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Popular Summary

With the continuous increase in computational power, cloud-resolving models will
increase their domain size in the near future so that both clouds and large-scale
circulations are simulated explicitly, addressing the role of clouds in weather and climate
change. If a cloud model is coded in full modularization, scientists with various majors
can develop or use the model for their research in parallel. Previous studies suggested
that moist entropy be used as a prognostic variable for the separation (or modularization)
of dynamics and thermodynamics. The present study shows how to tune prognostic
variables for the separation (or modularization) of cloud microphysics and
thermodynamics.

In this paper, microphysical timescales in clouds are surveyed in contrast to the time
step for model integration, suggesting that moist entropy and total mixing ratio of
airborne water without the contribution of precipitating particles be used as prognostic
variables for the separation of cloud microphysics, thermodynamics and dynamics.
Numerical simulations with these prognostic variables are compared with analytical
solutions as well as simulations with conventional prognostic variables and shown to be
efficient for modeling. The simulations also show that this method removes the prevalent
computational phenomenon of spurious supersaturation and negative water in cloud-
resolving modeling.
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Abstract

Independent prognostic variables in cloud-resolving modeling are chosen on the basis
of the analysis of microphysical timescales in clouds versus a time step for numerical
integration. Two of them are the moist entropy and the total mixing ratio of airborne
water with no contributions from precipitating particles. As a result, temperature can be
diagnosed easily from those prognostic variables, and cloud microphysics be separated
(or modularized) from moist therméjdy'namics. Numerical comparison experiments show
that those prognostic variables can work well while a large time step (e.g., 10 s) is used

for numerical integration.



1. Introduction

With the continuous increase in computational power, cloud-resolving models will be
extended to explicitly simulate clouds and synoptic large-scale circulations for their
interaction in the near future. Since cloud microphysics is highly coupled with other
processes, it is better for the models to represent properly not only individual clouds
systems and large-scale circulations, but also cloud microphysics. Deep cumulus clouds
in the Tropics act as an engine for the atmosphere, driving large-scale vertical
circulations through convective heating (Riehl and Malkus 1958). Since the convective
heating originates in the change of water i)hases on micro-scales, the “efficiency” of the
engine is related to cloud microphysics (e. g Simpson et al. 1988; Tao and Adler 2003a).
On the other hand, small particles in ciouds_‘ aﬁéorb and emit radiation that changes the
atmospheric energy budget and in turn la:.r'_g.é—scélie circulations (e.g., Albrecht and Cox
1975; Baker 1997). As a result, they are coupled with large-scale circulations (e.g.,
Raymond 2000; Raymond and Zeng 2000). Hence, it 1s interesting to represent cloud
microphysics properly in long-term cloud-resolving modeling.

Cloud-resolving models consist of many parts: dynamics, moist thermodynamics,
cloud microphysics, atmospheric radiation and the energy exchange between air and its
underlying surface (e.g., Klemp and Wilhelmson 1978; Grabowski 1989; Tao and
Simpson 1993; Tompkins and Craig 1998; Cotton et al. 2003; Tao et al. 2003b). They are
becoming more and more complicated for various applications. C;)de modularization
provides a suitable framework for a model to accommodate many parts so that different

scientists can test or develop a part (e.g., cloud microphysics) on parallel. Ocyama (1990,



2001) first proposed the separation (or modularization) of dynamics and moist
thermodynamics by choosing suitable prognostic variables. He suggested moist entropy
and the mixing ratio of water substance be used as prognostic variables and temperature
be diagnosed from those and other prognostic variables. He constructed a two-
dimensional model for warm clouds to show the possibility of his proposal (Ooyama
2001). Moving in the same direction, the present paper proposes the separation (or
modularization) of cloud microphysics and moist thermodynamics by tuning prognostic
variables, especially for the modeling of cold clouds.
Moist entropy (or entropy-like variables), as other threads, was used as a prognostic
. variable in cloud modeling for other purposes. Tripoli and Cotton (1981, 1982) first used
an entropy-like variable (or ice-liquid water potential temperature) as a prognostic
variable in modeling to avoid a computational phénomenor or the negative mixing ratio -
of cloud water. Raymond and Blyth (1986) used moist entropy and the mixing ratio of
airborne water (water vapor and cloud water) as prognostic variables in a parcel model to
study cloud mixing. Zeng (2001) used moist entropy as a prognostic variable in a three--
dimensional model for the ensemble simulation of warm clouds. Zeng er al. (2005)
derived a precise equation for moist entropy so that moist entropy can work as a
prognostic variable in cold-cloud modeling. The present paper, on the basis of the
analysis of microphysical timescales in clouds, tunes prognostic variables for the
separation of cloud microphysics and moist thermodynamics as follows: the contributor
to moist entropy is changed from water substance (Tripoli and Cotton 1982; Ooyama
1990, 2001) to airborne water (or water substance except for precipitating water) and the

use of moist entropy as a prognostic variable is extended from the simulation of warm



clouds (Raymond and Blyth 1986; Ooyama 1990, 2001; Zeng 2001) to the simulation of
cold clouds.

Two issues need to be cleaned before moist entropy is used as a prognostic variable to
simulate cold clouds. One issue is on the entropy budget equation (Tripoli and Cotton
1981; Ooyama 1990) that involves the irreversible generation of moist entropy. Zeng et
al. (2005) deri\(ed an accurate entropy equation from the energy equation, expressing
explicitly the irreversible generation of moist entropy due to cloud microphysics.

The other issue is on the benefit for the use of moist entropy as a prognostic variable.
Ooyama (1990, 2001) chose moist entropy as a prognostic variable for the simulation of
warm clouds since it is conservative. However, moist entropy' is not conservative in cold
clouds because ice usually brings about the irreversible gencration of moist entropy (e.g.,
Zeng et al.; 2005). Thus, the benefit should be specifically e’xplored before moist entropy
is used as a prognostic variable in the simulation of cold clouds.

The present paper addresses the latter issue as follows. Section 2, with the aid of a
simple example, illustrates a computational phenomenon of cloud microphysics in cloud-
resolving modeling, proposing a strategy for code modularization of cloud microphysics.
Section 3 compares the timescale for water vapor condensation with a time step in a ﬁon—
precipitating parcel model for warm clouds, showing how the use of moist entropy as a
prognostic variable benefits the separation (or modularization) of cloud microphysics and
moist thermodynamics. Section 4 introduces a parcel model for cold clouds in terms of
microphysical timescales and analyzes- numerical results from the model, showing that

moist entropy can work well as a prognostic variable in cold-cloud modeling. Section 5



gives a summary. Except for special illustrations, the paper follows the symbol

definitions in Appendix A.

