
Source of Acquisition
NASA Goddard Space Flight Center

A QUEUE SIMULATION TOOL FOR A
HIGH PERFORMANCE SCIENTIFIC COMPUTING CENTER

Carrie Spear, Computer Sciences Corporation
James McGalliard, FEDSIM

Abstract:

The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight
Center provides high performance highly parallel processors, mass storage, and
supporting infrastructure to a community of computational Earth and space scientists.
Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the
workload. NCCS management structures batch queues and allocates resources to
optimize system use and prioritize workloads. NCCS technical staff use a locally
developed discrete event simulation tool to model the impacts of evolving workloads,
pofential system upgrades, alternative queue structures and resource allocation policies.

1, INTRODUCTION

This paper describes a queue simulation tool in
use at the NASA Center for Computational
Sciences (NCCS), a high performance computer
facility at the Goddard Space Flight Center in
Greenbelt, Maryland. The tool simulates the
behavior of batch job queues, the batch job
scheduler, workloads and the systems they run
on and predicts performance metrics of interest
such as expansion factors, wait times, system
utilization, and throughput. Using the tool,
systems staff balance the conflicting objectives
of low expansion, low wait time, high utilization
and high throughput in an environment of high
latent demand.

The paper is structured as follows:

Section 1 describes the NCCS environment,
workloads, systems, batch job queue
structures and performance metrics.
Section 2 discusses alternative job
scheduling algorithms of interest to the
NCCS and high performance computer
(HPC) centers generally.
Section 3 describes the queue simulation
tool, including its design, validation, and
example tool inputs.
Section 4 provides insights into system and
workload behavior gained using the tool,
and compares our results with prior studies.
Section 5 h-- - -.mmmaq' -- k~F!3 I@~Rs-.

1.1 NCCS ENVIRONMENT

Goddard is a major center for NASA's Science
Mission Directorate and is home to the nation's
largest community of Earth scientists and
engineers. Goddard's missions include
expansion of knowledge of the Earth and its
environment, the solar system, and the universe
through observations from space. The Hubble
Space Telescope Control Center is on the
Goddard campus, and Goddard is a design
center for Earth-observing satellites and other
spacecraft. Goddard is also the home of the
NCCS.

The NCCS is a supercomputing facility that
provides Goddard's science community with
HPCs, mass storage, network infrastructure,
software, and support services. About 600
scientists use the NCCS to increase their
understanding of the Earth and space through
computational modeling and processing of
space-borne observations. NCCS systems are
targeted to the specialized needs of Earth and
space scientists and NASA's exploration
initiative.

NCCS performance management was the
subject of a 2003 CMG paper [Glassbrook].

1.2 NCCS WORKLOADS

The largest NCCS supercomputer workloads are
mathematical models of the Earth's atmosphere,
oceans, and climate. Another large workload is
data assimilation, which processes Earth-
observing satellite data and other sparse climate
data and generates models of the global climate
that are the best fit of current data.

Examples of other workloads include the
following:

3D Modeling of High Energy Emission from
Rotation-Powered Pulsars
30 Simulations of Accretion to a Star with
Magnetic Field
Assimilation of Satellite Observations of
Clouds to Improve Forecast Skill
Gravity Wave Simulations
Global Magnetohydrodynamic Simulations
of the Solar Wind in Three Dimensions

And many others.

1.3 CURRENT NCCS SYSTEMS

NCCS supports these computational science
workloads using a suite of high performance
systems that currently include:

PalmIExplore, an SGI Altix 3700 BX2 with a
total of 1,132 CPUs

palm:
SGI Altix 3700 BX2
128 CPUs
272 GB memory

explore:
SGI Altix 3700 BX2
1 512 CPU, 2 256 CPUs
1 1024 GB memory, 2 512 GB
memory

Discover, a Linux Cluster with 1,536 CPUs

Courant, an SGI Origin 3800 with 128 CPUs

Dirac, an SGI Origin 3800 with 64 CPUs,
used as a file server

Disk drives from Data Direct Networks and
other vendors

Tape robots from SunlStorageTek

This paper focuses on the PalmlExplore
production machine.

