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Popular Summary 

With the continuous increase in computational power, cloud-resolving models will 
increase their domain size in the near hture so that both clouds and large-scale 
circulations are simulated explicitly, addressing the role of ,clouds in weather and climate 
change. If a cloud model is coded in full modularization, scientists with various majors 
can develop or use the model for their research in parallel. Previous studies suggested 
that moist entropy be used as a prognostic variable for the separation (or modularization) 
of dynamics and thermodynamics. The present study shows how to tune prognostic 
variables for the separation (or modularization) of cloud microphysics and 
thermodynamics. 

In this paper, microphysical timescales in clouds are surveyed in contrast to the time 
step for model integration, suggesting that moist entropy and total mixing ratio of 
airborne water without the contribution of precipitating particles be used as prognostic 
variables for the separation of cloud microphysics, thermodynamics and dynamics. 
Numerical simulations with these prognostic variables are compared with analytical 
solutions as well as simulations with conventional prognostic variables and shown to be 
efficient for modeling. The simulations also show that this method removes the prevalent 
computational phenomenon of spurious supersaturation and negative water in cloud- 
resolving modeling. 
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Abstract 

Independent prognostic variables in cloud-resolving modeling are chosen on the basis 

of the analysis of microphysical timescales in clouds versus a time step for numerical 

integration. Two of them are the moist entropy and the total mixing ratio of airborne 

water with no contributions from precipitating particles. As a result, temperature can be 

diagnosed easily from those prognostic variables, and cloud microphysics be separated 

(or modularized) from moist thermodynamics. Numerical comparison experiments show 

that those prognostic variables can work well while a large time step (e.g., 10 s) is used 

for numerical integration. 
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With the continuous increase in computational power, cloud-resolving models will be 

extended to explicitly simulate clouds and synoptic large-scale circulations for their 

interaction in the near future. Since cloud microphysics is highly coupled with other 

processes, it is better for the models to represent properly not only individual clouds 

systems and large-scale circulations, but also cloud microphysics. Deep cumulus clouds 

in the Tropics act as an engine for the atmosphere, driving large-scale vertical 

circulations through convective heating (Riehl and Malhs  195 8). Since the convective 

heating originates in the change of water phases on micro-scales, the “efficiency” of the 

engine is related to cloud microphysics (e.g., Simpson et al. 1988; Tao and Adler 2003a). 

On the other hand, small particles in clouds absorb and emit radiation that changes the 

atmospheric energy budget and in turn large-scale circulations (e.g., Albrecht and Cox 

1975; Baker 1997). As a result, they are coupled with large-scale circulations (e.g., 

Raymond 2000; Raymond and Zeng 2000). Hence, it is interesting to represent cloud 

microphysics properly in long-term cloud-resolving modeling. 

Cloud-resolving models consist of many parts: dynamics, moist thermodynamics, 

cloud microphysics, atmospheric radiation and the energy exchange between air and its 

underlying surface (e.g., Klemp and Wilhelmson 1978; Grabowski 1989; Tao and 

Simpson 1993; Tompkins and Craig 1998; Cotton et al. 2003; Tao et al. 2003b). They are 

becoming more and more complicated for various applications. Code modularization 

provides a suitable framework for a model to accommodate many parts so that different 

scientists can test or develop a part (e.g., cloud microphysics) on parallel. Ooyama (1990, 

2 



2001) first proposed the separation (or modularization) of dynamics and moist 

thermodynamics by choosing suitable prognostic variables. He suggested moist entropy 

and the mixing ratio of water substance be used as prognostic variables and temperature 

be diagnosed from those and other prognostic variables. He constructed a two- 

dimensional model for warm clouds to show the possibility of his proposal (Ooyama 

2001). Moving in the same direction, the present paper proposes the separation (or 

modularization) of cloud microphysics and moist thermodynamics by tuning prognostic 

variables, especially for the modeling of cold clouds. 

Moist entropy (or entropy-like variables), as other threads, was used as a prognostic 

variable in cloud modeling for other purposes. Tripoli and Cotton (1981, 1982) first used 

an entropy-llke variable (or ice-liquid water potential temperature) as a prognostic 

variable in modeling to avoid a computational pheiiomenofi or the negative mixing ratio 

of cloud water. Raymond and Blyth (1986) used moist entropy and the mixing ratio of 

airborne water (water vapor and cloud water) as prognostic variables in a parcel model to 

study cloud mixing. Zeng (2001) used moist entropy as a prognostic variable in a three- 

dimensional model for the ensemble simulation of warm clouds. Zeng et al. (2005) 

derived a precise equation for moist entropy so that moist entropy can work as a 

prognostic variable in cold-cloud modeling. The present paper, on the basis of the 

analysis of microphysical timescales in clouds, tunes prognostic variables for the 

separation of cloud microphysics and moist thermodynamics as follows: the contributor 

to moist entropy is changed from water substance (Tripoli and Cotton 1982; Ooyama 

1990, 2001) to airborne water (or water substance except for precipitating water) and the 

use of moist entropy as a prognostic variable is extended from the simulation of warm 
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clouds (Raymond and Blyth 1986; Ooyama 1990,2001; Zeng 2001) to the simulation of 

cold clouds. 

Two issues need to be cleaned before moist entropy is used as a prognostic variable to 

simulate cold clouds. One issue is on the entropy budget equation (Tripoli and Cotton 

1981; Ooyama 1990) that involves the irreversible generation of moist entropy. Zeng et 

al. (2005) derived an accurate entropy equation from the energy equation, expressing 

explicitly the irreversible generation of moist entropy due to cloud microphysics. 

The other issue is on the benefit for the use of moist entropy as a prognostic variable. 