2. Code modularization of cloud microphysics
If all prognostic variables in a model are independent and they are integrated
explicitly, code can be modularized fully. Using a simple example, this section illustrates
a strategy for the modularization of cloud microphysics in cloud-resolving modeling.
Many cloud microphysical processes can be described with a simple equation that
looks like (see sections 3 and 4 for details) |
de¢/dt = -9/, 2.1
where the variable ¢ is a function of time t and the chara’citeﬁsﬁ’c timescale 7 is constant.
Suppose that ¢=1 at +=0. Thus, Equation (2.1) is solved analjfticélly with ¢ = exp(~t/T).
Although the preceding equation is very simple and ‘it.s' numerical schemes have been
discussed in some textbooks, a brief survey is given here on its numerical schemes for a
quick reference. Suppose that Equation (2.1) is discretized as
¢ =¢" -9 At/ 22)
for explicit integration, where superscripts indicate time level and A7 1s the time step for
integration. Equation (2.2) is solved with ¢" = (1-At/t)". Obviously, the numerical

solution of (2.2) is close to the analytical solution of (2.1) when

At <T. (2.3)

Otherwise, the value of ¢ blows up or oscillates spuriously around zero. The preceding

stability criterion can be applied to the modeling of cloud microphysics (Khvorostyanov

and Sassen 1998).



Alternatively, Equation (2.1) can be discretized as
¢n+1 = ¢)n _¢n+lAt/T , (24)
for implicit integration, which is solved with ¢" = (1+ At/T)™. Obviously, the numerical

scheme in (2.4) is always stable, even when the time step is larger than the characteristic
timescale.

Different from the preceding explicit and implicit schemes, the analytical solution of
(2.1) can be approximated with

o™ =0 (2.5)
when the time step is larger than the characteristic timescale. In other words, Equétion
(2.1) degenerates from a prognostic equation into a diagnostic.one.

In view of the numerical schemes in (2.2), (2.4) "and‘ (2.5) fér thet equation (2.1), it is
reasonably inferred that cloud microphysics 'can be v&xodﬁlarized fully when all
independent prognostic equations for cloud microphysics take ithé similar numerical
schemes as those in (2.2) or (2.5). That is, the explicit scheme in (2.2) or the
approximation in (2.5) is used when the timescale of a process is larger or smaller than a
given time step, respectively. Such strategy is taken in the following two sections for the

modularization of cloud microphysics.

3. Choice of prognostic variables for warm-cloud modeling

This section compares two sets of prognostic variables for the modeling of non-
precipitating warm clouds, showing the benefit for the use of moist entropy as a
prognostic variable. To distinguish the two sets of prognostic variables clearly, it starts at

the introduction of zero supersaturation approximation.



a. Two sets of prognostic variables

Consider an air parcel with monodisperse cloud droplets, as an example, where only
cloud droplets evaporate or water vapor condenses on them. The concentration and the
radius of droplets in the parcel are denoted with N, and re, respectively. Thus, the mixing
ratio of cloud water

g, =inpwﬂc~rf‘. (3.1)
3 p

The growth rate of a droplet due to water vapor condensation is expressed as (e.g.,

Pruppacher and Klett 1997)

iifc_ = Aw(qv/quw - 1) (32)
dt r ’ '

4

.where- g, 1s ‘the mixing ratio of water vapor, gysw the saturation rrﬁxing ratio of water
vapor over water and

A, =(p,L/K,RT*+p RT/E, D). (3.3)
Differentiating (3.1) with respect to time, and then substituting (3.2) into the resulting
equation yields

dg dg N, g
Sy o Tle o App A v (-] 34
dt dt o= ) G4

vsw

Assume that the parcel is adiabatic and stationary (or zero vertical velocity). Thus, the

energy equation is written approximately as

d
c 9 _ _; %,

= . 3.5
P odt Yodt (3-5)

Substituting (3.4) into (3.5) yields



=) o prp gy Moyl y Bt 3
dt p RC,T G s
with the aid of the Clausius-Clapeyron equation
dinE L
i 3.7
ar RT? 3.7)

The analogy between Equations (3.6) and (2.1) shows the timescale for water vapor

condensation (or cloud water evaporation)

quwLi )—l pquw (38)
RC,T* 4mp AN 7

w cc

=01+

which is consistent with that of Squires (1952), Politovich and Cooper (1988) and
Korolev and Mazin (2003).

Figure 1 exhibits the timescale A‘versus height, where the air density is approximated.
with that of a static atmosphere whose surface pressure is ‘1013.25 hpa and temperature -
decreases linearly with height from 288 at z=0 to 216.5 K at z=11 km. The thin and thick
lines in the figure display the timescale against height when N,r.=500 and 3000 um-cm™,.
respectively. As noticed in the figure, the timescale for continental air is around 1 second
and that for marine air is around 5 seconds.

If T, ¢, and g, are used as prognostic variables to integrate Equations (3.4), (3.5) and
(3.6), the time step for explicit integration must be smaller than the timescale T, just as
shown in section 2. Thus, the time step is very small since the timescale may be 1 second
or less‘.

Alternatively, if moist entropy and the mixing ratio of airborne water are used as
prognostic variables, the time step is not limited by the timescale, which is discussed

next. The moist entropy per unit mass of dry air is defined as the sum of entropies for



such constituents as dry air, water vapor, cloud water and ice. It is equivalently expressed
as (Zeng et al. 2005)

p—e+(Lv Es_w_
T

E,

St

L
s=(C, +c,q,>1n—TI——Rd In -RInflg,-(GE-RlZ2g, (9)

ref Prer
where relative humidity f=e/Es; Ty = 273.15 K and prr = 10° pa are the reference
temperature and pressure, respectively; the total mixing ratio of airborne water (water
vapor, cloud water and ice) is
9,=49,+49.+G;; (3.10)
and the supersaturation of water vapor s, is

8, = (9, = 9o )/ Do - (3.11)
- Whens, ¢; and s,, are used as prognostic variables, their governing equations are

&9y (3.12)
dt dt

A o) _ _ lum) (3.13)
dt T '

Since the timescale T measures the adjustment of s, to zero and its value is small, the
approximation of zero supersaturation s,~0, just like Equation (2.5), is introduced while
water changes phase. As a result, three prognostic variables s, g; and s,, are decreased to
two prognostic ones (i.e., s and g,), and the time step for explicit integration is not

limited by the small timescale .