1.4 JOB SCHEDULING ON PARALLEL
SYSTEMS

As is typical of high performance systems, many
NCCS workloads simulate the behavior of their
object of inquiry by representing it in a multi-
dimensional grid. Global climate models can be
mapped onto current-generation highly parallel
systems by dividing the atmosphere into groups
of three-dimensional cells, assigning each group
to a processor node, simulating climate behavior
within that group on that node, and periodically
synchronizing across nodes. Users specify the
number of processing nodes that the application
uses when they submit the job.

The dispatching software of traditional systems
optimize processor utilization by assigning a
new job to a processor at certain times, such as
the start of an inputloutput operation or the
expiration of a time slice. Current high
performance systems, where there . may be
upwards of 1,000 or 10,000 processors in the
complex, often do not perform as well under this
job control method. Swapping a job out on one
processor may leave 60 or 120 other processors
idle. Instead, processors are allocated to a
parallel job for the duration of the job and are not
reassigned until the job completes.

The ability of a parallel job to use the processing
resources it receives depends on the
characteristics of that job. Amdahl's law
analyzes a job's ability to use multiple
processors depending on the proportion of
parallel vs. serial code that it executes. In an
environment like the NCCS, systems staff can
provide advice and training on the optimal use of
parallel processor allocations, but the primary
responsibility for exploiting parallelism remains
with the application programmer.

On the other hand, the system administrators
and batch job scheduling software can manage
parallel processing resources to optimize the
assignment of jobs to CPUs. Ideally, few
processing nodes sit idle waiting for work if there
are jobs waiting in the queue. The objective is
to allocate jobs onto idle processors consistent
with the users' workload priorities, resource
allocations and performance needs.

1.5 NCCS WORKLOAD PARALLELISM

As noted above, NCCS batch jobs are allocated
to specific processors dedicated to those jobs

80%

70% -

60%

rn 50%
i

- - - -
- - -

a
0

40%
IC
0

8 30% -

20% -

10%

0%
P a G S ~ ~ U % % g a % % % ~

#of CPUs

Exhibit I - Total Jobs by CPU for All Sectors for April 2007

Small jobs (4 or fewer CPUs) are by far the most numerous.. .

45%

40%

35%

2 30%
I

25%

20% *
0

15%

10%

5%

0%
4 8 12 16 20 24 28 32 36 40 52 60 64 96 120

of CPUs

Exhibit 2 -Total CPU Hours by CPUs for April 2007

but 64- and 120-processor jobs consume the majority of the processor resources for this
period.

until they complete. Jobs vary in the number of
processors they use and the length of time the
job runs. Exhibits I and 2 show the
PalmlExplore workload profile for April, 2007.
The charts show that, although highly parallel
jobs are less numerous than small (4 CPUs or
less) workloads, they consume the majority of
processing resources.

1.6 NCCS QUEUE STRUCTURE

NCCS uses a system of workload queues to
provide optimal performance for our workloads
and systems. System administrators structure
the queues along functional lines, based on
historical patterns, knowledge of user
requirements and management policies. The
current queue structure is depicted in Exhibit 3
and is taken from an NCCS web site. (Note:
Queue and user names throughout this paper
have been modified due to system security
security policy.)

Batch Queues on the SGI Altix 3000

Read the documentation below the table to familiarize yourself with the restrictions on some
of the queues below. All queues except checkout and prepost will run on e l , e2, and e3. The
default number of CPUs for any job is 2, and the default wall clock time is 5 minutes.

Special Queues on the SGI Altix 3000 System

I 1 Up to 1 Hours

Up to 16 archive max 2

hour maximum

From 2 to 254
processors

. . . - . -. - - -. - - -

More than 254

Longer than 12 I From I to 12 Hours 1 Hours Hours

processorsljob

background (I), 4
hour maximum

allpurp-hi-(6)
high-priority-(7)

Numbers in parentheses designate priority, with 7 being the highest priority and 1 being the
lowest.

-- - - -- - - -- - - - - - -

Exhibit 3 - Current NCCS Queue Structure on PalmlExplore

checkout

Routed specifically to the system's front end, palm
Time constraint of 1 hour maximum per job
No more than 4 jobs in this queue can be run by the same user at the same time.

archive

This queue is to be used for the purpose of moving data (data archival jobs, staging
jobs, no MPIlOpenMP processing).
Only 2 jobs allowed per user at one time to run.
Job size is limited to 2 processors.
There are only 10 processors in total set aside for this queue.
Jobs in this queue will run on the backend systems (not palm, but rather e l , e2 or
e3).
If users want to use this queue they need to specify the queue name in their qsub
parameters "-q archive" on the command line or "#PBS -q archive" in the job
script itself.

prepost

This queue is to be used for prelpost processing work (not production runs).
Jobs now limited to no more than 16 processors
If users want to use this queue they need to specify the queue name in their qsub
parameters "-q prepost" on the command line or "#PBS -q prepost" in the job
script itself.
No more than 6 jobs in this queue can be run by the same user at the same time.

allpurp-small

No more than 5 jobs in this queue can be run by the same user at the same time.
Job size is limited to 18 processors.

