Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy

Dan Mandl

Agenda

- Statement of challenges
- Capabilities to meet challenges
- Experiments run with real satellites to validate new capabilities
 - EO-1
 - CHIPS
 - ST-5
- Conclusion
Challenges for Future Missions

- Manage increased mission complexity at lower cost
- Create flexible missions with interoperable components
- Increase mission safety by embedding intelligence to manage security and hazard avoidance

Key Capabilities To Meet Challenges

- Transition from centralized mission control to distributed control
- Maximize interoperability by abstracting as much mission functionality as possible
- Develop and use self-managing software components (autonomic computing)
 1. Components have self-awareness
 2. Self-optimization
 3. Self-healing
 4. Self-protection
 5. Negotiates (peer-to-peer) for resources
 6. Functions in a heterogeneous world and with open standards
 7. Anticipates needed resources and hides details needed to obtain resources
Series of Experiments Conducted

- Used following missions to conduct experiments to facilitate these capabilities:
 - Earth Observing 1 (EO-1)
 - Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)
 - Space Technology 5 (ST-5)
- Experiment with Service Oriented Architectures (SOA)

EO-1 Satellite
Launched November 21, 2000

NASA New Millennium Program space technology validation mission
- Hyperion – hyperspectral instrument
- Advance Land Imager (ALI) – multispectral instrument
- 10 other space technologies validated
- 2 Mongoose onboard computers with 256 Mbytes each

Presently in extended mission and being used for additional experiments with hyperspectral imagery and sensor web experiments
Cosmic Hot Interstellar Plasma Spectrometer (CHIPS): A Flying Networked Computer Testbed for Advanced Mission Concepts

- PowerPC
- Onboard IP Stack
- 128 Mbytes of Memory
- Perfect for Experiments
 - (E.g. Secure IP to S/C)

OPEN FOR BUSINESS 9/1/05

ST-5 Overview

ST-5 is a three satellite (micro-sat) constellation
NASA New Millennium Program
technology validation

Help scientists understand the Earth's magnetosphere and its effect on space weather
Uses the GMSEC architecture to enable cost-effective model-based operations to run the ST-5 constellations lights out

Launched March 22, 2006
Successfully completed mission June 22, 2006

Not much bigger than a large birthday cake or a small TV.
E.g. - EO-1 Targets National Priority Wildfires

1. Identify NIFC-tracked Wildfire Incidents
 Large Incidents - August 21, 2003

2. SGM
 Correlate latest fire location information with MODIS Imagery
 Roberts Fire

3. GSEC's Science Goal Monitor
 Fire location confirmed and selected for imaging

4. ERD-9 Data Center

5. L1 Data

6. UMD Natural Hazards Investigation Team

Vision to Enable Sensor Webs with "Hot Spots"
Sensor Web Experiments, Event-driven Observations, Onboard Autonomy
Underlying "Plug and Play" Message Bus Architecture -- Goddard Mission Services Evolution Center (GMSEC)

GMSEC architecture provides a scalable and extensible ground and flight system approach:
- Standardized messages formats
- Plug-and-play components
- Publish/Subscribe protocol
- Platform transparency

More info at: http://gmsec.gsfc.nasa.gov
ST-5 Lights-Out Autonomy

- ST-5 mission demonstrated parts of (1), (2), (5), (6) and (7) (from slide 3)
 - Lights-out operations with model-based software
 - Predict problems before they happen and fix early
 - Models update themselves automatically
 - Modeling system is built on top of "plug and play" architecture to enable easy extensibility
 - Act as stepping stone for this type of capability for future missions

ST-5 Model-Based Operations Overview

- Real Time Telemetry
- Model Based Operations
- Command & Control
 - Anomaly Prediction
 - Event Detection
 - Schedule conflict detection
 - Etc.
- Scheduler
ST-5 ROME Framework

- Real-time Object Modeling Executive (ROME)
 - Supports multiple models and multiple spacecraft
 - Leverages common engineering modeling environments
 - Models from various sources are easily integrated
 - Fully supports GMSEC bus
 - Models initialized and maintained from telemetry
 - Model control via configuration file or bus directive
 - Results available to GMSEC subscribers
 - Easily configured via XML
 - Highly scalable

ST5 Specific Configuration

- ROME based implementation
- Dynamic characterization of sub-systems phenomenology
- Used by mission to manage constrained resources
- Models of Subsystems
 - Solid State Recorder (Contractor Dev.)
 - RF (Student Dev.)
 - Power (Project Dev.)
SimulinkST5 GMSEC Highlights

- Simulink is a visual interface to Matlab to allow users to simulate systems that can be represented with mathematical equations.
- Features of Simulink as used on ST5 are as follows:
 - Standardized messaging interoperability
 - GMSEC Compliance
 - Directives
 - Advanced Mission Planning System (AMPS)
 - Mnemonic Value Messages
 - ASIST
 - Integrated Test and Operations System (ITOS) capability
 - Heartbeat messages
 - Log messages
 - Product Messages
 - Predictive Model-Based Operations
 - Subsystem models to anticipate platform conditions in a constellation environment.
 - Support Short and Long Term Mission Planning
 - Interact with AMPS and ASIST for control directives, telemetry, and profile events.
 - Constellation Operations Support

Core Flight System (CFS) and Extension for GMSEC for Flight SW

CFS provides a framework that simplifies the development and integration of applications

- Layered Architecture – software of a layer can be changed without affecting the software of other layers.
- Components communicate over a standard message-oriented software bus, therefore, eliminating the need to know the details of the lower layers of inter-networking.
- Software components can be developed and reused from mission to mission.
- Developed by Flight SW Branch at GSFC
Onboard Integrated Message Bus Demonstration (December 2005):