"If the evolution of real supersaturation is interested (e.g., Khvorostyanov and Sassen 1998),
5,=0 can’t be introduced. Thus, all of 5, g, and s, are used as prognostic variables. As a result, the

time step for explicit integration is limited by 7. However, this topic is beyond the present paper.



Summarily, when (7, g, q.) are used as independent prognostic variables, real

supersaturation is explicitly simulated and the time step for explicit integration is limited

- by the small timescale’. When (s, ¢;) are used as independent prognostic variables and the
approximation of zero supersaturation is introduced, the time step is not limited by the
small timescale. Meanwhile, no real supersaturation is simulated well.

The approximation of zero supersaturation is supported by observations. Real
supersaturation in clouds is usually calculated with observational data of temperature,
vertical velocity and cloud droplets, since it can not be measured directly. It 1s found that
real supersaturation in cumulus clouds is in the range from -0.5 to 0.5% and rarely

exceeds 1% (Politovich and Cooper 1988).

b. Diagnosii?g temperature from moist entropy

When S "and q: are used as prognostic variables, temperature is diagnosed from them.
The diagnosis procedure is summarized in the flow chart in Figure 2. For the sake of
completeness, the diagnosis part for cold clouds is also presented in the figure for the

further discussion in section 4.

2If (T, qv, gc) are used as prognostic variables to simulate a syétem with a constraint (or zero
supersaturation), the timescale of cloud water evaporation does not limit the time step for explicit
integration, since it does not exist in the system. However, the three prognostic variables are not
independent. They are one more than necessary. As a result, numerical integration may violate
the constraint, bringing about computational phenomena. Thus, special technologies (e.g.,
Grabowski and Smolarkiewicz 1990; Margolin et al. 1997) are needed to remove the

computational phenomena.
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Consider a hypothetical parcel with s the moist entropy, p the pressure and g; the
mixing ratio of cloud ice. The parcel stays right at water-saturation and contains no cloud

~water. Its temperature is denoted as T, . and its saturation mixing ratio of water vapor as

E,(T,)

g’ ~0.622 _.
pP- Esw(Tw)

(3.14)

Using the prepeding equation, Equation (3.9) is solved for T,, with the Newton iterative
method first. Then, g,s is determined by (3.14).

Since the moist entropy and the mixing ratio of airborne water are conserved When‘
water vapor condensates or cloud drops evaporate, quw* for the hypothetical parcel is
compared with g,q; for the original parcel, judging whether the original parcel is
saturated with respect to water or not. If g¢:<qusw , the air is unsaturated with respect to -
water. Thus g.~0, g,~qr-¢;, and Equation (3.9} is solved for the air temperature 7 with the °
NeW;_on ite;qtive method. If qt—qizquw*, the air is samrated‘with respect to water. Thus
qv=quw*, T=T,, and g~=q-q.-g:;. Once ice is involved, next is to judge whether cloud

water freezes due to homogeneous ice nucleation (see section 4.a for more discussion).

c. Result comparison in a parcel model
This subsection analyzes numerical results from a parcel model with two sets of
prognostic variables. Consider an air parcel in adiabatic upward motion. Its governing

equations are written as follows with one set of prognostic variables (7, gy, gc)

9. __ %45 (3.15)
dt dt

dT din(p -e) dlne dg
C +C — R T —~—~—2%_qgRT =-L — 3.16
( p+ pqu+CIQC) dt d qv v df v dt ( )

11



dj
L~ —pgw (3.17)

dt
and
dgq Tike 24, ~4
_-_V~=_1+ VW v v vsw 3-18
dt ( RVCPTZ) T (3.18)

when g,>gysw o g>0. Otherwise, dg,/d=0.

Of the preceding equations, Equation (3.17) is obtained from the hydrostatic equation,
and (3.18) is obtained from (3.4) and (3.8). As shown in (3.8), the timescale 7 changes
with time. Its variation can be represented in spectral-bin models that explicitly simulate
the spectrum of cloud drops (e.g., Kh\}orostyanov and Sassen 1998; Tao et al. 2003b).
For simp_lic_ity, a constant timescale 7=1 s is qsed in (3.18) so as to bring computational
phenqmena, in’t‘o focus.

Thg: governing equations for the parcel can be exp"ress‘ed with the other set of
prognostic variables (s, g;). They are (3.12) and (3.17), corresponding to those with the
first set of variables. The parcel model takes the same numerical schemes as that in
Equation (2.2).

Suppose that the air parcel moves upward with a Veﬁical velocity of w=4 m/s as well
as an initial pressure 1000 hpa, relative humidity of 85% and temperature of 300 K.
Numerical results from the model are displayed in Figure 3. The results from the model
with A=0.1 s and the first set of prognostic variables are displayed with thin solid lines.
These results can be regarded as a benchmark to check the results in other experiments.

The results from the model with A=3 s and the first set of prognostic variables are
displayed with thin dashed lines in Figure 3. As shown in the figure, the results are bad

compared to those with Ar=0.1 s. Both spurious supersaturation and negative mixing ratio

12



of cloud water are present. When Ar=10 s is used, the model blows up due to
computational instability. The results from the model with Ar=10 s and the second set of
prognostic variables are displayed with thick dashed lines in Figure 3. As shown in the
figure, the results agree well with those of the model with Ar=0.1 s and the first set of
prognostic variables, and neither spurious supersaturation nor negative mixing ratio of
cloud water is present. These numerical experiments clearly show that, if all prognostic
variables are independent, moist entropy and the total mixing ratio of airborne water
work more efficiently than temperature and the mixing ratios of water vapor and cloud

water as prognostic variables in cloud-resolving modeling.

d. Result comparison in a one-dimensional model

This subsection analyzes numerical results from a one-dimensional model with two
sets of prognostic variables, showing compﬁtatiénal phenomena of a short timescale in a
spatial model. Consider an idealized casé iﬁ a one-dimensional space (Grabowski and
Smolarkiewicz 1990). Air moves upward at a constant vertical velocity of 4 m/s. At the
surface z=0, p=1013.25 hpa, 7=288 K, /=30% and ¢.~=0. Initially, relative humidity is
30% except fot 100% between z=1 and 2 km; temperature decreases linearly with height
from 288 at z=0 to 216.5 K at z=11 km; and no liquid water cxisfs.

