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Abstract: 

The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight 
Center provides high performance highly parallel processors, mass storage, and 
supporting infrastructure to a community of computational Earth and space scientists. 
Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the 
workload. NCCS management structures batch queues and allocates resources to 
optimize system use and prioritize workloads. NCCS technical staff use a locally 
developed discrete event simulation tool to model the impacts of evolving workloads, 
pofential system upgrades, alternative queue structures and resource allocation policies. 

1, INTRODUCTION 

This paper describes a queue simulation tool in 
use at the NASA Center for Computational 
Sciences (NCCS), a high performance computer 
facility at the Goddard Space Flight Center in 
Greenbelt, Maryland. The tool simulates the 
behavior of batch job queues, the batch job 
scheduler, workloads and the systems they run 
on and predicts performance metrics of interest 
such as expansion factors, wait times, system 
utilization, and throughput. Using the tool, 
systems staff balance the conflicting objectives 
of low expansion, low wait time, high utilization 
and high throughput in an environment of high 
latent demand. 

The paper is structured as follows: 

Section 1 describes the NCCS environment, 
workloads, systems, batch job queue 
structures and performance metrics. 
Section 2 discusses alternative job 
scheduling algorithms of interest to the 
NCCS and high performance computer 
(HPC) centers generally. 
Section 3 describes the queue simulation 
tool, including its design, validation, and 
example tool inputs. 
Section 4 provides insights into system and 
workload behavior gained using the tool, 
and compares our results with prior studies. 
Section 5 h-- - -.mmmaq' -- k~F!3 I@~Rs-. 

1.1 NCCS ENVIRONMENT 

Goddard is a major center for NASA's Science 
Mission Directorate and is home to the nation's 
largest community of Earth scientists and 
engineers. Goddard's missions include 
expansion of knowledge of the Earth and its 
environment, the solar system, and the universe 
through observations from space. The Hubble 
Space Telescope Control Center is on the 
Goddard campus, and Goddard is a design 
center for Earth-observing satellites and other 
spacecraft. Goddard is also the home of the 
NCCS. 

The NCCS is a supercomputing facility that 
provides Goddard's science community with 
HPCs, mass storage, network infrastructure, 
software, and support services. About 600 
scientists use the NCCS to increase their 
understanding of the Earth and space through 
computational modeling and processing of 
space-borne observations. NCCS systems are 
targeted to the specialized needs of Earth and 
space scientists and NASA's exploration 
initiative. 

NCCS performance management was the 
subject of a 2003 CMG paper [Glassbrook]. 

1.2 NCCS WORKLOADS 

The largest NCCS supercomputer workloads are 
mathematical models of the Earth's atmosphere, 
oceans, and climate. Another large workload is 
data assimilation, which processes Earth- 
observing satellite data and other sparse climate 
data and generates models of the global climate 
that are the best fit of current data. 



Examples of other workloads include the 
following: 

3D Modeling of High Energy Emission from 
Rotation-Powered Pulsars 
30  Simulations of Accretion to a Star with 
Magnetic Field 
Assimilation of Satellite Observations of 
Clouds to Improve Forecast Skill 
Gravity Wave Simulations 
Global Magnetohydrodynamic Simulations 
of the Solar Wind in Three Dimensions 

And many others. 

1.3 CURRENT NCCS SYSTEMS 

NCCS supports these computational science 
workloads using a suite of high performance 
systems that currently include: 

PalmIExplore, an SGI Altix 3700 BX2 with a 
total of 1,132 CPUs 

palm: 
SGI Altix 3700 BX2 
128 CPUs 
272 GB memory 

explore: 
SGI Altix 3700 BX2 
1 512 CPU, 2 256 CPUs 
1 1024 GB memory, 2 512 GB 
memory 

Discover, a Linux Cluster with 1,536 CPUs 

Courant, an SGI Origin 3800 with 128 CPUs 

Dirac, an SGI Origin 3800 with 64 CPUs, 
used as a file server 

Disk drives from Data Direct Networks and 
other vendors 

Tape robots from SunlStorageTek 

This paper focuses on the PalmlExplore 
production machine. 