Minimum wallclock time has been lowered to 1 hour by default (so the queue allows
1-12 hours walltime).

allpurp

No more than 8 jobs in this queue can be run by the same user at the same time.

Allows jobs sized between 16 processors and 254 processors.

Exhibit 3, cont'd. - Current NCCS Queue Structure on PalmlExplore

background

Designed to have the lowest priority on the system and is targeted for two groups:
NCCS staff
Users who have used up all their allocated hours on the system
This queue is only turned on if there isn't any work waiting in the
high-priority, allpurp-hi or allpurp queues.

Note that users may still run jobs in the background queue even if they have a
current allocation; use of this queue will not count against that allocation amount.

allpurp-hi

Designated for users who have a demonstrated need for either very large or very
long jobs
Must be approved by NCCS staff, the NCCS Director, or NASA HQ
Total number of processors available (and maximum number of processors per job)
in this queue is 510

urgent

Reserved for use on jobs designated by NCCS staff, the NCCS Director, or NASA
Headquarters as needing priority within the overall workload
Total number of processors available (and maximum number of processors per job)
in this queue is 510

Exhibit 3, cont'd. - Current NCCS Queue Structure on PalmlExplore

100
Explore 12 Month Utilization Percentage

Exhibit 4 - PalmlExplore Utilization, 1 Year

Explore Expansion Factor by Requested CPUS: 1 Year
-L
0

00

ua

P
-

Exhibit 5 - PalmlExplore Expansion Factor, 1 Year

1.7 PERFORMANCE METRICS

Many commercial computer operations manage
performance using service level agreements
based on response time percentiles, reliability,
throughput, or hardware resource utilization, but
high performance data centers are somewhat
different. Batch typically dominates HPC data
center workloads (like NCCS), and has
turnaround times that vary from seconds to days
or even weeks. In an environment of CPU-
bound workloads running on dedicated nodes, a
key performance metric for system
administrators is the expansion factor - the
percent increase in job completion time due to
queue waiting vs. time spent running on the
allocated nodes.

Expansion Factor = (Run Time + Queue
Time)/Run Time

The NCCS also measures processor utilization
and divides this in two parts: (part I) the percent
of available nodes allocated to some job over
time, and (part 2) the utilization of allocated
nodes by running jobs. Utilizations over 90% in
terms of allocation (part 1) are typical, and
depend on the job scheduling algorithm, queue
structure, and job mix. Part 1 utilization is the
focus of the simulation and this paper.
Processor utilizations within allocations (part 2)
below 20% for running jobs are also typical.

factors. Part 2 utilization is outside the scope of
this paper.

The NCCS queue simulation tool estimates both
the expansion factor and processor utilization at
the allocation (part 1) level. Exhibits 4 and 5,
above, show recent PalmlExplore utilization and
expansion.

2. PARALLEL JOB SCHEDULING
ALGORITHMS

NCCS uses the Portable Batch Scheduler (PBS)
from Altair to manage the PalmIExplore batch
workload (there are competing products that
offer comparable functionality). When a user
submits a job (qsub-) to a queue managed by
PBS, the operating system (SUSE Linux in this
case) turns over management of that job to
PBS. Linux will not swap a PBS job during its
execution. PBS controls most of the CPUs on
the system.

Parallel job scheduling generally works as
follows:

The system administrators structure queues
with priorities, job time and processor count
limits, and user or other functional queue
target workloads. (Section 1.6 shows the
current queues on PalmlExplore.)

These low numbers are due to Amdahl's law
(proportion of serial vs. parallel code) and other

Users estimate job run time and specify the
number of processors the job requires. Run
time estimates are required to implement
backfilling, which is discussed in the next
section. NCCS uses backfill.

The job scheduling system allocates jobs to
processors based on the number of CPUs
required, estimated time required, priority,
queue, and the other jobs currently
executing or awaiting execution on that
system.