When one set of prognostic variables '(T, v, qc) 18 uséd, the governing equations

corresponding to (3.15), (3.16) and (3.18) are

2
%_*_ W?_gl = ___(1 + quva )—1 90~ Do (319)
ot 9z RC,T ‘
2
_a_g_C_ + W'(?‘&' = (l + quvaz )—1 q, — QVSW (320)
ot oz RCT

13



2 —
pngWT - Lv(]. + Iz\lzjwi:z )—1 9, ~ Gosw (321)
p—¢€ »

aT oT
C +C g, +cq ) (—+w—)+
( D pqu IQC)( ot aZ)
where the terms on the right hand side equal zeros while gy=¢,s» and ¢.<0. The timescale
=1 s is set for simplicity.

When the other set of prognostic variables (s, ¢;) is used, the governing equations are

obtained from (3.12), or

— +w—=0 3.22
ot 0z ( )

94, ,,,%: _ (323)
dt d9z

In all numerical experiments in this subsection, the uniform vertical grid size Az=200
m is used. A traditional upstream scheme (e.g., Smolarkiewicz 1983) is applied to
Equations (3.19)-(3:21). Following an air parcel in the mc;del, it is easy to notice such
computational phenomena as spurious supersaturation and negative mixing ratio of cloud
water, just as shown in Figure 3, when a large time step (e.g., 3 seconds) is used (figure
omifted). The spatial distribution of variables at =10 minutes from the model is
displayed in Figure 4, where solid and dashed thin lines show numerical results versus
height when the time step Ar=0.1 and 3 s, respectively. Thick dashed lines show the
corresponding analytical solution from (3.22) and (3.23) for comparison. As shown in the
figure, the results with a small time step are close to the analytical ones, and the results
with a large time step are bad.

The same traditional upstream scheme 1s applied to (3.22) and (3.23), and the
numerical results at =10 minutes from the model are shown in Figure 5, where thin solid

lines show variables versus height when the time step Ar=10 s. As shown in the figure,
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neither negative mixing ratio of cloud water nor spurious supersaturation is present, and
the results are very close to those with Az=0.1 s and the first set of prognostic variables in
Figure 4. The difference between the numerical and the analytical results comes mainly
from computational diffusion of the traditional upstream scheme, which is supported by
the next experiment. The positive definite scheme of Smolarkiewicz (1983) has little
computational diffusion in contrast to the traditional upstream scheme. It is applied to
(3.22) and (3.23) with Ar=10 s. Its results are shown with thin dashed lines in the figure,
showing that the numerical results are improved obviously. In brief, the numerical results
in Figures 4 and 5 indicate that moist entropy can work well as a prognostic variable in a

spatial model.

4. Microphysical timescales in cold-cloud modeling

This section addresses the modeling of cold clouds with moist entropy as a prognostic
variable, and proposes introducing microphysical timescales as intermediate variables for
the separation (or modularization) of cloud microphysics and moist thermodynamics. The
section first compares the magnitudes of microphysical timescales with a time step (e.g.,
10 s) for the choice of prognostic variables. Then, it introduces a parcel model for cold
clouds expressed in terms of microphysical timescales. Finally, it analyzes numerical
results from the model with two sets of prognostic variables, showing that moist entropy

can work well as a prognostic variable in cold-cloud modeling.

a. Magnitudes of microphysical timescales
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Air adjusts to saturation through vapor condensation, deposition, water evaporation
or ice sublimation. Air temperature approaches 0°C through ice fusion or water freezing.
Those processes are described by equations like (2.1) with two kinds of microphysical
timescales. The first kind of timescales measures the adjustment to saturation. Of the
timescales, the timescale for cloud water evaporation (or water vapor condensation) was
discussed by Squires (1952), Politovich and Cooper (1988) and Korolev and Mazin
(2003). Its expression is shown in (3.8). Its magnitude, as shown in Figure 6, is usually
less than 10 seconds. The timescale for cloud ice sublimation (or water vapor deposition
on cloud ice particles) was discussed by Khvorostyanov and Sassen (1998) and Korolev
and Mazin (2003). Its expression is the same as that in (3.8) except that corresponding
variables (e.g., a shape factor) are used. Its magnitude is larger than 10 seconds. The
timescale for rainwater evaporation has the same expression as that in (3.8) except that
corresponding variables are replaced and. ventilation factors are introduced. With
observational data (e.g., Pruppacher and Klett 1997), the timescale is estimated to be
larger than 10 seconds. Similarly, the timescale for precipitating ice sublimation (or water
vapor deposition on precipitating ice particles) is estimated to be larger than 10 seconds.

The second kind of timescales measures the adjustment of temperature to 0°C. The
timescales are analyzed in Appendix B. Of them, the timescale for cloud ice fusion and
that for precipitating ice fusion (or rainwater freezing) are much larger than 10 seconds.
Since the timescale for cloud water freezing strongly depends upon the concentration of
the cloud droplets with ice embryos, it may be less than 10 seconds when ice nucleus

concentration is very high. For example, when temperature is lower than -40°C, all cloud

16



drops freeze due to homogeneous nucleation. As a result, the timescale for water cloud
freezing due to homogeneous nucleation is less than 10 seconds.

Figure 6 summarizes magnitudes of the microphysical timescales scaling temperature
adjustment. With the figure, prognostic variables can be chosen for the full
modularization of cloud microphysics while a time step is given. If a time step is less
than 0.1 second, (7, ¢, g.) besides others can work as independent prognostic variables
for the full modularization. However, if a time step is much larger than 10 seconds, it is
difficult to choose independent iarog‘nostic variables for the full modularization of cloud
microphysics.

If a time step is around 10 s or less, (s, g;) besides others can work as independent
prognostic variables for the full modularization of cloud microphysics and moist
- thermodynamics, where s and g; exclude contributions fro’m precipitating particles®. In
this case, temperature is diagnosed from (s, g;) with the procedure in Figure 2. Just as
shown in section 3.b, temperature is diagnosed when s, ¢, ¢; and p are given. If 7<-40°C
and g0, cloud water freezes due to homogeneous nucleation. Assume that all cloud
water freezes. Then, the air temperature T,-* and the mixing ratio of cloud ice qi* are
determined. If T} <-40°C, the assumption is right that all cloud water freezes. Thus ¢.=0,

T=T;, g=q; and g,=qrg:. If T; >-40°C, the assumption is wrong. Only a part of cloud

* When s and g, include contributions from precipitating particles and they are used as prognostic
variables (Tripoli and Cotton 1981, 1982; Ooyama 1990, 2001), temperature is diagnosed with
the procedure in Figure C-1 of Tripoli and Cotton (1982). Thus, special technologies are needed

to separate (or modularize) clond microphysics and moist thermodynamics.