1.4 JOB SCHEDULING ON PARALLEL 
SYSTEMS 

As is typical of high performance systems, many 
NCCS workloads simulate the behavior of their 
object of inquiry by representing it in a multi- 
dimensional grid. Global climate models can be 
mapped onto current-generation highly parallel 
systems by dividing the atmosphere into groups 
of three-dimensional cells, assigning each group 
to a processor node, simulating climate behavior 
within that group on that node, and periodically 
synchronizing across nodes. Users specify the 
number of processing nodes that the application 
uses when they submit the job. 

The dispatching software of traditional systems 
optimize processor utilization by assigning a 
new job to a processor at certain times, such as 
the start of an inputloutput operation or the 
expiration of a time slice. Current high 
performance systems, where there . may be 
upwards of 1,000 or 10,000 processors in the 
complex, often do not perform as well under this 
job control method. Swapping a job out on one 
processor may leave 60 or 120 other processors 
idle. Instead, processors are allocated to a 
parallel job for the duration of the job and are not 
reassigned until the job completes. 

The ability of a parallel job to use the processing 
resources it receives depends on the 
characteristics of that job. Amdahl's law 
analyzes a job's ability to use multiple 
processors depending on the proportion of 
parallel vs. serial code that it executes. In an 
environment like the NCCS, systems staff can 
provide advice and training on the optimal use of 
parallel processor allocations, but the primary 
responsibility for exploiting parallelism remains 
with the application programmer. 

On the other hand, the system administrators 
and batch job scheduling software can manage 
parallel processing resources to optimize the 
assignment of jobs to CPUs. Ideally, few 
processing nodes sit idle waiting for work if there 
are jobs waiting in the queue. The objective is 
to allocate jobs onto idle processors consistent 
with the users' workload priorities, resource 
allocations and performance needs. 

1.5 NCCS WORKLOAD PARALLELISM 

As noted above, NCCS batch jobs are allocated 
to specific processors dedicated to those jobs 
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Exhibit I - Total Jobs by CPU for All Sectors for April 2007 

Small jobs (4 or fewer CPUs) are by far the most numerous.. . 
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Exhibit 2 -Total CPU Hours by CPUs for April 2007 

but 64- and 120-processor jobs consume the majority of the processor resources for this 
period. 



until they complete. Jobs vary in the number of 
processors they use and the length of time the 
job runs. Exhibits I and 2 show the 
PalmlExplore workload profile for April, 2007. 
The charts show that, although highly parallel 
jobs are less numerous than small (4 CPUs or 
less) workloads, they consume the majority of 
processing resources. 

1.6 NCCS QUEUE STRUCTURE 

NCCS uses a system of workload queues to 
provide optimal performance for our workloads 
and systems. System administrators structure 
the queues along functional lines, based on 
historical patterns, knowledge of user 
requirements and management policies. The 
current queue structure is depicted in Exhibit 3 
and is taken from an NCCS web site. (Note: 
Queue and user names throughout this paper 
have been modified due to system security 
security policy. ) 

Batch Queues on the SGI Altix 3000 

Read the documentation below the table to familiarize yourself with the restrictions on some 
of the queues below. All queues except checkout and prepost will run on e l ,  e2, and e3. The 
default number of CPUs for any job is 2, and the default wall clock time is 5 minutes. 

Special Queues on the SGI Altix 3000 System 

I 1 Up to 1 Hours 

Up to 16 archive max 2 

hour maximum 

From 2 to 254 
processors 

. . . - . -. - - -. - - - . . . .. 

More than 254 

Longer than 12 I From I to 12 Hours 1 Hours Hours 

processorsljob 

background (I), 4 
hour maximum 

allpurp-hi-(6) 
high-priority-(7) 

Numbers in parentheses designate priority, with 7 being the highest priority and 1 being the 
lowest. 