Other considerations also impact job scheduling.
At the NCCS, users receive annual allocations
of processor time. Once they exceed their
allocation, their jobs will no longer run. Other
factors include access to non-CPU resources,
such as mass data storage and compiler and
library versions.

2.1 BACKFILL AND RELAXED BACKFILL

In parallel systems, swapping the job running on
a single processor would result in wait states on
all the other allocated CPUs. In practice, it
makes more sense to dedicate all of the
processors to a particular job until the job
completes. (Alternative methods, such as gang
scheduling [Feitelson] [Frachtenberg], exist and
are useful in some environments, but are
beyond the scope of this paper and are not
relevant to the NCCS.) With dedicated
processor allocations for the life of a job,
optimization of system utilization becomes an
issue of intelligently assigning jobs to groups of
CPUs in such a way that utilization and
throughput are high and wait time is low. Many
HPC sites use backfill to improve utilization, and
there has been extensive discussion of this
method in the literature (see, e.g., pard],
[Feitelson], [Shmueli], [Hovestadt]).

Exhibit 6 is a simple example of parallel job
scheduling without backfill. In the diagram, the
vertical axis represents multiple processors, the
horizontal access represents time, and each box
represents a job. Each job occupies a certain
number of processors for a certain amount of
time. In the example, job J1 is running and the
next highest-priority job, J2, waits until J1
completes. Lower priority jobs J3 and J4 wait
until higher priority J2 is finished, even though
there is unused capacity on the system that J1
does not need.

In Exhibit 7, Strict Backfill has been added to the
job scheduling algorithm. ("BwkfiC and ''Strict

,nr~li" are used interchangeably in the
ature.) Because J3 can use the idle

processors that J1 does not need and will
complete before J1, backfill allows lower priority
J3 to jump forward in the queue and run to
completion before J2 starts. J4 must wait,
however.

Time b

Exhibit 6 - No Backfill

Time - .

Exhibit 7 Backfill

In strict backfill, no lower priority job can delay
any higher priority job. With relaxed backfill,
some small delays to the higher priority jobs can
be tolerated if the global utilization and
throughput of the system can be improved
thereby. Exhibit 8 illustrates this situation.
Relaxed backfill allows both jobs J3 and J4 to
jump ahead of higher priority J2, even though
the execution time of J4 exceeds J1 and causes
J2 to be delayed slightly.

Time B.

Exhibit 8 - Relaxed Backfill

The delay tolerable by a higher priority job is a
tunable parameter in the job scheduler.

There are many variations on backfill @.Nard],
[Shmueli].

2.2 OTHER SCHEDULING CONSIDERATIONS

Backfill aside, other job scheduling approaches
and considerations include the following:

0 Gang Scheduling. In gang scheduling, all
processors in the complex swap in new jobs
at a set time quantum. Multiple jobs may
reside in local memory for each node and
can run in their turn. Although difficult to
implement and not often used [Feitelson],
gang scheduling has some of the same
benefit as backfill, allowing short jobs to
finish quickly and avoid excessive blocking
by long jobs of higher priority.

Starvation. When small, short jobs can jump
ahead of large, long jobs in the queue due to
backfill or other strategies, there can be a
danger that the long job never runs - this is
called starvation. Relaxed backfill avoids
this problem by limiting the delay a high
priority job must tolerate, and there are other
strategies for avoiding starvation, as well.

Priority Policies. First Come First Served
(FCFS), Shortest Job First (SJF), and other
priority disciplines are possible. When job
length (e.g., SJF) is a factor, users must
provide run-time estimates at job
submission. User estimates are typically
higher than actual run times. FGFS results
in low utilization and backfill is often used
with FCFS to remedy this.

Non-Batch \n/orkloads. !nleracli\ve sessions,
the operating system and other overhead
workloads run on separate nodes apart from
those under control of PBS for batch. Less
than 5% of the nodes are needed for these
workloads at the NCCS.

Conservative and Aggressive Backfill.
[Srinivasan] states, "In conservative backfill,
every job is given a reservation when it
enters the systems. A smaller job is moved
forward in the queue as long as it does not
delay any previously queued job. In
aggressive backfilling, only the job at the
head of the queue has a reservation."

There is an extensive literature on parallel job
scheduling alternatives.