17



water freezes. Therefore, 7=-40°C, ¢,=qvsw, ¢: 1S obtained easily from Equation (3.9), and

gczgt“qv'Qi-

b. Microphysical processes expressed in terms of microphysical timescales
Cloud microphysics is very complicated. Some microphysical variables such as the
concentration of ice particles vary in orders and some processes, such as ice nucleation
and ice particle multiplication, are still unclear (e.g., Pruppacher and Klett 1997). Thus, it
is interesting to confine the uncertainty of microphysics parameterization to a possible
narrow extent. Microphysical timescales are important parameters in connecting cloud
microphysics, moist thermodynamics and dynamics. If they are introduced to express
*‘microphysical processes, their values in modeling can be compared with those calculated
- from observational data as a test of cloud microphysics parameterization. Moreover, their
values can be compared with the time step for integration to avoid such computational
phenomenon as that in section 2. Therefore, microphysical timescales are suggested be
used as intermediate variables in modeling.
This subsection presents a parcel model for cold clouds in terms of microphysical
timescales, using two sets of prognostic variables, where precipitating particles move
with the parcel. When one set of prognostic variables (7, p, gv, ¢, 4r, i, gs, 4 ) 1S used,

the changes of water species are described as

Yy F vE +5+5 +5. (4.1a)
a T

dqc )

=B ~F,=C,~Cy=Copp = Cy (4.1b)

égi=—E,—Fs—Fg+CC,+CCgS—C +C. ~C

dt rgF ir irNrg

C (4.1c)

rsNrg
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dg,

_a_t_:_Si-,.F,i_Cir“Cis-Cig (41d)
dq,

dt = _Ss Bl Fx + Ccs + Cis - ng - Ccstg - Crstg (416)
s g 4+ F 4+C, +C,+Copp +Copp + Coy + Coy + Cong +C 4.1
_?d_l;— = g + g + ig + sg + cgF + rgF + csNsg + irNrg + rsNsg + rsNrg ( ) D

where the symbols E, S, F and C indicate source terms due to evaporation, sublimation,
fusion and collision, respectively.
The source terms in (4.1) are expressed next in terms of the microphysical timescales
in Appendix C. Cloud water evaporation or water vapor condensation is described as
E, =g, ~4,)]7. (4.22)
when g,>gvsw or g>0. Otherwise, E=0. Rainwater evaporation, cloud ice sublimation,

snow sublimation and graupel sublimation are described as .

E, =4 ~9)/7. (4.2b)
S, =4~ 9./ (4.2¢)
S, =G =9,/ 7, (4.2d)
S, = (@i = 4.0/, (4.2¢)

respectively, with the similar conditions for (4.2a).
With reference to Equations (B3) and (B4), the conversion of cloud water to ice is

described as

po G T-% 4 44
l Lf T T(c]i” Tc ’

(4.32)

where t,; measures the timescale for cloud ice fusion when 7>T, and cloud water freezing

when 7<7,. The timescale for cloud water freezing due to homogeneous nucleation

M=) 5 is set when air temperature is less than —40°C. The third term on the right hand
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side of (4.3a) represents the collection of cloud water by cloud ice. The fusion of snow

and graupel (or rainwater freezing) are described as

C r-
Rl X i (4.3b)
Lf Tr:
C -
Fa-z2lzl (43c)
L, 7,

respectively.

The conversion of cloud water to rainwater due to collision is described as

c, -9 +max{———q”_q“" ,0}, (4.4)

cr
erC TcrA

G

where the two terms on the right hand side represent the collection of cloud water by
rainwater and cloud water autoconversion, respectively. The conversion of cloud ice to

snow due to aggregation, deposition and riming is described as

C = qiqs + max{qv ~ Gy ,O}'I' qiqc , (45)

is
isC TiNis rciNis

=~

where the first term on the right hand side represents the collection of cloud ice by snow,
and the second and the third terms represent the conversion of cléud ice to snow due to
vapor deposition and the collection of cloud water, respectively.

When graupel particles collect cloud drops, a part of water freezes around the particles
and the other part sheds off the particles as réindrops when 7<0°C. Thus, the conversion

of cloud water to graupel is described as

C.r =min ,
* LT

Tch cgF
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where the first term in the brackets represents all cloud water collected by graupel and the
second term represents a-part of cloud water that freezes. The other part of cloud water

that sheds off graupel as rainwater is described as

Tch 'f Tch

C (T -
C.ps = max{% _ max[_zi_e_.p_,o]’o}_ (4.6b)

The preceding equation is also suitable for the shedding of accreted water when 7=0°C.
Similarly, the conversion of rainwater to graupel due to the collection of rainwater by

graupel is described as

4.7)

cC I -T
C,r =min{qrqg, oL )}.
L.z

TrgC rgF
Owing to the.'co]lectidn of cloud water by snow, the conversion of cloud water to

snow is described as

(4.82) |

C’CS = QCQS R
TcsC
and the conversion of snow to graupel as
Ccstg = 14, . (48b)

1"csN:rg

Due to the collection of cloud ice by rainwater, cloud ice is converted to rainwater

with the rate

C~ = qiqr , (4.93)

w
TirC

and rainwater is converted to graupel with the rate

=949 (4.9b)
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Exactly speaking, the real rate for the conversion of rainwater to graupel is Cineg-Cir
when air temperature is below 0°C.
The conversions of snow and rainwater to graupel due to the collection of snow by

rainwater are described as

Crstg = qur (410a)
Trstg
Copg =222 (4.10b)

respectively. The conversions of cloud ice and snow to graupel due to the collection of

cloud ice and snow by graupel are described as

c, = 14s (4.11a)
rigC

c, =22 (4.11b)
ngC

respectively.