-- - -  -- - - -- - - - - -  - 

Exhibit 3 - Current NCCS Queue Structure on PalmlExplore 



checkout 

Routed specifically to the system's front end, palm 
Time constraint of 1 hour maximum per job 
No more than 4 jobs in this queue can be run by the same user at the same time. 

archive 

This queue is to be used for the purpose of moving data (data archival jobs, staging 
jobs, no MPIlOpenMP processing). 
Only 2 jobs allowed per user at one time to run. 
Job size is limited to 2 processors. 
There are only 10 processors in total set aside for this queue. 
Jobs in this queue will run on the backend systems (not palm, but rather e l ,  e2 or 
e3). 
If users want to use this queue they need to specify the queue name in their qsub 
parameters "-q archive" on the command line or "#PBS -q archive" in the job 
script itself. 

prepost 

This queue is to be used for prelpost processing work (not production runs). 
Jobs now limited to no more than 16 processors 
If users want to use this queue they need to specify the queue name in their qsub 
parameters "-q prepost" on the command line or "#PBS -q prepost" in the job 
script itself. 
No more than 6 jobs in this queue can be run by the same user at the same time. 

allpurp-small 

No more than 5 jobs in this queue can be run by the same user at the same time. 
Job size is limited to 18 processors. 

Minimum wallclock time has been lowered to 1 hour by default (so the queue allows 
1-12 hours walltime). 

allpurp 

No more than 8 jobs in this queue can be run by the same user at the same time. 

Allows jobs sized between 16 processors and 254 processors. 

Exhibit 3, cont'd. - Current NCCS Queue Structure on PalmlExplore 



background 

Designed to have the lowest priority on the system and is targeted for two groups: 
NCCS staff 
Users who have used up all their allocated hours on the system 
This queue is only turned on if there isn't any work waiting in the 
high-priority, allpurp-hi or allpurp queues. 

Note that users may still run jobs in the background queue even if they have a 
current allocation; use of this queue will not count against that allocation amount. 

allpurp-hi 

Designated for users who have a demonstrated need for either very large or very 
long jobs 
Must be approved by NCCS staff, the NCCS Director, or NASA HQ 
Total number of processors available (and maximum number of processors per job) 
in this queue is 510 

urgent 

Reserved for use on jobs designated by NCCS staff, the NCCS Director, or NASA 
Headquarters as needing priority within the overall workload 
Total number of processors available (and maximum number of processors per job) 
in this queue is 510 

Exhibit 3, cont'd. - Current NCCS Queue Structure on PalmlExplore 
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Exhibit 4 - PalmlExplore Utilization, 1 Year 
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Exhibit 5 - PalmlExplore Expansion Factor, 1 Year 

1.7 PERFORMANCE METRICS 

Many commercial computer operations manage 
performance using service level agreements 
based on response time percentiles, reliability, 
throughput, or hardware resource utilization, but 
high performance data centers are somewhat 
different. Batch typically dominates HPC data 
center workloads (like NCCS), and has 
turnaround times that vary from seconds to days 
or even weeks. In an environment of CPU- 
bound workloads running on dedicated nodes, a 
key performance metric for system 
administrators is the expansion factor - the 
percent increase in job completion time due to 
queue waiting vs. time spent running on the 
allocated nodes. 

Expansion Factor = (Run Time + Queue 
Time)/Run Time 

The NCCS also measures processor utilization 
and divides this in two parts: (part I )  the percent 
of available nodes allocated to some job over 
time, and (part 2) the utilization of allocated 
nodes by running jobs. Utilizations over 90% in 
terms of allocation (part 1) are typical, and 
depend on the job scheduling algorithm, queue 
structure, and job mix. Part 1 utilization is the 
focus of the simulation and this paper. 
Processor utilizations within allocations (part 2) 
below 20% for running jobs are also typical. 

factors. Part 2 utilization is outside the scope of 
this paper. 

The NCCS queue simulation tool estimates both 
the expansion factor and processor utilization at 
the allocation (part 1) level. Exhibits 4 and 5, 
above, show recent PalmlExplore utilization and 
expansion. 

2. PARALLEL JOB SCHEDULING 
ALGORITHMS 

NCCS uses the Portable Batch Scheduler (PBS) 
from Altair to manage the PalmIExplore batch 
workload (there are competing products that 
offer comparable functionality). When a user 
submits a job (qsub-) to a queue managed by 
PBS, the operating system (SUSE Linux in this 
case) turns over management of that job to 
PBS. Linux will not swap a PBS job during its 
execution. PBS controls most of the CPUs on 
the system. 

Parallel job scheduling generally works as 
follows: 

The system administrators structure queues 
with priorities, job time and processor count 
limits, and user or other functional queue 
target workloads. (Section 1.6 shows the 
current queues on PalmlExplore.) 