3. QUEUE SIMULATION TOOL

NCCS uses a simulation tool developed at the
center to model the behavior of queues
managing workloads on its highly parallel
systems. Written in C, the tool accepts input in
three ways: (1) interactively, (2) using delimited
flat files (to define computer environments and
processing workloads), or (3) using actual
system log files (for the workload definition only).

Exhibit 9 - Sampie Ccrmputer File

The computer file names processors and their
CPU counts and queues and their priorities, as
illustrated in Exhibit 9. The workload file is

formatted for compatibility with system log files times can he compared to actual res~rlts in the
and includes columns for the actual wait and run log file. Exhibit 10 is an excerpt from a
times experienced. Simulated wait and run workload iog fiie. (Aii limes are in seconds.

"Submission Time" is Unix epochal seconds.)

?'
<Job L> / /FubmisSion Time.

u n T <User Name> <Wait Time>
<Original Computer>
<Number of requested CPUS> <Requested Run Time>

Exhibit 10 -Workload Log File Excerpt

The simulation engine reads in the processor,
queue, and workload specifications and builds
up workload queue loads and job sequences
from these inputs. The QueueRunning
simulation module advances through simulated
wall-clock time, increments job status, selects
new running jobs from the queues when others
complete, and backfills appropriately when that
option is enabled. Each simulation run takes
only a few seconds, so testing many alternative
scenarios is easy.

The NCCS validated the tool using both
synthetic data with known expected results and
natural NCCS workload log data from the
PalmlExplore system. The log files provide the
submission time, run time and other specifics of
production workloads and the simulator uses
this production workload trace to model
workload behavior under actual and prospective
system configurations. NCCS compared input
log file wait times to simulated wait times to
validate the tool.

4, RESULTS

Exhibit 11 provides the results from several
simulation runs. As with the input files, all times
are in seconds.

4.1 CORRELATION WITH PREVIOUS WORK

NCCS experience and use of the simulation tool
correlates with work published previously.

e Backfilling helps system utilization and
throughput by fitting small jobs into the holes
left by larger jobs [Ward]. NCCS experience
and simulation results support this finding.

e FCFS is the most common job sequencing
algorithm used with backfill. FCFS without
backfill results in low system utilization
[Srinivasan]. NCCS results support this
finding.

e Most cluster and other supercomputer
facilities use both backfilling and job
prioritization [Feitelson]. NCCS uses backfill
with job prioritization (see Exhibit 3).
Although prioritization can help utilization
and wait times if short jobs have higher
priorities, prioritization with backfill provides
even better results.

Users generally overestimate job run times
significantly [Srinivasan]. Several st~rdies
suggest that this inaccuracy helps
performance with FCFS and conservative

backfill, because early job completions open
holes in the system that backfill can exploit.
Inaccuracy is less helpful with relaxed
backfill, as large holes are less helpful when
backfill is relaxed. NCCS experience
supports the finding that users overestimate
their run times.

Relaxed backfill hurts larger jobs that are
bumped backward in the queue to
accommodate smaller jobs, but averaged
across all jobs (small jobs are far more
numerous), relaxed backfill reduces the
expansion factor dramatically. NCCS
historical and simulation data both show that
expansion factors increase for jobs with the
highest parallelism (not necessarily the
longest running jobs). NCCS management
and users are willing to accept this tradeoff
in the interest of faster response to smaller
jobs and higher system utilization.

[Srinivasan] Although methods like backfill
are widely popular on supercomputers, the
effectiveness of alternative scheduling
strategies depends on the job mix.
Understanding one's own workload is
important. At the NCCS, management may
authorize high priority treatment for a
particular workload, and in some cases
could dedicate an entire partition or system
to a single workload. Storm tracking during
hurricane season is an example. Such
decisions significantly impact lower priority
workloads.

Several studies used system logs borrowed
from external sources or synthetic data. We
used our own system logs.

EXHIBIT 11 - SOME SIMULATION RESULTS

4.2 RESULTS SPECIFIC TO NCCS

Strict Relaxed Remove Remove ' ' dd 128
Backfill Backfill 128 CPUs 64 CPUL ,PUS

1,301,061 1,301,061 1,382,OI 3 1,313,067 1,301,061

41,779,774 41,779,774 41,7?9,7?4 41,779,774 41,779,774

2,785 2,785 2,785 2,785 2,785

43,337 43,337 43,337 43,337 43,337

1 1 1 I 1

190 190 !