Equations (4.2)-(4.11) express microphysical processes in terms of microphysical
timescales. They are equivalent to the current schemes for cloud microphysics
parameterization (e.g., Lin er al. 1983; Rutledge and Hobbs 1984; Tao et al. 1993; Ferrier
1994; Ferrier et al. 1995) when the timescales take corresponding expressions. Next, a set
of microphysical timescales in Table 1 is taken simply for a numerical test of prognostic

variables.
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Table 1 Microphysical Timescales in a Parcel Model

Condensation/Sublimation Fusion/Freezing Collision
T, 3 T 10°(g,/q) whenT>T, | 7c |02
T 3x10° 10°(grefqe) when T<T, | Tou 10°
T 3><103(q,e.,«/qr)1/2 Tig 103(q,.,gj/qs)”2 when I>T, | Teer 10°
7 3x10%(qrefgs)"” 10°(qrefgr)” when 7<T, | Tec | 0.2
Ty 3x10%(qrefge)” | Te 10°(grefqs)™ when T>T, | Ter | 10°
10°(grefqn)' when T<T, | ec |2
TesC 0.7
TeiC 4
TisC 1.5
TirC 0.2
77igC 5
. TsgC 8
TiNis 10° ‘L'gl ) 2 TesNsg 1.5
TeiNis 3
Tivrg | 1
TrsNsg 1
TrsNrg 2

¢. Two sets of prognostic variables for cold clouds

When one set of prognostic variables (7, p, gv, ¢, 9 9i» gs, gg) 15 used, the governing
equations for the parcel are Equation (4.1) for mixing ratios, (3.17) for pressure and the
following energy equation for temperature

ar dln(p—e)_

. dlne
C,+C,q )E——RdT qRT——

dt VY dr , (4.12)

=Lf(F,. +F,+C +C )~-L(E.+E)-L(S,+S,+ Sg)

cgF

where the symbols

F=F+F,+C ;+C, C,+C

rgF irNrg ~ “ir rsNrg

(4.13a)

g =q,+Cplc(g. +q) +c (g +q,+q,)] (4.13b)
When the other set of prognostic variables (s, p, g1, 9, ¢i, gs, g¢) 15 used, the governing

equations for the parcel are the same as those for the first set of prognostic variables
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except for those for g; and s. The equation for g, the mixing ratio of airborne water is

obtained from Equations (4.12), (4.1b) and (4.1d), or

dg,
'—C}q; = Er + Ss + Sg _'Ccr —ch —chF _chS —Cir _Cis_cig (414)

The equation for moist entropy is obtained from the energy equation (Zeng et al. 2005),

or
L(F -8 +C,
as _ Akl ”’)+cl(E,+S,~Ci )ln-I—
dt T T,
+R,(F;-§,-C,)In Eo _ R(E,+S,+S—-F)Inf
E; (4.152)
cg, + g, +q,) LF, —LE, ~L(S, +S,- F) - R,TX,
T Cp- + vaq
when air is unsaturated with respect to water and
L(F - C_+C, .
éni= f( t Sr+ Cp+ 1p)+CI(Sr-Ccr“_CC —Ci )ln—T—
dt T T,
+R,(F,- 5, ~C, )ln S _ 0.2 €/, 9,) (4.15b)
E, T
. . T
[L,(F+F, 4 Cy =8, =)=~ (RT+ L) ] C, + C g’ + (22, ) B
R, ™ RT
when air is saturated with respect to water, where
S, =5,+85, (4.162)
C,=C,+C. (4.16b)
Cip = Cis + Cig + Cir (4160)
A«~] —— dp (4. 16d)

i (p-edt
Just as done in section 3.c, numerical results from the parcel model are compared
when two sets of prognostic variables are used, reaching the same conclusion as that in

section 3.c. The parcel model takes the same numerical scheme as that in (2.2). Suppose
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that the air parcel moves upward with a vertical velocity of w=4 m/s as well as an initial
pressure 1000 hpa, relative humidity of 60% and temperature of 300 K. Numerical results
from the model with the two sets of prognostic variables are displayed in Figure 7. In the
figure, thin solid lines display the results from the model with Az=0.1 s and the first set of
prognostic variables, and thick dashed lines display the results from the model with
A=10 s and the second set of prognostic variables. As shown in the figure, the results
with the two sets of prognostic variables agree well, showing that the moist entropy can

work well as a prognostic variable in the modeling of cold clouds.

' .5. Summary

Cloud microphysics is very complicated. Its many variables (e.g, the concentrations of
ice nuclei and particles) vary in orders, and some pfocesse\s (e.g., ice particle
‘multiplication) are still unclear (e.g., Pruppacher and Klett 1997). Thus, a proper
parameterization scheme for cloud microphysics possesses not only complicated
formulas but also uncertain factors. To confine the uncertainty of cloud microphysics
parameterization to a possible narrow extent and limit the computational feedback
between cloud microphysics and dynamics, the paper suggests that microphysical
timescales be introduced in cloud-resolving models as intermediate variables.

Microphysical timescales are important parameters in connecting cloud microphysics,

thermodynamics and dynamics. They are determined by microphysical variables®. Thus,

* For the brevity of model formulation, microphysical timescales are defined in the present paper
as functions of microphysical variables such as those in Eqgs. (3.8) and (B2), measuring the

adjustments to saturation and 0°C as well as the conversion between hydrometeor species due to
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the issue of cloud microphysics parameterization is Vhow to formulate them for cloud-
resolving modeling. If the timescales are introduced as intermediate variables, they can
benefit the modeling of cloud microphysics. Their values in modeling can be compared
with those calculated with observational data as a test of microphysics ;;arameterization,
especially for a specific cloud. Moreover, their values in modeling can be compared with
the time step for numerical integratidn, judging whether microphysical processes are
represented properly in the discretization of differential equations.

Magnitudes of the microphysical timescales scaling temperature adjustment, on the
basis of previous work (Squires 1952; Politovich and Cooper 1988; Khvorostyanov and
Sassen 1998; Korolev and Mazin 2003) and Appendix B, are surveyed against a time step

-in the present paper. Of all timescales analyzed, the timescale for cloud water evaporation

and that for cloud water freezing due to homogeneous nucleation are around 1 second.
"Others are- longer than 10 seconds. As a special case, when plenty of artificial ice nuclei
are introduced in clouds suddenly, the timescale for water freezing may approach one
second.

Independent microphysical prognostic variables are suggested be used for the
modularization of cloud microphysics. On the basis of the magnitudes of microphysical
timescales, moist entropy is proposed be used as a prognostic variable in place of

temperature, and temperature is diagnosed from moist entropy and other prognostic

collision, respectively. As a contrast, a complex timescale for phase relaxation (e.g.,
Khvorostyanov and Sassen 1998; Korolev and Mazin 2003) can be introduced to measure the
approach to saturation in a parcel model. It depends on not only microphysical but also dynamic

variables.
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variables. Different from that used in other similar models (Tripoli and Cotton 1981;
Ooyama 1990), the moist entropy proposed here has no contributions from precipitating
particles for easy diagnosis of temperature and full modularization of cloud microphysics.