These low numbers are due to Amdahl's law 
(proportion of serial vs. parallel code) and other 



Users estimate job run time and specify the 
number of processors the job requires. Run 
time estimates are required to implement 
backfilling, which is discussed in the next 
section. NCCS uses backfill. 

The job scheduling system allocates jobs to 
processors based on the number of CPUs 
required, estimated time required, priority, 
queue, and the other jobs currently 
executing or awaiting execution on that 
system. 

Other considerations also impact job scheduling. 
At the NCCS, users receive annual allocations 
of processor time. Once they exceed their 
allocation, their jobs will no longer run. Other 
factors include access to non-CPU resources, 
such as mass data storage and compiler and 
library versions. 

2.1 BACKFILL AND RELAXED BACKFILL 

In parallel systems, swapping the job running on 
a single processor would result in wait states on 
all the other allocated CPUs. In practice, it 
makes more sense to dedicate all of the 
processors to a particular job until the job 
completes. (Alternative methods, such as gang 
scheduling [Feitelson] [Frachtenberg], exist and 
are useful in some environments, but are 
beyond the scope of this paper and are not 
relevant to the NCCS.) With dedicated 
processor allocations for the life of a job, 
optimization of system utilization becomes an 
issue of intelligently assigning jobs to groups of 
CPUs in such a way that utilization and 
throughput are high and wait time is low. Many 
HPC sites use backfill to improve utilization, and 
there has been extensive discussion of this 
method in the literature ( see, e.g., pard],  
[Feitelson], [Shmueli], [Hovestadt]). 

Exhibit 6 is a simple example of parallel job 
scheduling without backfill. In the diagram, the 
vertical axis represents multiple processors, the 
horizontal access represents time, and each box 
represents a job. Each job occupies a certain 
number of processors for a certain amount of 
time. In the example, job J1 is running and the 
next highest-priority job, J2, waits until J1 
completes. Lower priority jobs J3 and J4 wait 
until higher priority J2 is finished, even though 
there is unused capacity on the system that J1 
does not need. 

In Exhibit 7, Strict Backfill has been added to the 
job scheduling algorithm. ("BwkfiC and ''Strict 

,nr~li" are used interchangeably in the 
ature.) Because J3 can use the idle 

processors that J1 does not need and will 
complete before J1, backfill allows lower priority 
J3 to jump forward in the queue and run to 
completion before J2 starts. J4 must wait, 
however. 

Time b 

Exhibit 6 - No Backfill 

Time - . 

Exhibit 7 Backfill 

In strict backfill, no lower priority job can delay 
any higher priority job. With relaxed backfill, 
some small delays to the higher priority jobs can 
be tolerated if the global utilization and 
throughput of the system can be improved 
thereby. Exhibit 8 illustrates this situation. 
Relaxed backfill allows both jobs J3 and J4 to 
jump ahead of higher priority J2, even though 
the execution time of J4 exceeds J1 and causes 
J2 to be delayed slightly. 



Time B. 

Exhibit 8 - Relaxed Backfill 

The delay tolerable by a higher priority job is a 
tunable parameter in the job scheduler. 

There are many variations on backfill @.Nard], 
[Shmueli]. 

2.2 OTHER SCHEDULING CONSIDERATIONS 

Backfill aside, other job scheduling approaches 
and considerations include the following: 

0 Gang Scheduling. In gang scheduling, all 
processors in the complex swap in new jobs 
at a set time quantum. Multiple jobs may 
reside in local memory for each node and 
can run in their turn. Although difficult to 
implement and not often used [Feitelson], 
gang scheduling has some of the same 
benefit as backfill, allowing short jobs to 
finish quickly and avoid excessive blocking 
by long jobs of higher priority. 

Starvation. When small, short jobs can jump 
ahead of large, long jobs in the queue due to 
backfill or other strategies, there can be a 
danger that the long job never runs - this is 
called starvation. Relaxed backfill avoids 
this problem by limiting the delay a high 
priority job must tolerate, and there are other 
strategies for avoiding starvation, as well. 

Priority Policies. First Come First Served 
(FCFS), Shortest Job First (SJF), and other 
priority disciplines are possible. When job 
length (e.g., SJF) is a factor, users must 
provide run-time estimates at job 
submission. User estimates are typically 
higher than actual run times. FGFS results 
in low utilization and backfill is often used 
with FCFS to remedy this. 