Ooyama (1990, 2001) chose moist entropy as a prognostic variable for the simulation of 

warm clouds since it is conservative. However, moist entropy is not conservative in cold 

clouds because ice usually brings about the irreversible generation of moist entropy (e.g., 

Zeng et al., 2005). Thus, the benefit should be specifically explored before moist entropy 

is used as a prognostic variable in the simulation of cold clouds. 

The present paper addresses the latter issue as follows. Section 2, with the aid of a 

simple example, illustrates a computational phenomenon of cloud microphysics in cloud- 

resolving modeling, proposing a strategy for code modularization of cloud microphysics. 

Section 3 compares the timescale for water vapor condensation with a time step in a non- 

precipitating parcel model for warm clouds, showing how the use of moist entropy as a 

prognostic variable benefits the separation (or modularization) of cloud microphysics and 

moist thermodynamics. Section 4 introduces a parcel model for cold clouds in terms of 

microphysical timescales and analyzes- numerical results from the mode€, showing that 

moist entropy can work well as a prognostic variable in cold-cloud modeling. Section 5 
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gives a summary. Except for special illustrations, the paper follows the symbol 

definitions in Appendix A. 

2. Code moddarkation of cloud microphysics 

If all prognostic variables in a model are independent and they are integrated 

explicitly, code can be modularized fully. Using a simple example, this section illustrates 

a strategy for the modularization of cloud microphysics in cloud-resolving modeling. 

Many cloud microphysical processes can be described with a simple equation that 

looks like (see sections 3 and 4 for details) 

where the variable 4 is a function of time t and the characteristic timescale z is constant. 

Suppose that el at PO. Thus, Equation (2.1) is solved analftically with $ = exp(-t /z) . 

Although the preceding equation is very simple and its numerical schemes have been 

discussed in some textbooks, a brief survey is given here on its numerical schemes for a 

quick reference. Suppose that Equation (2.1) is discretized as 

4”” = $” -$“At/. (2.2) 

for explicit integration, where superscripts indicate time level and At is the time step for 

integration. Equation (2.2) is solved with $” = (1 - At/.)” . Obviously, the numerical 

solution of (2.2) is close to the analytical solution of (2.1) when 

At cz. (2.3) 

Otherwise, the value of $? blows up or oscillates spuriously around zero. The preceding 

stability criterion can be applied to the modeling of cloud microphysics (Khvorostyanov 

and Sassen 1998). 
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Alternatively, Equation (2.1) can be discretized as 

$"+I = 4'' - $"+'At/Z, 

for implicit integration, which is solved with $" = (1 + A t / z ) - " .  Obviously, the numerical 

scheme in (2.4) is always stable, even when the time step is larger than the characteristic 

timescale. 

Different from the preceding explicit and implicit schemes, the analytical solution of 

(2.1) can be approximated with 

qy+' = 0 (2.5) 

when the time step is larger than the characteristic timescale. In other words, Equation 

(2.1) degenerates fiom a prognostic equation into a diagnostic one. 

In view of the numerical schemes in (2.2), (2.4) and (2.5) for the equation (2.1), it is 

reasonably inferred that cloud microphysics can be modularized fully when all 

independent prognostic equations for cloud microphysics take the similar numerical 

schemes as those in (2.2) or (2.5). That is, the explicit scheme in (2.2) or the 

approximation in (2.5) is used when the timescale of a process is larger or smaller than a 

given time step, respectively. Such strategy is taken in the following two sections for the 

modularization of cloud microphysics. 

3. Choice of prognostic variables for warm-cloud modeling 

This section compares two sets of prognostic variables for the modeling of non- 

precipitating warm clouds, showing the benefit for the use of moist entropy as a 

prognostic variable. To distinguish the two sets of prognostic variables clearly, it starts at 

the introduction of zero supersaturation approximation. 
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a. Two sets ofprognostic variables 

Consider an air parcel with monodisperse cloud droplets, as an example, where only 

cloud droplets evaporate or water vapor condenses on them. The concentration and the 

radius of droplets in the parcel are denoted with N, and r,, respectively. Thus, the mixing 

ratio of cloud water 

4 N,  3 qc =-zp,--r,. 
3 P 

The growth rate of a droplet due to water vapor condensation is expressed as (e.g., 

Pruppacher and Klett 1997) 

(3.2) 

where. q. is the mixing ratio of water vapor, qvm the saturation mixing ratio of water 

vapor over water and 

A, = (p,,L: f K,R,T2 + p,R,T/ EWD,,)-'. (3.3) 

Differentiating (3.1) with respect to time, and then substituting (3.2) into the resulting 

equation yields 

Assume that the parcel is adiabatic and stationary (or zero vertical velocity). Thus, the 

energy equation is written approximately as 

c,-=-L,- dT dqv 
dt dt 

Substituting (3.4) into (3.5) yields 

(3-5) 
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d(qv - q l J w )  = -4np ,/4,rc -(1+ NC qvsL2, ) 4, - 4vw 
dt P RvCpT’ 4,w 

with the aid of the Clausius-Clapeyron equation 

(3.6) 

The analogy between Equations (3.6) and (2.1) shows the timescale for water vapor 

condensation (or cloud water evaporation) 

Z = ( 1 +  q,,L2, >-1 P qvsw 

R,CpT2 4npwA,Ncrc 

which is consistent with that of Squires (1952), Politovich and Cooper (1988) and 

Korolev and Mazin (2003). 

Figure 1 exhibits the timescale versus height, where the air density is approximated 

with that of a static atmosphere whose surface pressure is 1013.25 hpa and temperature 

decreases linearly with height from 288 at z=O to 216.5 K at z-11 km. The thin and thick 

lines in the figure display the timescale against height when Ncrc=500 and 3000 p m - ~ m - ~ ,  

respectively. As noticed in the figure, the timescale for continental air is around 1 second 

and that for marine air is around 5 seconds. 