Air parcels in adiabatic upward motion are simulated with two sets of independent
prognostic variables, showing the benefit of using moist entropy as a prognostic variable.
The first set of prognostic variables is (7, qv, gc), invol'ving no assumption of zero
supersaturation. When the time step 1s small (e.g., less than 1 s), numerical results are
reasonable. When the time step is large (e.g., larger than 2 s), numerical results are
overwhelmed with great computational errors, exhibiting the phenomena of spurious
supersaturation and negative mixing ratio of cloud. water. The second set of prognostic
variables is (s, g:), accompanying the assumption of zero supersaturation. When the time
step 1s 10 s or around, numerical results agree well with ‘those using the first set of
prognostic variables and a very small time step (e.g:, 0.1 s). The comparison of the two
sets of prognostic variables shows clearly that, if prognostic variables are independent, (s,
g:) work more efficiently than (7, ¢, g.) as prognostic variables in cloud-resolving

modeling.
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APPENDIX A

List of Symbols
Ay : defined in (3.3)
C/Cy/cy : specific heat of dry air/water vapor/liquid water
Cep : conversion of cloud water to precipitating ice
Cy : conversion of cloud ice to precipitating ice
C, : conversion of cloud water to rainwater due to collision
Cj; : conversion of cloud ice to snow due to aggregation, deposition and riming
Ceor/Cegs : freezing/shedding part in the collection of cloud water by graupel
Crer : freezing part in the collection of rainwater by graupel
Ces : collection of cloud water by snow
Cesnsg : conversion of snow to graupel due to the collection of cloud water by snow
Gy : collection of cloud ice by rainwater
Cinrg  conversion of rainwater to graupel due to the collection of cloud ice by rainwater
Cisnsg © conversion of snow to graupel due to the collection of rainwater by snow
Cisihrg  conversion of rainwater to graupel due to the collection of rainwater by snow
Cig/Csg : collection of cloud ice/snow by graupel
D, : coefficient of water vapor diffusion in air
e : partial pressure of water vapor
E/E, : evaporation of cloud water /rainwater
E,./E; : saturation vapor pressure over water/ice”
f=e/Es, : relative humidity

F; : conversion of cloud water to cloud ice
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F/F, : conversion between rainwater and snow/graupel due to fusion or freezing
F: total conversion of rainwater to precipitating ice, see (4.13a)
g : acceleration due to gravity

K, : coefficient of air heat conductivity

L./Ly/Ly: latent heat of vaporization/sublimation/freezing

N,/ N; : concentration of cloud droplets/ cloud ice particles

p : total pressure of moist gir

p,.e'f=105 pa : reference pressure

Guswlqvsi . Saturation mixing ratio of water vapor over water/ice
q4+/9./97/9-/9/q¢ . mixing ratio of water vapor/cloud water/cloud ice/rain/snow/graupel
q/q++q.+q; : total mixing ratio of airborne water

r/-/ri : radius of cloud droplets/ cloud ice particles

Ry/R, : gas constant of dry air/water vapor

s : moist entropy per unit mass

Sy : supersaturation of water vapor, see (3.11)

S#/Ss/Sg 1 sublimation of cloud ice/snow/graupel

S; : total sublimation of precipitating ice

{: time

T : temperature

To=273.15 K : absolute temperature at the melting point
Toer=273.15 K : reference temperature

w : vertical velocity

z : height
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T : timescale

T./T/T/Ts/T, : timescale for the evaporation or sublimation of cloud water/cloud
ice/rainwater/snow/graupel

Tinis - timescale for the conversion of cloud ice to snow due to deposition

T.i/ Trs/Trg : fusion or freezing timescale for the conversion from cloud water to cloud
ice/rainwater to snow/rainwater to graupel

7P : timescale of cloud water freezing due to homogeneous nucleation

TorC/ Teg 0/ TrgC/ Tes &/ Teic/ Tis &/ Tir/ Tig/ Tsgc - timescale for the collection of cloud water by
rainwater/cloud water by graupel/rainwater by graupel/cloud water by snow/cloud
water by cloud ice/cloud ice by snow/cloud ice ;by rainwater/cloud ice by
graupel/snow by graupel

T4 : timescale for the autoconversion of cloud water to rainwater

T.o/ Trgr © freezing timescale in the collection of cloud water/rainwater by graupel

TosNsg/ TeiNis/ TirNv/ Trsisg/ Trsivre - timescale for the conversion from snow to graupel/cloud ice
to snow/rainwater to graupel/snow to graupel/rainwater to graupel due to the
collection of cloud water by snow/cloud water by cloud ice/cloud ice by
rainwater/rainwater by snow/rainwater by snow

At : time step for numerical integration

p : air density

Pwl i - density of liquid water/ice
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APPENDIX B
Timescales for Ice Fusion

This appendix deals with the timescales for ice fusion or water freezing. Consider an
air parcel that is adiabatic and stationary (or w=0). Assume for simplicity that particles
are spherical ice and monodispersely distributed. No liquid water surrounds the ice
particles. Let the symbols N; and »; denote the concentration and the radius of ice
particles, respectively. Since heat is transferred from air to ice particles for ice fusion, air
temperature is decreased, which is described as

dar ' N.
C, o=~ [,k ~(T -T,). (B1)
p

Water vapor may condense at the surfaée of the ice pérticles. The resulting latent heat is
balanced by a part of the latent heat of ice melting, without changing air temperature
directly. Thus, no term in the preceding edﬁéﬁon éxpfeséeé directly water vapor
condensation or water evaporation at the surface of the ice particles.

As shown in Equation (B1), air temperatures approaches 0°C with a timescale

C
re P (B2)
4J"j'hKaNiri

Using the timescale, (B1) is rewritten for ice fusion as

dg, ST,

B3
dt L, = (B3)

With the expression (B2), the timescale for cloud ice fusion is estimated and its
magnitude is shown in Figure 6. Similar discussions are suitable for the fusion of

precipitating ice.
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The expression (B2) is also suitable for the freezing of water when N; and r7; are
replaced with the concentration of the cloud drops with ice embryos and the radius of the
cloud drops, respectively. Obviously, the timescale for ice freezing depends strongly
upon the concentration of the cloud drops with ice embryos, and ice nucleation processes
control the latter. Figure 6 displays the possible extent of the timescale for cloud water
freezing.