Non-Batch \n/orkloads. !nleracli\ve sessions, 
the operating system and other overhead 
workloads run on separate nodes apart from 
those under control of PBS for batch. Less 
than 5% of the nodes are needed for these 
workloads at the NCCS. 

Conservative and Aggressive Backfill. 
[Srinivasan] states, "In conservative backfill, 
every job is given a reservation when it 
enters the systems. A smaller job is moved 
forward in the queue as long as it does not 
delay any previously queued job. In 
aggressive backfilling, only the job at the 
head of the queue has a reservation." 

There is an extensive literature on parallel job 
scheduling alternatives. 

3. QUEUE SIMULATION TOOL 

NCCS uses a simulation tool developed at the 
center to model the behavior of queues 
managing workloads on its highly parallel 
systems. Written in C, the tool accepts input in 
three ways: (1) interactively, (2) using delimited 
flat files (to define computer environments and 
processing workloads), or (3) using actual 
system log files (for the workload definition only). 

Exhibit 9 - Sampie Ccrmputer File 

The computer file names processors and their 
CPU counts and queues and their priorities, as 
illustrated in Exhibit 9. The workload file is 



formatted for compatibility with system log files times can he compared to actual res~rlts in the 
and includes columns for the actual wait and run log file. Exhibit 10 is an excerpt from a 
times experienced. Simulated wait and run workload iog fiie. (Aii limes are in seconds. 

"Submission Time" is Unix epochal seconds.) 

?' 
<Job L> / /FubmisSion Time. 

u n  T <User Name> <Wait Time> 
<Original Computer> 
<Number of requested CPUS> <Requested Run Time> 

Exhibit 10 -Workload Log File Excerpt 

The simulation engine reads in the processor, 
queue, and workload specifications and builds 
up workload queue loads and job sequences 
from these inputs. The QueueRunning 
simulation module advances through simulated 
wall-clock time, increments job status, selects 
new running jobs from the queues when others 
complete, and backfills appropriately when that 
option is enabled. Each simulation run takes 
only a few seconds, so testing many alternative 
scenarios is easy. 

The NCCS validated the tool using both 
synthetic data with known expected results and 
natural NCCS workload log data from the 
PalmlExplore system. The log files provide the 
submission time, run time and other specifics of 
production workloads and the simulator uses 
this production workload trace to model 
workload behavior under actual and prospective 
system configurations. NCCS compared input 
log file wait times to simulated wait times to 
validate the tool. 

4, RESULTS 

Exhibit 11 provides the  results from several 
simulation runs. As with the input files, all times 
are in seconds. 

4.1 CORRELATION WITH PREVIOUS WORK 

NCCS experience and use of the simulation tool 
correlates with work published previously. 

e Backfilling helps system utilization and 
throughput by fitting small jobs into the holes 
left by larger jobs [Ward]. NCCS experience 
and simulation results support this finding. 

e FCFS is the most common job sequencing 
algorithm used with backfill. FCFS without 
backfill results in low system utilization 
[Srinivasan]. NCCS results support this 
finding. 

e Most cluster and other supercomputer 
facilities use both backfilling and job 
prioritization [Feitelson]. NCCS uses backfill 
with job prioritization (see Exhibit 3). 
Although prioritization can help utilization 
and wait times if short jobs have higher 
priorities, prioritization with backfill provides 
even better results. 

Users generally overestimate job run times 
significantly [Srinivasan]. Several st~rdies 
suggest that this inaccuracy helps 
performance with FCFS and conservative 



backfill, because early job completions open 
holes in the system that backfill can exploit. 
Inaccuracy is less helpful with relaxed 
backfill, as large holes are less helpful when 
backfill is relaxed. NCCS experience 
supports the finding that users overestimate 
their run times. 

Relaxed backfill hurts larger jobs that are 
bumped backward in the queue to 
accommodate smaller jobs, but averaged 
across all jobs (small jobs are far more 
numerous), relaxed backfill reduces the 
expansion factor dramatically. NCCS 
historical and simulation data both show that 
expansion factors increase for jobs with the 
highest parallelism (not necessarily the 
longest running jobs). NCCS management 
and users are willing to accept this tradeoff 
in the interest of faster response to smaller 
jobs and higher system utilization. 