I f  T, q,, and qc are used as prognostic variables to integrate Equations (3.4), (3.5) and 

(3.6), the time step for explicit integration must be smaller than the timescale 5 just as 

shown in section 2. Thus, the time step is very small since the timescale may be 1 second 

or less. 

Alternatively, if moist entropy and the mixing ratio of airborne water are used as 

prognostic variables, the time step is not limited by the timescale, which is discussed 

next. The moist entropy per unit mass of dry air is defined as the sum of entropies for 
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such constituents as dry air, water vapor, cloud water and ice. It is equivalently expressed 

as (Zeng et al. 2005) 

where relative humidity ee/E,,;  T,.g = 273.15 K and prey = lo5 pa are the reference 

temperature and pressure, respectively; the total mixing ratio of airborne water (water 

vapor, cloud water and ice) is 

4t = 4, + 4, + 4i ; 

and the supersaturation of water vapor sw is 

When s, qt and s, are used as prognostic variables, their governing equations are 

-=-= ds 4, 0 
dt dt 

(3.10) 

(3.11) 

(3112) 

(3.13) 

Since the timescale z measures the adjustment of sw to zero and its value is small, the 

approximation of zero supersaturation sw=O, just like Equatiop (2.5), is introduced while 

water changes phase. As a result, three prognostic variables s, qt and sw are decreased to 

two prognostic ones (i.e., s and qt), and the time step for explicit integration’ is not 

limited by the small timescale z. 

If the evolution of real supersaturation is interested (e.g., Khvorostyanov and Sassen 1998), 

s,,,=O can’t be introduced. Tlius, all of s, qr and s,. are used as prognostic variables. As a result, the 

1 

time step for explicit integration is limited by z. However, this topic is beyond the present paper. 
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Summarily, when (T, q,, qc) are used as independent prognostic variables, real 

Supersaturation is explicitly simulated and the time step for explicit integration is limited 

by the small timescale2. When (s, qt) are used as independent prognostic variables and the 

approximation of zero supersaturation is introduced, the time step is not limited by the 

small timescale. Meanwhile, no real supersaturation is simulated well. 

The approximation of zero supersaturation is supported by observations. Real 

supersaturation in clouds is usually calculated with observational data of temperature, 

vertical velocity and cloud droplets, since it can not be measured directly. It is found that 

real supersaturation in cumulus clouds is in the range from -0.5 to 0.5% and rarely 

exceeds 1% (Politovich and Cooper 1988). 

b. Diagnosing temperature from moist entropy 

When s and qt are used as prognostic variables, temperature is diagnosed from them: 

The diagnosis procedure is summarized in the flow chart in Figure 2. For the sake of 

completeness, the diagnosis part for cold clouds is also presented in the figure for the 

further discussion in section 4. 

If (T, qy, qc) are used as prognostic variables to simulate a system with a constraint (or zero 

supersaturation), the timescale of cloud water evaporation does not limit the time step for explicit 

integration, since it does not exist in the system. However, the three prognostic variables are not 

independent. They are one more than necessary. As B result, numerical integration may violate 

the constraint, bringing about computational phenomena. Thus, special technologies (e.g. , 

Grabowski and Smolarkiewicz 1990; Margolin et al. 1997) are needed to remove the 

computational phenomena. 

2 
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Consider a hypothetical parcel with s the moist entropy, p the pressure and qi the 

mixing ratio of cloud ice. The parcel stays right at water-saturation and contains no cloud 

water. Its temperature is denoted as T,* and its saturation mixing ratio of water vapor as 

(3.14) 

Using the preceding equation, Equation (3.9) is solved for T,* with the Newton iterative 

method first. Then, qvsw* is determined by (3.14). 

Since the moist entropy and the mixing ratio of airborne water are conserved when 

water vapor condensates or cloud drops evaporate, qvsw* for the hypothetical parcel is 

compared with qt-qj for the original parcel, judging whether the original parcel is 

saturated with respect to water or not. If qt-ql<qvxw*, the air is unsaturated with respect to 

water. Thus q,=O, q,,=qt-qj, and Equation (3.9) is solved for the air temperature T with the 

Newton iterative method. If qrqiZq,,*, the air is saturated with respect to water. Thus 

qv=qvsW*, FT,* and qc'qt-qv-qj. Once ice is involved, next is to judge whether cloud 

water freezes due to homogeneous ice nucleation (see section 4.a for more discussion). 

c. Result comparison in a parcel model 

This subsection analyzes numerical results from a parcel model with two sets of 

prognostic variables. Consider an air parcel in adiabatic upward motion. Its governing 

equations are written as follows with one set of prognostic variables (T, q,, qc) 

(3.15) 

(3.16) 
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- dP -pgw 
dt 

(3.17) 

and 

qvs,L’, )-1 4, -4v .w dqv -(l+ -= 
z dt R,C,T’ 

(3.18) 

when qv>q,, or qc>O. Otherwise, dqJdt=O. 

Of the preceding equations, Equation (3.17) is obtained from the hydrostatic equation, 

and (3.18) is obtained from (3.4) and (3.8). As shown in (3.8), the timescale zchanges 

with time. Its variation can be represented in spectral-bin models that explicitly simulate 

the spectrum of cloud drops (e.g., Khvorostyanov and Sassen 1998; Tao et aE. 2003b). 

For simplicity, a constant timescale z=1 s is used in (3.18) so as to bring computational 

phenomena into focus. 

The governing equations for the parcel can be expressed with the other set of 

prognostic variables (s, qt). They are (3.12) and (3.17), corresponding to those with the 

first set of variables. The parcel model takes the same numerical schemes as that in 

Equation (2.2). 

Suppose that the air parcel moves upward with a vertical velocity of w=4 rn/s as well 

as an initial pressure 1000 hpa, relative humidity of 85% and temperature of 300 K. 

Numerical results from the model are displayed in Figure 3. The results fkom the model 

with AtzO.1 s and the first set of prognostic variables are displayed with thin solid lines. 