When air temperature is lower than -40°C, all cloud drops freeze due to homogeneous
ice nucleation. Thus the timescale in (B2) is small, close to one second. Since the relative

change of g; is larger than that of (7-T9), Equation (B1) can be rewritten as

aq, q.
| ® (B

_for the freezing due to homogeneous nucleation, where

- 2
Lfr,.

TP =L
3/ KT -T,)

(B5)

In contrast to the timescale in (B2), the timescale in (BS) measures the decrease of cloud

® <<z, both ¥ and T are small

water due to homogeneous nucleation freezing. Since T
in magnitude, implying that T and g; change rapidly with time due to homogeneous

nucleation. Hence, a special numerical technique is needed for efficient modeling (see

Figure 2 for details).
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APPENDIX C
Confines of Microphysical Timescales

When microphysical timescales are used as intermediate variables in modeling, their
values can be compared with those ‘calculated from observational data, confining the
uncertainty of cloud microphysics parameterization. Their values can also be compared
with the time step for explicit integration, avoiding computational instability. This

appendix deals with the comparison of microphysical timescales against the time step.
Of all the timescales in Equations (4.1)-(4.11), the timescale in (4.2a) for cloud water

evaporation or water vapor condensation is expressed as

_L.c - pquw e (Cl)
4J'Eprwﬂ,NC7:;

where 7 is the averaged radius of cloud droplets and f; is a ventilation factor. Obviously,

c

7 is different from that in Equation (3.8) by a factor

q I2
1 + VSWTTV . C2
( RVCPTZ) €2)

With the analysis in sections 2 and 3, the computational criterion for this process is

wriften as

9l
7 > (1+-Toy Az C3
> ( RVC,,TZ) (€3)

Similarly, other timescales 7, %, 7; and 7; in (4.2) have the same characteristics as those
in (C1)-(C3) except that corresponding variables are replaced.

The timescale for cloud ice fusion or cloud water freezing 7.; measures temperature
adjustment. As shown in Equations (B1) and (B2), the computational criterion for cloud

ice fusion (or clond water freezing) is written as
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T, >At. (C4)
Other timescales for fusion or freezing (T, T, Tegr and Tr) have the same
computational criterion. Although the timescale t$’ measures the decrease of cloud

water due to homogeneous nucleation freezing, it has the similar computational criterion
as (C4), as shown in (B4).
The timescale t.,¢ is used to describe the collection of cloud water by rainwater as

dgq 9.9
S _Hdcdr C5
dt 1’-(:rC ( )

The computational criterion for explicit integration of (C5) is
T,.c > gAML (Co)
Similarly, other timescales for collection growth (e.8., Tesc, TegCs TeiC, TirGs TisCy TigCs TegC
and Tc) have the same computational criterion except that.cdrresponding variables are
replaced.
Once a computation criterion in (C3), (C4) or (C6) is vidlated, the time step for
integration needs to be decreased. Otherwise, special modeﬁng techniques need to be

introduced to resolve the computational issue (e.g., Tao, Simpson and McCumber, 1989;

Grabowski and Smolarkiewicz 1990; Margolin et al. 1997).
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Figure Captions

Figure 1 The timescale of water vapor condensation varies with pressure (or
temperature). The results with N..= 500 and 3000 um-cm” are displayed with thin and

thick lines, respectively.

Figure 2 Schematic on the diagnosis of temperature from the moist entropy and the total

mixing ratio of airborne water.

Figure 3 Change in output variables with height while two sets of prognostic variables
are used. Thin solid lines display the variables from the model with A=0.1 s and the first
 set of prognostic variables (7, gy, g.); thin dashed lines display those from the model with
Ar=3 s and the first set of prognostic variables (7, g, ¢c); and thick dashed lines display -
£hose from the model with A=10 s and the second set of prognostic variables. Thin solid

lines coincide with thick dashed lines.

Figure 4 Variables at =10 minutes vary with height when the first set of prognostic
variables (7, ¢y, g.) and an upstream scheme are used. Dashed thick lines display
analytical results. Solid and dashed thin lines display the variables from the model with

Ar=0.1 and 3 s, respectively.
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Figure 5 the same as Figure 4 except for Ar=10 s and the second set of prognostic
variables (s, ¢:). Solid and dashed thin lines display the variables from the model with an

upstream scheme and the Smolarkiewicz scheme, respectively.

Figure 6 Magnitudes of the microphysical timescales scaling temperature adjustment.

Figure 7 Change in output variables with height while two sets of prognostic variables
are used. Thin solid lines display the variables from the model with A7=0.1 s and the first
set of prognostic variables (or T and others); and thick dashed lines display those from

the model with A=10 s and the second set of prognostic variables (or s and others).
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Figure 1 The timescale of water vapor condensation varies with pressure (or

temperature). The results with N#= 500 and 3000 um-cm™ are displayed with thin and

thick lines, respectively.
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|Given s, g,, g; and p|

[Compute 7, and gvsw |

l QV—_‘stw? | | qv=qr-qi q:,':O ]

[ 7 from Eq. (3.9) |——>

Out

Compute 7} and g; |

Yes qc=0* =1, |
9:=q; 4v=4:qi

No T=-40°C, ¢v=qusw
gi from (3.9), gc=¢:-4+~q:

Figure 2 Schematic on the diagnosis of temperature from the moist entropy and the total

mixing ratio of airborne water.
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Figure 3 Change in output variables with height while two sets of prognostic variables
are used. Thin solid lines display the variables from the model with A=0.1 s and the first -
set of prognostic variables (T, g, gc); thin dashed lines display those from the model with
Ar=3 s and the first set of prognostic variables (7, g, g.); and thick dashed lines display
those from the rﬁodel with A=10 s and the second set of prognostic variables. Thin solid

lines coincide with thick dashed lines.
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Figure 4 Variables at =10 minutes vary with height when the first set of prognostic
variables (T, g,, g.) and an upstream scheme are used. Dashed thick lines display
analytical results. Solid and dashed thin lines display the variables from the model with

Ar=0.1 and 3 s, respectively.
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Figure 5 the same as Figure 4 except for A=10 s and the second set of prognostic
variables (s, g;). Solid and dashed thin lines display the variables from the model with an

upstream scheme and the Smolarkiewicz scheme, respectively.
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Figure 6 Magnitudes of the microphysical timescales scaling temperature adjustment.
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Figure 7 Change in output variables with height while two sets of prognostic variables
are used. Thin solid lines display the variables from the model with Ar=0.1 s and the first
set of prognostic variables (or 7 and others); and thick dashed lines display those from

the model with A=10 s and the second set of prognostic variables (or s and others).
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