165 77,165
' C

1

0 0 0 0 0

86.12 82.78 87.68 86.85 74.50

1.10 1.07 20.72 6.23 1.41

1.02 1 .O1 26-59 7.Q6 1.54

1.1 7 1.11 664 2.02 1.06

1.81 1.87 .I6 2.15 1.16

3.-. 1.44 3 1.65 1.15

Workload

Total elapsed time

Total run time

Average run time

Max run time

Min run time

Average wait time

Max wait time

Min wait time

Average usage

Total Expansion Factor

(0 to 32) Expansion Factor

(33 to 64) Expansion Factor
(65 to 120) Expansion
Factor
(I 21 +) Expansion Factor

Experimentation with this simulation tool yielded
the following results specific to our environment.

No Backfill

1,301,061

41,779,774

2,785

43,337

1

4,076

52,340

0

82.78

2.46

2.97

1.23

1.36

I .23

Relatively modest (5-10%) reductions in
system capacity caused dramatic increases

in wait times. Run times are not affected
much because jobs run on dedicated
processors once dispatched. PalmIExplore
is now running very near saturation. (One
can also deduce this from the consistent
processor utilization over go%.) A simulated
5% capacity reduction with no change in the

workload results in wait times of almost one
month for some jobs, and an average wait
time of 15 hours.

Adding backfill to the scheduling logic
improves system performance more than a
10% increase in processor capacity. It's a
bargain.

5. SUMMARY AND FUTURE PLANS

NCCS performance management includes
system design and architecture, management of
service contracts to incentivize performance,
competitive system acquisitions with benchmark
tests, training and consulting with users on
parallel application programming and parallel
APls (e.g., MPI and OpenMP), use of optimizing
compilers and libraries, and hardware system
tuning [Glassbrook]. NCCS analysis and
optimization of queue structures and job
scheduling algorithms is assisted using the
queue simulation tool described in this paper.
For example, a recent user inquiry about the
expected impact of a proposed configuration
change was addressed using this tool.

NCCS user appetites for system performance
are constantly increasing. Climate researchers
and others can do better science when
machines with better performance permit more
detailed models (e.g., smaller cell sizes, longer
simulated time periods, more variations in model
ensembles, additional system dynamics details).
This tool is available to system administrators to
help squeeze more performance out of existing
platforms and plan for future upgrades.

Planned future enhancements to the tool include
the following:

Analysis of users' historical workload
patterns may yield information applicable to
the scheduler's decisions. For exampie, if a
user estimates a 12-hour run time but their
jobs complete in 10 minutes on average,
then the simulation tool could detect that
pattern and forward it to the PBS scheduler
with a recommended adjustment to the
user's estimation.

the taol may b~ made avebble as own
source, so that P mmmunity af usep can
emharrw:tha sirnutator fumar.

BIBLIOGRAPHY

[Feitelson] Feitelson, Dror G., and others.
"Parallel Job Scheduling - A Status Report." loth
Workshop on Job Scheduling Strategies for
Parallel Processing, New York, 2004.

[Fractenberg] Frachtenberg, Eitan, and others.
"Parallel Job Scheduling Under Dynamic
Workloads." JSSPP 2003, Springer-Verlag,
Berlin, 2003.

[Glassbrook] Glassbrook, Richard and
McGalliard, James. "Performance Management
at an Earth Science Supercomputer Center."
CMG 2003.

[Hovestadt] "Scheduling in HPC Resource
Management Systems: Queuing vs. Planning."
JSSPP 2003, Springer-Verlag, Berlin, 2003.

[Shmueli] Shmueli, Edi and Feitelson, Dror G.
"Backfilling With Lookahead to Optimize the
Performance of Parallel Job Scheduling."
JSSPP 2003, Springer-Verlag, Berlin, 2003.

[Srinivasan] Srinivasan, Srividya and others.
"Characterization of Backfilling Strategies for
Parallel Job Scheduling." Proceedings of the
International Conference on Parallel Processing
Workshoos (ICPPW'02),2002.

[Ward] Ward, William and others. "Scheduling
Jobs on Parallel Systems Using a Relaxed
Backfill Strategy". Lecture Notes in Computer
Science, Springer-Verlag, 2002.

Running the tool in parallel with the PBS
scheduler in real time may yield other helpful
information about scheduling decisions that
would enhance system performance.

