Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

ZI-WEI LIN

Space radiation from cosmic ray particles is one of the main challenges for human space explorations such as a moon base or a trip to Mars. Models have been developed in order to predict the radiation exposure to astronauts and to evaluate the effectiveness of different shielding materials, and a key ingredient in these models is the physics of nuclear fragmentations. We have developed a semi-analytical method to determine which partial cross sections of nuclear fragmentations most affect the radiation dose behind shielding materials due to exposure to galactic cosmic rays. The cross sections thus determined will require more theoretical and/or experimental studies in order for us to better predict, reduce and mitigate the radiation exposure in human space explorations.
Nuclear Fragmentation Processes Relevant for Human Space Radiation Protection

Zi-Wei Lin
University of Alabama in Huntsville / NASA Marshall Space Flight Center

Outline

- Why do we need to address this problem?
- Semi-analytical results
- Constraint from baryon number conservation
- Conclusions
 For details, see ZWL, PRC75, 034609 (2007)
Space Radiation Risks in Human Space Explorations

Uncertainties in Radiation Risk Projections

Individual’s Excess Fatality Risk

Maximum Acceptable Risk (3%)

Mars Mission

ISS Mission

“95% Confidence Interval”

Shuttle Mission

“Point Estimate”

from Cucinotta/JSC

Zi-Wei Lin

April 15, 2007

2007 APS April Meeting, Jacksonville FL
Heavy Ions:
small in abundance, but important for radiation effects

Galactic Cosmic Rays
(at a solar minimum)

Fluence, dose, dose-equivalent of different elements

A solar minimum GCR
Questions to answer

Which fragmentation processes are more important?
projectile(beam), fragment, energy, target, ...

Townsend et al., NASA-TM 4386 (1992)

How to best use NSRL to study space radiation physics?

NASA Space Radiation Laboratory (NSRL) at BNL
Radiation transport in one dimension

Under the straight-ahead approximation:

\[
\frac{\partial J_k(E, x)}{\partial x} = -\frac{\partial J_k(E, x)}{\Lambda_k(E)} + \sum_j \frac{\partial J_j(E, x)}{\Lambda_{kj}(E)} + \frac{\partial \left[w_k(E)J_k(E, x)\right]}{\partial E}
\]

Flux of particle species k

m.f.p. \(\Lambda_k = 1/(n*\sigma_k) \)

total inelastic Xsection

of nuclear fragmentation

ionization energy loss

gain of k from j, \(\Lambda_{kj} = 1/(n*\sigma_{kj}) \)

partial fragmentation Xsection (j\rightarrow k)

Results in the thin-shielding limit (1)

\[\Rightarrow J_k(E, x \to 0) \approx J_k(E, 0) \left[1 + w_k(E) x + \frac{J'_k(E, 0)}{J_k(E, 0)} w_k(E) x - \frac{x}{A_k(E)} \right] + \sum_j \frac{J_j(E, 0)}{A_{kj}(E)} x \]

Affected by cross section uncertainties, but not by energy loss.

Radiation hazard is often represented by dose equivalent:

\[H(x) = \frac{1}{\rho_T} \sum_k \int J_k(E, x) L_k(E) Q(L_k(E)) dE \]

LET in water
ICRP60(91) quality factor

When \(\sigma_{kj} \) changes:

\[\delta H(x) = \frac{nx}{\rho_T} \sum_j \int J_j \left[-L_j Q(L_j) \delta \sigma_j + \sum_k L_k Q(L_k) \delta \sigma_{kj} \right] dE \]
Unitarity constraint from baryon number conservation

Assuming no anti-baryon productions (exact below $\sim 6\text{GeV/u}$), we have

\[A_j \sigma_j(E) = \sum_k A_k \sigma_{kj}(E) \]

This means: getting the same number of nucleons before & after a projectile fragmentation:

Not respecting unitarity means the violation of baryon number conservation
Goal of our study is:

evaluate effects on radiation hazard from uncertainty of each single partial cross section σ_{kj}

$\text{do not change all the other partial cross sections whenever possible}$

The unitarity constraint from **baryon number conservation**

$$A_j \delta \sigma_j (E) = \sum_k A_k \delta \sigma_{kj} (E)$$

$\text{The only way is to adjust } \sigma_j \text{ (total) according to unitarity:}$