These results can be regarded as a benchmark to check the results in other experiments. 

The results from the model with b e 3  s and the first set of prognostic variables are 

displayed with thin dashed lines in Figure 3. As shown in the figure, the results are bad 

compared to those with AFO. 1 s. Both spurious supersaturation and negative mixing ratio 
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of cloud water are present. When At-10 s is used, the model blows up due to 

computational instability. The results from the model with At-10 s and the second set of 

prognostic variables are displayed with thick dashed lines in Figure 3. As shown in the 

figure, the results agree well with those of the model with At=O.l s and the first set of 

prognostic variables, and neither spurious supersaturation nor negative mixing ratio of 

cloud water is present. These numerical experiments clearly show that, if all prognostic 

variables are independent, moist entropy and the total mixing ratio of airborne water 

work more efficiently than temperature and the mixing ratios of water vapor and cloud 

water as prognostic variables in cloud-resolving modeling. 

d. Result comparison in a one-dimensional model 

This subsection analyzes numerical results from a one-ckmensional model with two 

sets of prognostic variables, showing computational phenomena of a short timescale in a 

spatial model. Consider an idealized case in a one-dimensional space (Grabowski and 

Smolarkiewicz 1990). Air moves upward at a constant vertical velocity of 4 d s .  At the 

surface F O ,  p=1013.25 hpa, T=288 K, f-30% and qc=O. Initially, relative humidity is 

30% except for 100% between z=1 and 2 km; temperature decreases linearly with height 

from 288 at EO to 216.5 K at z=11 km; and no liquid water exists. 

When one set of prognostic variables (T, q,, qc) is used, the governing equations 

corresponding to (3.1 S ) ,  (3.16) and (3.18) are 

(3.19) 

(3.20) 
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where the terms on the iight hand side equal zeros while q,,qvSw and qc<O. The timescale 

~1 s is set for simplicity. 

When the other set of prognostic variables (s, ql) is used, the governing equations are 

obtained from (3.12), or 

as as 

at az 
-+w-=o (3.22) 

(3.23) 

In all numerical experiments in. this subsection, the uniform vertical grid size A.2~200 

m is used. A traditional upstream scheme (e.g., Smolarkiewicz 1983) is applied to 

Equations (3.19)-(3.21). Following an air parcel in the model, it is easy to notice such 

computational phenomena as spurious supersaturation and negative mixing ratio of cloud 

water, just as shown in Figure 3, when a large time step (e.g., 3 seconds) is used (figure 

omitted). The spatial distribution of variables at ~ 1 0  minutes from the model is 

displayed in Figure 4, where solid and dashed thin lines show numerical results versus 

height when the time step Atp0.l and 3 s, respectively. Thick dashed lines show the 

corresponding analytical solution from (3.22) and (3.23) for comparison. As shown in the 

figure, the results with a small time step are close to the analytical ones, and the results 

with a large time step are bad. 

The same traditional upstream scheme is applied to (3.22) and (3.23), and the 

numerical results at t=10 minutes fiom the model are shown in Figure 5, where thin solid 

lines show variables versus height when the time step At=lO s. As shown in the figure, 
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neither negative mixing ratio of cloud water nor spurious supersaturation is present, and 

the results are very close to those with Atr0.l s and the first set of prognostic variables in 

Figure 4. The difference between the numerical and the analytical results comes mainly 

from computational diffusion of the traditional upstream scheme, which is supported by 

the next experiment. The positive definite scheme of Smolarkiewicz (1983) has little 

computational diffusion in contrast to the traditional upstream scheme. It is applied to 

(3.22) and (3.23) with B e l 0  s. Its results are shown with thin dashed lines in the figure, 

showing that the numerical results are improved obviously. In brief, the numerical results 

in Figures 4 and 5 indicate that moist entropy can work well as a prognostic variable in a 

spatial model. 

4. Microphysical timescales in cold-cloud modeling 

This section addresses the modeling of cold clouds with moist entropy as a prognostic 

variable, and proposes introducing microphysical timescales as intermediate variables for 

the separation (or modularization) of cloud microphysics and moist thermodynamics. The 

section first compares the magnitudes of microphysical timescales with a time step (e.g., 

10 s) for the choice of prognostic variables. Then, it introduces a parcel model for cold 

clouds expressed in terns of microphysical timescales. Finally, it analyzes numerical 

results from the model with two sets of prognostic variables, showing that moist entropy 

can work well as a prognostic variable in cold-cloud modeling. 

a. Magnitudes of microphysical timescales 
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Air adjusts to saturation through vapor condensation, deposition, water evaporation 

or ice sublimation. Air temperature approaches 0°C through ice fusion or water freezing. 

Those processes are described by equations like (2.1) with two hnds of microphysical 

timescales. The first kind of timescales measures the adjustment to saturation. Of the 

timescales, the timescale for cloud water evaporation (or water vapor condensation) was 

discussed by Squires (1952), Politovich and Cooper (1988) and Korolev and hlazin 

(2003). Its expression is shown in (3.8). Its magnitude, as shown in Figure 6, is usually 

less than 10 seconds. The timescale for cloud ice sublimation (or water vapor deposition 

on cloud ice particles) was discussed by Khvorostyanov and Sassen (1998) and Korolev 

and Mazin (2003). Its expression is the same as that in (3.8) except that corresponding 

variables (e.g., a shape factor) are used. Its magnitude is larger than 10 seconds. The 

timescale for rainwater evaporation has the same expression as that in (3.8) except that 

corresponding variables are replaced and ventilation factors are introduced. With 

observational data (e.g., Pruppacher and Klett 1997), the timescale is estimated to be 

larger than 10 seconds. Similarly, the timescale for precipitating ice sublimation (or water 

vapor deposition on precipitating ice particles) is estimated to be larger than 10 seconds. 

