS R2adj 0.959 0.978

PRESS 4.84e-3 0.50 8.74e-3 0.36

KRG PRESS 9.14e-3 0.27 9.47e-3 0.34

RBNN PRESS 1.17e-2 0.22 1.07e-2 0.30

PWS PRESS 6.07e-3 7.53e-3

• Surrogate predictions are improved - best surrogate changed
• No lack of fit for both data sets
• Potential of improvement using the surrogates fit to the Set C data
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Global sensitivity analysis

1.000.800.600.40

tara tion

Sensitivity index

0.20

t2

t1

e
Py

5.2%

pz

14 Py
0.3% t6

15 II> t5 • Total effect.,
0.1% :c

• Main effect.. t4
Is .1:..

0.6%> t3

ain effects 0.00

11

e 0.4%

0.4%

• Global sensitivity analysis using multiple surrogate models resulted in
same conclusions - results shown are obtained using PWS

• Location of point P (Py' Pz) was most important followed by variable t2

• All other variables were relatively unimportant

• Interactions between different variables were not too important

Location of point P and parameter t are most important
. .....

';.>-'1 ·\.1\[1, [I \lj
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Validation of GSA results

Main effects - actual variance

• Vary one variable at a time while keeping
all other variables fixed at mean values

• Calculate variance using trapezoidal rule
with five equi-spaced levels for each
variable

• Actual sensitivity analysis also indicate
three important variables - t2 , Py' Pz

• The differences in results of GSA and
actual computations are attributed to
• insufficient data to cover entire design

space

• inaccuracies in surrogate models

• actual variance does not account for the
interactions

e
0.6%

Pz

63.2%

t2
20.3% t3

0.8% t4
0.4%

t5

0.0%
t6

P 0.2%
y

13.7%

Results validate the lobal sensitivit anal sis
. . - _.-
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Performance of surrogates (Final)

• All data points were better P-ratio w
than the intermediate

# of training
optimal design 20

points

• Reduced quadratic fit of Minimum of data 1.117

pressure ratio in modified Mean of data 1.136

design space Maximum of data 1.151

• No lack of fit Baseline design 1.074

• Quality of PRS is the best PRS R2
adj 0.956

and RBN N is the worst PRESS 2.74e-3 0.59

• PWS is at par with the KRG PRESS 7.14e-3 0.25

best surrogate RBNN PRESS 1.11 e-2 0.16

PWS PRESS 4.21e-3
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