$\text{when one } \sigma_{kj} \text{ (partial) is changed to study its effect,}$

$\sigma_j \text{ (total) needs to be changed accordingly.}$

$$\frac{\partial J_k (E, x)}{\partial x} = - \frac{\partial J_k (E, x)}{\Lambda_k (E)} + \sum_j \frac{\partial J_j (E, x)}{\Lambda_{kj} (E)} + \frac{\partial [w_k (E) J_k(E, x)]}{\partial E}$$
Results in the thin-shielding limit (2): include unitarity

When σ_{kj} changes:

$$\delta H(x) = \rho x \sum_{j,k} U_{jk} \delta \sigma_{kj},$$

sensitivity matrix elements

$$U_{jk} = \frac{n}{\rho T \rho} \int L_1 J \left[-Z_j^2 Q(Z_j^2 L_1) \frac{A_k}{A_j} + Z_k^2 Q(Z_k^2 L_1) \right] dE$$

- $U_{jk} \to 0$ when $Z_k \to Z_j$ or $Z_k \to 0$
- In the limit of same Q_k and same A_k/Z_k (for all k):
 $$-U_{jk} \sim Z_j^2 \frac{A_k}{A_j} - Z_k^2 \approx Z_k (Z_j - Z_k)$$
 $$\Rightarrow U_{jk} \text{ peaks at } Z_k \approx Z_j / 2$$

Zi-Wei Lin April 15, 2007 2007 APS April Meeting, Jacksonville FL
sensitivity matrix elements

\[-U_{jk} \sim Z_k (Z_j - Z_k) \]

for 1977 solar minimum GCR

Fragment peaks at mid-Z \(Z_k \approx Z_j / 2 \)

\[U_{jk} \to 0 \text{ when } Z_k \to Z_j \text{ or } Z_k \to 0 \]

Zi-Wei Lin
April 15, 2007

2007 APS April Meeting, Jacksonville FL
sensitivity matrix elements without the unitarity constraint $U_{jk} \sim Z_k^2$

Fragment peaks at high-Z $Z_k \approx Z_j$
Sensitivity matrix for relative change in σ_{kj} (e.g. 10%)

$$\delta H(x) = \rho x \sum_{j,k} S_{jk} \frac{\delta \sigma_{kj}}{\sigma_{kj}}, \quad S_{jk} = U_{jk} \sigma_{kj}$$

Light fragments are the most important

Zi-Wei Lin
April 15, 2007

2007 APS April Meeting, Jacksonville FL
Light fragments (p & alpha) are the most important; many projectiles are important (Fe, Si, Mg, O)
Thick shielding

sensitivity matrix elements

\[S_{jk} \]

\[\begin{align*}
 &\text{(a)} & \text{At 20cm in water} \\
 &\text{(b)} & \text{At 20cm in water}
\end{align*} \]

Medium-sized projectiles (O, Mg, Si) may become more important than Fe

Zi-Wei Lin
April 15, 2007
2007 APS April Meeting, Jacksonville FL
Conclusions

- Semi-analytical results show:
 Light fragments (p & alpha) are the most important;
 Many projectiles are important (Fe, Si, Mg, O)

- Focused study on these projectiles and fragments
 will most efficiently reduce uncertainty
 in evaluation of radiation hazard in human space explorations
Partial cross sections of fragmentation

Ca projectile (1.2GeV/u) in Al target:
Effect of unitarity on sensitivity matrix S_{jk}

with unitarity

$$A_j \delta \sigma_j(E) = \sum_k A_k \delta \sigma_{kj}(E)$$

Unitarity constraint is critical for fragment distributions

Zi-Wei Lin

April 15, 2007

2007 APS April Meeting, Jacksonville FL
Effect of unitarity on fragment distributions

(low Z_k)

(high Z_k)

with unitarity

without unitarity

Zi-Wei Lin
April 15, 2007

2007 APS April Meeting, Jacksonville FL
Different implementation of unitarity

- The only way to have a **well-defined** sensitivity study: adjust σ_j (total) according to unitarity after changing a σ_{kj} (partial).

- Correlations among σ_{kj} uncertainties in data: make the sensitivity study ill-defined, may require different implementation of unitarity

Example 1: if σ_j (total) is much more accurately determined than σ_{kj} (partial)

- Keep σ_j the same and make correlated changes on at least 2 σ_{kj}
- Results will be different depending on choice of other σ_{kj}

Example 2: experimental systematic errors correlate several σ_{kj}

- Need to investigate experimental data to determine how to implement unitarity