The second kind of timescales measures the adjustment of temperature to 0°C. The 

timescales are analyzed in Appendix B. Of them, the timescale for cloud ice fusion and 

that for precipitating ice fusion (or rainwater freezing) are much larger than 10 seconds. 

Since the timescale for cloud water freezing strongly depends upon the concentration of 

the cloud droplets with ice embryos, it may be less,than 10 seconds when ice nucleus 

concentration is very high. For example, when temperature is lower than -40°C, all cloud 
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drops freeze due to homogeneous nucleation. As a result, the timescale for water cloud 

freezing due to homogeneous nucleation is less than 10 seconds. 

Figure 6 summarizes magnitudes of the microphysical timescales scaling temperature 

adjustment. With the figure, prognostic variables can be chosen for the full 

modularization of cloud microphysics while a time step is given. If a time step is less 

than 0.1 second, (T, q,, qc) besides others can work as independent prognostic variables 

for the full modularization. However, if a time step is much larger than 10 seconds, it is 

difficult to choose independent prognostic variables for the full rnodularization of cloud 

microphysics. 

If a time step is around 10 s or less, (s, qt) besides others can work'as independent 

prognostic variables for the full modularization of cloud microphysics and moist 

thermodynamics, where s and qt exclude contributions from precipitating particles3. Iri 

this case, temperature is diagnosed from (s, qt) with the procedure in Figure 2. Just as 

shown in section 3.b, temperature is diagnosed when s, qt, qz and p are given. If T<-40°C 

and qc>O, cloud water freezes due to homogeneous nucleation. Assume that all cloud 

water freezes. Then, the air temperature Ti* and the mixing ratio of cloud ice 4; are 

determined. If T,*s-4OoC, the assumption is right that all cloud water freezes. Thus q,=O, 

T=T,*, qz=q' and qv=qt-qi. If T;>-40°C, the assumption is wrong. Only a part of cloud 

When s arid qr include contributions from precipitating particles. and they are used as prognostic 

variables (Tripoli and Cotton 1981, 1982; Ooyama 1990, 2001), temperature is diagnosed with 

the procedure in Figure C-1 of Tripoli and Cotton (1982). Thus, special technologies are needed 

to separate (or modularize) cloud microphysics and moist thermodynamics. 
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water fkeezes. Therefore, T=-40°C, qv=qvsw, qi is obtained easily from Equation (3.9), and 

b. Microphysical processes expressed in terms of nzicrophysical timescales 

Cloud microphysics is very complicated. Some microphysical variables such as the 

concentration of ice particles vary in orders and some processes, such as ice nucleation 

and ice particle multiplication, are still unclear (e.g., Pruppacher and Klett 1997). Thus, it 

is interesting to confine the uncertainty of microphysics parameterization to a possible 

narrow extent. Microphysical timescales are important parameters in connecting cloud 

microphysics, moist thermodynamics and dynamics. If they are introduced to express 

microphysical processes, their values in modeling can be compared with those calculated 

from observational data as a test of cloud microphysics parameterization. Moreover, their 

values can be compared with the time step for integration to avoid such computational 

phenomenon as that in section 2. Therefore, microphysical timescales are suggested be 

used as intermediate variables in modeling. 

This subsection presents a parcel model for cold clouds in terms of microphysical 

timescales, using two sets of prognostic variables, where precipitating particles move 

with the parcel. When one set of prognostic variables (T, p ,  qyy qc, q,, qi, qs, qg ) is used, 

the changes of water species are described as 

-- dqc - -E - Fi - C, - C, - C ,  - C,, 
dt 

-- d q r  - - E ~  - F, - F~ + C, + c,, - crSF + cir - cirNrS - CrsNrg 
dt 

(4. la) 

(4. lb) 

(4.1 c) 
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-= dqi -si + Fi - c, - cis - c, 
dt 

(4. Id) 

(4.1 e) 

where the symbols E, S, F and C indicate source terms due to evaporation, sublimation, 

fusion and collision, respectively. 

The source terms in (4.1) are expressed next in terms of the microphysical timescales 

in Appendix C. Cloud water evaporation or water vapor condensation is described as 

E ,  = k v s w  - 4 J z c  (4.2a) 

when q,,>q,, or qc>O. Otherwise, E,=O. Rainwater evaporation, cloud ice sublimation, 

snow sublimation and graupel sublimation are described as I 

Er ( 4 v s w  - 4 ,  )/.r (4.2b) 

S; = (4vsi  - q v ) / r i  (4 .2~)  

ss = (4mi - q,)/zs (4.2d) 

(4.2e) sg = h v s i  - 4,) / tg  , 

respectively, with the similar conditions for (4.2a). 

With reference to Equations (B3) and (B4), the conversion of cloud water to ice is 

described as 

(4.3a) 

where zci measures the timescale for cloud ice fusion when D T 0  and cloud water freezing 

when T<T,. The timescale for cloud water freezing due to homogeneous nucleation 

d h )  CI =2 s is set when air temperature is less than -40°C. The third term on the right hand 
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side of (4.3a) represents the collection of cloud water by cloud ice. The fusion of snow 

and graupel (or rainwater freezing) are described as 

respectively. 

The conversion of cloud water to rainwater due to collision is described as 

(4.3b) 

(4.3c) 

where the two terms on the right hand side represent the collection of cloud water by 

rainwater and cloud water autoconversion, respectively. The conversion of cloud ice to 

snow due to aggregation, deposition and riming is described as 

where the fust term on the right hand side represents the collection of cloud ice by snow, 

and the second and the third terms represent the conversion of cloud ice to snow due to 

vapor deposition and the collection of cloud water, respectively. 