[Srinivasan] Although methods like backfill 
are widely popular on supercomputers, the 
effectiveness of alternative scheduling 
strategies depends on the job mix. 
Understanding one's own workload is 
important. At the NCCS, management may 
authorize high priority treatment for a 
particular workload, and in some cases 
could dedicate an entire partition or system 
to a single workload. Storm tracking during 
hurricane season is an example. Such 
decisions significantly impact lower priority 
workloads. 

Several studies used system logs borrowed 
from external sources or synthetic data. We 
used our own system logs. 

EXHIBIT 11 - SOME SIMULATION RESULTS 

4.2 RESULTS SPECIFIC TO NCCS 

Strict Relaxed Remove Remove ' ' dd 128 
Backfill Backfill 128 CPUs 64 CPUL ,PUS 

1,301,061 1,301,061 1,382,OI 3 1,313,067 1,301,061 

41,779,774 41,779,774 41,7?9,7?4 41,779,774 41,779,774 

2,785 2,785 2,785 2,785 2,785 

43,337 43,337 43,337 43,337 43,337 

1 1 1 I 1 

190 190 ! 

165 77,165 
' C 

1 

0 0 0 0 0 

86.12 82.78 87.68 86.85 74.50 

1.10 1.07 20.72 6.23 1.41 

1.02 1 .O1 26-59 7.Q6 1.54 

1.1 7 1.11 664 2.02 1.06 

1.81 1.87 .I6 2.15 1.16 

3.-. 1.44 3 1.65 1.15 

Workload 

Total elapsed time 

Total run time 

Average run time 

Max run time 

Min run time 

Average wait time 

Max wait time 

Min wait time 

Average usage 

Total Expansion Factor 

(0 to 32) Expansion Factor 

(33 to 64) Expansion Factor 
(65 to 120) Expansion 
Factor 
( I  21 +) Expansion Factor 

Experimentation with this simulation tool yielded 
the following results specific to our environment. 

No Backfill 

1,301,061 

41,779,774 

2,785 

43,337 

1 

4,076 

52,340 

0 

82.78 

2.46 

2.97 

1.23 

1.36 

I .23 

Relatively modest (5-10%) reductions in 
system capacity caused dramatic increases 

in wait times. Run times are not affected 
much because jobs run on dedicated 
processors once dispatched. PalmIExplore 
is now running very near saturation. (One 
can also deduce this from the consistent 
processor utilization over go%.) A simulated 
5% capacity reduction with no change in the 



workload results in wait times of almost one 
month for some jobs, and an average wait 
time of 15 hours. 

Adding backfill to the scheduling logic 
improves system performance more than a 
10% increase in processor capacity. It's a 
bargain. 

5. SUMMARY AND FUTURE PLANS 

NCCS performance management includes 
system design and architecture, management of 
service contracts to incentivize performance, 
competitive system acquisitions with benchmark 
tests, training and consulting with users on 
parallel application programming and parallel 
APls (e.g., MPI and OpenMP), use of optimizing 
compilers and libraries, and hardware system 
tuning [Glassbrook]. NCCS analysis and 
optimization of queue structures and job 
scheduling algorithms is assisted using the 
queue simulation tool described in this paper. 
For example, a recent user inquiry about the 
expected impact of a proposed configuration 
change was addressed using this tool. 

NCCS user appetites for system performance 
are constantly increasing. Climate researchers 
and others can do better science when 
machines with better performance permit more 
detailed models (e.g., smaller cell sizes, longer 
simulated time periods, more variations in model 
ensembles, additional system dynamics details). 
This tool is available to system administrators to 
help squeeze more performance out of existing 
platforms and plan for future upgrades. 

Planned future enhancements to the tool include 
the following: 

Analysis of users' historical workload 
patterns may yield information applicable to 
the scheduler's decisions. For exampie, if a 
user estimates a 12-hour run time but their 
jobs complete in 10 minutes on average, 
then the simulation tool could detect that 
pattern and forward it to the PBS scheduler 
with a recommended adjustment to the 
user's estimation. 

the taol may b~ made avebble as own 
source, so that P mmmunity af usep can 
emharrw:tha sirnutator fumar. 
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would enhance system performance. 