Ground System Testbed

- ASIST Primary
- ASIST Secondary
- GMSEC Bus
- DC

UDP

cFE on CHIPS

- Command Ingest
- Telemetry Output
- cFE Bus
- Livingstone Adaptor

model
script
result

DC = Data Center
ASIST = Advanced Spacecraft Integration and System Test

Moving Models Onboard CHIPS Satellite Under cFS to Demonstrate Mobile Agents

- Mobile agent - autonomous software module that can easily be moved around a network
- Models transformed into mobile agents
 - Worked with Solid State Recorder agent (model) first
- Adapter built to make compatible with both GMSEC and Core Flight Executive (cFE)
- Demonstrated capability to move software running on GMSEC onboard to run under cFE
- Demonstrates beginning step to transform missions from central control to distributed control via self-managing software

ST-5 Constellation
via DSN & McMurdo
Ground Stations

GMSEC Bus

CHIPS Satellite with cFE Bus Onboard

- Command Ingest
- Telemetry Output
- Power Model Agent
- Adapter
SSR Model Agent
Adapter

via Berkeley & Wallops
Ground Stations (UDP)

GMSEC Apps
ASIST
DC

ANIPS

Demo App
Fairmont, WV

GMSEC Bus

via TCP/IP

CHIPs = Cosmic Hot Interstellar Plasma Spectrometer
ST-5 = Space Technology 5
DC = Data Center
ASIST = Advanced Spacecraft Integration and System Test
One of Three Experiments Conducted by UMBC Undergraduate Class 12-14-05

Experiment with UMBC Undergraduate Class 12-14-05

Picture of Experiment Day
- Sensor network class, Dr. Younis, Vuong Ly and Dan Mandi
- Sensor mote layout & atrium where experiment conducted (inset)
- Baltimore Sun reporter
- Mini-rover in action
- Mini-rover autonomously finding broken sensor node (part of Emergency Response UMBC project team)
Closer Look at our Mini-Rovers & Simulated Mars Landscape at GSFC

Began to Implement Experiments with Standards - Vision for Integrated Sensor Web Environment

- GSFC Mission Systems Evolution Center (GMSEC)
- Core Flight Executive (CFE)
- Core Flight System (CFS)
- SensorML
Sensor Modeling Language (SensorML)

- Standard models and Extensible Markup Language (XML) schema
 - Describes sensor systems to provide information needed to discover and locate sensor and sensor observations
 - Process low-level observations
 - Defines interfaces
 - Lists taskable properties
- Can apply to any sensor whether in-situ or remote
- Facilitates “plug and play” and interoperability between sensors
 - Especially useful for heterogeneous sets of sensors and rapid integration of new sensors
More info at— http://vast.nsstc.uah.edu/SensorML/

OGC EO-1 Experiment

- A proposal was submitted and accepted by the Open Geospatial Consortium (OGC) to use EO-1 as part of a testbed effort beginning June 2006 and lasting until December 2006.
 - Testbed effort called OGC Web Services (OWS) - phase 4 has may objectives, one of which is Sensor Web Enablement (SWE) for sensors via a standard which is similar to a Service Oriented Architecture (SOA)
 - More info at: http://www.opengeospatial.org/initiatives/?iid=199
- Sponsored by many organizations including NASA, NGA, GeoConnections - Canada, National Technology Alliance, GSA, ORNL, LMCO, BAE, Ordinance Survey - UK, NATO C3, and TeleAtlas
OGC EO-1 Experiment

- Figure on next slide depicts the portion of the demonstration in which EO-1 will participate; generic capability to discover and task EO-1 on the Internet via the following services:
 - Sensor Planning Service (SPS) – a standard Web service interface for requesting, filtering and retrieving sensor observations
 - Sensor Alert Service (SAS) – a standard interface for asynchronous notification of messages or alerts from sensors or sensor services
 - Sensor Registration Service (SRS) – a standard Web service to store sensor characteristics for later user retrieval
- Geospatial Interoperability Office at GSFC (M Bambacuc, Nadine Alameh) major sponsor of OGC activities (and in particular OWS-4) and are monitoring this activity

EO-1 Participation in OGC Web Services – Phase 4 Testbed; June 2006 – December 2006

Open Geospatial Consortium (OGC) Web Services
- Phase 4 Testbed (June – December 2006)
- EO-1 portion of demonstration

- Search for satellites based on capabilities
- Register sensor in catalog to make it searchable on Internet
- Command, send tasking requests via Sensor Planning Services (SPS) protocol
- Request alert service from satellite via Sensor Alert Service (SAS)

- Wrap EO-1 satellite in SensorML and publish its capabilities
- Enable generic command / tasking request via SPS
- Enable generic alert services via SAS

- Store capabilities
- Process user query and return the result
Conclusion

- Building capabilities to enable progressive mission autonomy via the use of three satellites and a series of increasingly more capable experiments
- Focusing on validating distributed mission control and maximizing interoperability
 - Enable changes to mission post launch
 - Combine existing missions into temporary "virtual constellations" to enable new missions

Conclusion

- Will add additional real experiments to continue to build the toolbox
 - Two recent awards for AIST ESTO call for proposal will be used
 - An Inter-operable Sensor Architecture to Facilitate Sensor Webs in Pursuit of GEOSS – Related to OGC effort
 - Key topic - Interoperability
 - PI: Dan Mandl - 3 year effort
 - Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations
 - Key topic distributed mission control
 - PI: Ken Witt/ISR Co-I Dan Mandl/GSFC – 3 year effort
Conclusion

- Other related awards from AIST ESTO call in March 2006 will allow possible further synergy
 - E.g. - Increasing the Technology Readiness of SensorML for Sensor Webs
 » Key topic SensorML for sensor interoperability
 » PI- Michael Botts/Univ. of Alabama – 3 year effort