When graupel particles collect cloud drops, a part of water freezes around the particles 

and the other part sheds off the particles as raindrops when T<O”C. Thus, the conversion 

of cloud water to graupel is described as 

(4.6a) 
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where the first term in the brackets represents all cloud water collected by graupel and the 

second term represents a.part of cloud water that keezes. The other part of cloud water 

that sheds off graupel as rainwater is described as 

(4.6b) 

The preceding equation is also suitable for the shedding of accreted water when T20"C. 

Similarly, the conversion of rainwater to graupel due to the collection of rainwater by 

graupel is described as 

Owing to the coUection of cloud water by snow, the conversion of cloud water to 

snow is described as 

4c4, 
*csc 

ccs = - , 

and the conversion of snow to graupel as 

(4.8a) 

(4.8b) 

Due to the collection of cloud ice by rainwater, cloud ice is converted to rainwater 

with the rate 

and rainwater is converted to graupel with the rate 

(4.9a) 
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Exactly speakmg, the real rate for the conversion of rainwater to graupel is C i r N r g - C i r  

when air temperature is below 0°C. 

The conversions of snow and rainwater to graupel due to the collection of snow by 

rainwater are described as 

(4.10a) 

(4.10b) 

respectively. The conversions of cloud ice and snow to graupel due to the collection of 

cloud ice and snow by graupel are described as 

4 i 4 g  c. =- 
r i g ,  

‘g (4.1 la) 

(4.1 lb) 

respectively. 

Equations (4.2)-(4.11) express microphysical processes in terms of microphysical 

timescales. They. are equivalent to the current schemes for cloud microphysics 

parameterization (e.g., Lin et al. 1983; Rutledge and Hobbs 1984; Tao et al. 1993; Ferrier 

1994; Fenier et al. 1995) when the timescales take corresponding expressions. Next, a set 

of microphysical timescales in Table 1 is taken simply for a numerical test of prognostic 

variables. 
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Table 1 Microphysical Timescales in a Parcel Model 

c. Two sets ofprognostic variables for cold clouds 

equations for the parcel are Equation (4.1) for mixing ratios, (3.17) for pressure and the 

following energy equation for temperature 

J (4.12) 

(4.13a) 

equations for the parcel are the same as those for the first set of prognostic variables 
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except for those for qt and s. The equation for qt the mixing ratio of airborne water is 

obtained from Equations (4.1a), (4.lb) and (4.1d), or 

(4.14) 

The equation for moist entropy is obtained from the energy equation (Zeng et al. 2005), 

or 

+R,(E;-s~-c~,)I~E"-R,(E, +S, +si-~,>lnf 

T cp + c,,q* 

'si 

cIq, + c,(qs + 4,) LfFt - L,E, - L,(S, + Si - F,) - R,TA; - 

when air is unsaturated with respect to water and 

when air is saturated with respect to water, where 

s, = s, + s, 

(4.15a) 

(4.15b) 

(4.16a) 

c, = cis + ci, + c, (4.16~) 

(4.16d) 

Just as done in section 3.c, numerical results fiom the parcel model are compared 

when two sets of prognostic variables are used, reaching the same conclusion as that in 

section 3.c. The parcel model takes the same numerical scheme as that in (2.2). Suppose 
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that the air parcel moves upward with a vertical velocity of w=4 m / s  as well as an initial 

pressure 1000 hpa, relative humidity of 60% and temperature of 300 K. Numerical results 

from the model with the two sets of prognostic variables are displayed in Figure 7. In the 

figure, thin solid lines display the results from the model with At=O. 1 s and the frst  set of 

prognostic variables, and thick dashed lines display the results from the model with 

A p l O  s and the second set of prognostic variables. As shown in the figure, the results 

with the two sets of prognostic variables agree well, showing that the moist entropy can 

work well as a prognostic variable in the modeling of cold clouds. 

5. Summary 

Cloud microphysics is very complicated. Its many variables (e.g, the concentrations of 

ice nuclei and particles) vary in orders, and some processes (e.g., ice particle 

multiplication) are still unclear (e.g., Pruppacher and Klett 1997). Thus, a proper 

parameterization scheme for cloud microphysics possesses not only complicated 

formulas but also uncertain factors. To confine the uncertainty of cloud microphysics 

parameterization to a possible narrow extent and limit the computational feedback 

between cloud microphysics and dynamics, the paper suggests that microphysical 

timescales be introduced in cloud-resolving models as intermediate variables. 

Microphysical timescales are important parameters in connecting cloud microphysics, 

thermodynamics and dynamics. They are determined by microphysical variables4. Thus, 

For the brevity of model formdation, microphysical timescales are defined in the present paper 4 

as functions of microphysical variables such as those in Eqs. (3.8) and (B2), measuring the 

adjustments to saturation and 0°C as well as the conversion between hydrometeor species due to 
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the issue of cloud microphysics parameterization is how to formulate them for cloud- 

resolving modeling. If the timescales are introduced as intermediate variables, they can 

benefit the modeling of cloud microphysics. Their values in modeling can be compared 

with those calculated with observational data as a test of microphysics parameterization, 

especially for a specific cloud. Moreover, their values in modeling can be compared with 

the time step for numerical integration, judging whether microphysical processes are 

represented properly in the discretization of differential equations. 

Magnitudes of the microphysical timescales scaling temperature adjustment, on the 

basis of previous work (Squires 1952; Politovich and Cooper 1988; Khvorostyanov and 

Sassen 1998; Korolev and Mazin 2003) and Appendix By are surveyed against a time step 

in the present paper. Of all timescales analyzed, the timescale for cloud water evaporation 

and that for cloud water freezing due to homogeneous nucleation are around 1 second. 

Others are.longer than 10 seconds. As a special case, when plenty of artificial ice nuclei 

are introduced in clouds suddenly, the timescale for water freezing may approach one 

second. 

