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Space radiation from cosmic ray particles is one of the main challenges for human space
explorations such as a moon base or a trip to Mars. Models have been developed in

order to predict the radiation exposure to astronauts and to evaluate the effectiveness of-
different shielding materials, and a key ingredient in these models is the physics of
nuclear fragmentations. We have developed a semi-analytical method to determine

which partial cross sections of nuclear fragmentations most affect the radiation dose
behind shielding materials due to exposure to galactic cosmic rays. The cross sections
thus determined wiil require more theoretical and/or experimental studies in order forus =
to better predict, reduce and mitigate the radiation exposure in human space '
‘explorations. -
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- For details, see ZWL, PRC75, 034609 (2007)
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Space Radiation Risks in Human Space Explorations

Uncertainties in Radiation Risk Projections
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Heavy lons:
small in abundance, but important for radiation effects

Galactic Cosmic Rays Fluence, dose, dose—equivalent of different elements

Z

(at a solar minimum)
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A solar minimum GCR
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Questions to answer

Which fragmentation processes are more important?
projectile(beam), fragment, energy, target, ...

Townsend et al., NASA-TM 4386 (1992)
Heinbockel et al., Rad. Meas. 41 (2006)
ZWL, Radiat. Res. 167 (2007)

How to best use NSRL to study space radiation physics?

NASA Space Radiation
Laboratory (NSRL) at BNL
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Radiation transport in one dimension

Under the straight-ahead approximation:

0, (E,x) _ _0J,(E,x) 3 dJ ;(E,x) o 0w, (E)J, (B, )]
x  AE) A, (E) OF

A

J

Flux of particle species k lonization energy loss

m.f.p. A,=1/(n*G,)
total inelastic Xsection
of nuclear fragmentation

gain of k from j, Ay; = 1/(n*0y;)
partial fragmentation Xsection (j—k)

E.g., Letaw et al., ApJS 56, 369 (1984)
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Results 1n the thin-shielding limit (1)

ZWL, PRC75, 034609 (2007)

’ J.(E0
JUED) }LZ J(E0)
J(E.0) A(E)| 5 A (E)

Affected by cross section uncertainties,

but not by energy loss

=>J,(E,x—>0)= J,C(E,O)[l+w,;(E)x+

Radiation hazard is olften represented by dose equivalent:
Hx)=—-3 |7 (B, 0)L(B)O(L, (ENIE
T k

LET in water
ICRP60(91) quality factor

When 6,; changes:

—_— éH(x)———z _[J[ LjQ(Lj)éb'j+ZLkQ(Lk)5c>',g}dE
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Unitarity constraint from baryon number conservation

Assuming no anti-baryon productions (exact below ~6GeV/u), we have
o.(E)=) A4,0,(E)
k

O, (total) and O (partial) are strictly correlated

= Z A, N, This means: getting the same number of nucleons
before &  after a projectile fragmentation:

Not respecting unitarity means the violation of baryon number conservation
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Goal of our study 1s:

evaluate effects on radiation hazard from
uncertainty of each single partial cross section o;

——— do not change all the other partial cross sections whenever possible

The unitarity constraint from baryon number conservation
—— A.J0,(E)=) A0, (E)
k

—> The only way i1s to adjust G, (total) according to unitarity:

when one O, (partial) 1s changed to study its effect,
O, (total) NeSVg to be changed accordingly.

oJ ;(E, x) N o[w, (E)J, (E,x)]
Ay () o8
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Results in the thin-shielding limit (2): include unitarity

When 6, changes:

OH (x) = prUjké'O'kj,
j.k

A
sensitivity matrix | U, = —7Z sz(Z szl)j‘ +7 sz(Z kle) dE

elements PrpP j

e —

— + U,;—>0 whenZ, =27, or Z, -0

e In the limit of same Q, and same A,/Z, (for all k):

2
UnmZ) gt 52,00
— U, peaksat Z, =Z /2 fraghent Z projectile Z
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sensitivity matrix elements -U,~2.(Z,-2,)

for 1977'solar minimum GCR
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sensitivity matrix elements 2
. _ ooi BT o F
without the unitarity constraint *~ jk k

U, [(1Sv/yr)(mb g/cm?)]

Fragment peaks at high-Z 7, = Zj
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Sensitivity matrix for relative change 1n o, (e.g. 10%)

00,
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1-d plots: projectile or fragment distributions

sensitivity matrix elements
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Thick shielding

sensitivity matrix elements
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may become more important than Fe

Z1-Wei Lin April 15, 2007 2007 APS April Meeting, Jacksonville FI



Conclusions

. Semi-analytical results show:
Light fragments (p & alpha) are the most important;
Many projectiles are important (Fe, Si, Mg, O)

. Focused study on these projectiles and fragments

will most efficiently reduce uncertainty
in evaluation of radiation hazard in human space explorations
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Partial cross sections of
fragmentation

Ca projectile (1.2GeV/u) in Al target:
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Effect of unitarity on sensitivity matrix S,

-S;, [(cSvlyr)/(g/cm”)]
sNik [(cSviyr)(g/em?)]

with unitarity without unitarity
© A60,(E)=)_ A.00,(E)
k

Unitarity constraint is critical for fragment distributions
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Effect of unitarity on fragment distributions
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Different implementation of unitarity

a The only way to have a well-defined sensitivity study:
adjust O, (total) according to unitarity after changing a G, (partial).

a Correlations among Gy; uncertainties in data:
make the sensitivity study ill-defined,
may require different implementation of unitarity

Examplel: if 0j (total) is much more accurately determined than o;; (partial)
—— Keep o; the same and make correlated changes on at least 2 0,
— Results will be different depending on choice of other o;

Example2: experimental systematic errors correlate several o,

o Need to investigate experimental data to determine how to implement unitarity
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