Independent microphysical prognostic variables are suggested be used for the 

modularization of cloud microphysics. On the basis of the magnitudes of microphysical 

timescales, moist entropy is proposed .be used as a prognostic variable in place of 

temperature, and temperature is diagnosed from moist entropy and other prognostic 

collision, respectively. As a contrast, a complex timescale for phase relaxation ( e g ,  

Khvorostyanov and Sassen 1998; Korolev and Mazin 2003) can be introduced to measure the 

approach to saturation in a parcel model. It depends on not only microphysical but also dynamic 

variables. 
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variables. Different from that used in other similar models (Tripoli and Cotton 1981; 

Ooyama 1990), the moist entropy proposed here has no contributions from precipitating 

particles for easy diagnosis of temperature and full modularization of cloud microphysics. 

Air parcels in adiabatic upward motion are simulated with two sets of independent 

prognostic variables, showing the benefit of using moist entropy as a prognostic variable. 

The first set of prognostic variables is (T, q,, qc), involving no assumption of zero 

supersaturation. When the time step is small (e.g., less than 1 s), numerical results are 

reasonable. When the time step is large (e.g., larger than 2 s), numerical results are 

overwhelmed with great computational errors, exhibiting the phenomena of spurious 

supersaturation and negative mixing ratio of cloud water. The second set of prognostic 

variables is (s, qt), accompanying the assumption of zero supersaturation. When the time 

step is 10 s or around, numerical results agree well with’those using the first set of 

prognostic variables and a very small time step (e.g., 0.1 s). The comparison of the two 

sets of prognostic variables shows clearly that, if prognostic variables are independent, (s, 

qt) work more efficiently than (T, q,, qc) as prognostic variables in cloud-resolving 

modeling. 
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APPENDIX A 

A ,  : defined in (3.3) 

Cdc,v/cl: specific heat of dry aidwater vapor/liquid water 

Ccp : conversion of cloud water to precipitating ice 

C+, : conversion of cloud ice to precipitating ice 

Cc, : conversion of cloud water to rainwater due to collision 

Cis : conversion of cloud ice to snow due to aggregation, deposition and riming 

Ccg&.s : freezing/shedding part in the collection of cloud water by graupel 

C r g ~  : freezing part in the collection of rainwater by graupel 

Ccs : collection of cloud water by snow 

Ccs~sg : conversion of snow to graupel due to the collection of cloud water by snow 

C,, : collection of cloud ice by rainwater 

C,,.N~~ : conversion of rainwater to graupel due to the collection of cloud ice by rainwater 

C,.s~sg : conversion of snow to graupel due to the collection of rainwater by snow 

C,,N,, : conversion of rainwater to graupel due to the collection of rainwater by snow 

Cig/Csg : collection of cloud ice/snow by graupel 

D, : coefficient of water vapor diffusion in air 

e : partial pressure of water vapor 

EJE, : evaporation of cloud water /rainwater 

EsJEs, :'saturation vapor pressure over waterhce' 

f=e/Esw : relative humidity 

F, : conversion of cloud water to cloud ice 
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FJF, : conversion between rainwater and snow/graupel due to fusion or fi-eezing 

Ft : total conversion of rainwater to precipitating ice, see (4.13a) 

g : acceleration due to gravity 

K, : coefficient of air heat conductivity 

LJL,/Lf : latent heat of vaporizatiodsublimatiodfreezing 

Ne/ Ni : concentration of cloud droplets/ cloud ice particles 

p : total pressure of moist air 

preF105 pa : reference pressure 

qvJqvsi : saturation mixing ratio of water vapor over water/ice 

q./qC/qi/qJqs/qg : mixing ratio of water vapor/cloud water/cloud ice/rain/snow/graupel 

qt=qv+qc+qj : total mixing ratio of airborne water 

vc/ /vi/ : radius of cloud droplets/ cloud ice particles 

Rd/Rv : gas constant of dry adwater vapor 

s : moist entropy per unit mass 

sw : supersaturation of water vapor, see (3.11) 

Sj/SJSg : sublimation of cloud ice/snow/graupel 

St : total sublimation of precipitating ice 

t : time 

T : temperature 

T0=273. I5 K : absolute temperature at the melting point 

T,e j  =273.15 K : reference temperature 

w : vertical velocity 

z : height 
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z : timescale 

zc/q/zihs/zg : timescale for the evaporation or sublimation of cloud water/cloud 

ice/r ainw ater/snow/gr aup el 

GNis : timescale for the conversion of cloud ice to snow due to deposition 

Zci/ t , /z ,  : fusion or fieezing timescale for the conversion fi-om cloud water to cloud 

icehainwater to snowhainwater to graupel 

T:,!) : timescale of cloud water freezing due to homogeneous nucleation 

rainwatedcloud water by graupel/rainwater by graupel/cloud water by snow/cloud 

water by cloud ice/cloud ice by snow/cloud ice by rainwater/cloud ice by 

graupel/snow by graupel 

z C r ~  : timescale for the autoconversion of cloud water to rainwater 

ccgF/TrgF : freezing timescale in the collection of cloud waterhainwater by graupel 

Z c s l v s , / z c j ~ s / G ~ ~ * ~ / z s ~ s g / ~ ~ s ~ ~ g  : timescale for the conversion from snow to graupel/cloud ice 

to snowhainwater to graupel/snow to graupelhainwater to graupel due to the 

collection of cloud water by snow/cloud water by cloud ice/cloud ice by 

rainwaterhainwater by snowh-ainwater by snow 

At : time step for numerical integration 

p : air density 

PJpi : density of liquid waterhce 

30 



APPENDIX B 

Timescales for Ice Fusion 

This appendix deals with the timescales for ice fusion or water freezing. Consider an 

air parcel that is adiabatic and stationary (or ~ 0 ) .  Assume for simplicity that particles 

are spherical ice and monodispersely distributed. No liquid water surrounds the ice 

particles. Let the symbols Ni and ri denote the concentration and the radius of ice 

particles, respectively. Since heat is transferred from air to ice particles for ice fusion, air 

temperature is decreased, which is described as 

dT Ni 
dt P 

Cp - -4mi f h K n  -(T -.To). 

Water vapor may condense at the surface of the ice particles. The resulting latent heat is 

balanced by a part of the latent heat of ice melting, withwt changing air temperature 

directly. Thus, no term in the preceding equation expresses directly water vapor 

condensation or water evaporation at the surface of the ice particles. 

As shown in Equation (Bl), air temperatures approaches 0°C with a timescale 

z =  PCP 
4~5KaNiri 

Using the timescale, (B 1) is rewritten for ice fusion as 

With the expression (B2), the timescale for cloud ice fusion is estimated and its 

magnitude is shown in Figure 6. Similar discussions are suitable for the fusion of 

precipitating ice. 
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The expression (B2) is also suitable for the freezing of water when rJlI and rf are 

replaced with the concentration of the cloud drops with ice embryos and the radius of the 

cloud drops, respectively. Obviously, the timescale for ice freezing depends strongly 

upon the concentration of the cloud drops with ice embryos, and ice nucleation processes 

control the latter. Figure 6 displays the possible extent of the timescale for cloud water 

freezing. 

When air temperature is lower than -4O"C, all cloud drops freeze due to homogeneous 

ice nucleation. Thus the timescale in (l32) is small, close to one second. Since the relative 

change of qi is larger than that of (T-To), Equation (Bl) can be rewritten as 

.for the freezing due to homogeneous nucleation, where 

In contrast to the timescale in (B2), the timescale in (B5) measures the decrease of cloud 

water due to homogeneous nucleation freezing. Since dh)  << z , both &h' and z are small 

in magnitude, implying that T and qi change rapidly with time due to homogeneous 

nucleation. Hence, a special numerical technique is needed for efficient modeling (see 

Figure 2 for details). 
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APPENDIX C 

Confines of Microphysical Timescales 

When microphysical timescales are used as intermediate variables in modeling, their 

values can be compared with those calculated fiom observational data, confining the 

uncertainty of cloud microphysics parameterization. Their values can also be compared 

with the time step for explicit integration, avoiding computational instability. This 

appendix deals with the comparison of microphysical timescales against the time step. 

Of all the timescales in Equations (4.1)-(4.1 l), the timescale in (4.2a) for cloud water 

evaporation or water vapor condensation is expressed as 

where Y, is the averaged radius of cloud droplets andfv is a ventilation factor. Obviously, 

z, is different from that in Equation (3.8) by a factor 

With the analysis in sections 2 and 3, the computational criterion for this process is 

written as 

z, > (1+ qVSWLt )At 
R,C,T’ 

Similarly, other timescales z,, q, z, and 5 in (4.2) have the same characteristics as those 

in (C 1)-(C3) except that corresponding variables are replaced. 

The timescale for cloud ice fusion or cloud water freezing zci measures temperature 

adjustment. As shown in Equations (BI) and (B2), the computational criterion for cloud 

ice fusion (or cloud water freezing) is written as 
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zCi > At. (C4) 

Other timescales for fusion or freezing (zrs ,  z,,, Z , ~ F  and z,~F) have the same 

computational criterion. Although the timescale T::) measures the decrease of cloud 

water due to homogeneous nucleation freezing, it has the similar computational criterion 

as (C4), as shown in (B4). 

The timescale zc,c is used to describe the collection of cloud water by rainwater as 

(C5) A=-- dq 4c9, 
dt zcrc 

The computational criterion for explicit integration of (C5) is 

ZcrC ’ %At- (C6) 

Similarly, other timescales for collection growth (e.g., Z,C, zcgc, tcic, %,cy zi,c, G ~ C ,  zsgc 

and zrgc) have the same computational criterion except that corresponding variables are 

replaced. 

Once a computation criterion in (C3), (C4) or (C6) is violated, the time step for 

integration needs to be decreased. Otherwise, special modeling techniques need to be 

introduced to resolve the computational issue (e.g., Tao, Simpson and McCumber, 1989; 

Grabowski and .Smolarkiewicz 1990; Margolin et al. 1997). 
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Figure Captions 

Figure 1 The timescale of water vapor condensation varies with pressure (or 

temperature). The results with NC,= 500 and 3000 pmcm” are displayed with thin and 

thick lines, respectively. 

Figure 2 Schematic on the diagnosis of temperature from the moist entropy and the total 

mixing ratio of airborne water. 

Figure 3 Change in output variables with height while two sets of prognostic variables 

are used. Thin solid lines display the variables from the model with AFO. 1 s and the first 

set of prognostic variables (T,  q,, qc); thin dashed lines display those from the model with 

At=3 s and the frst set of prognostic variables (T, q,, qc); and thick dashed lines display 

those from the model with A ~ 1 0  s and the second set of prognostic variables. Thin solid 

lines coincide with thick dashed lines. 

Figure 4 Variables at e 1 0  minutes vary with height when the first set of prognostic 

variables (T, q,, qc) and an upstream scheme are used. Dashed thick lines display 

analytical results. Solid and dashed thin lines display the variables from the model with 

At=O. 1 and 3 s, respectively. 
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Figure 5 the same as Figure 4 except for A ~ 1 0  s and the second set of prognostic 

variables (s, qt). Solid and dashed thin lines display the variables from the model with an 

upstream scheme and the Smolarkiewicz scheme, respectively 

Figure 6 Magnitudes of the microphysical timescales scaling temperature adjustment. 

Figure 7 Change in output variables with height while two sets of prognostic variables 

are used. Thin solid lines display the variables from the model with APO.1 s and the first 

set of prognostic variables (or T md others); and thick dashed lines display those from 

the model with A e 1 0  s and the second set of prognostic variables (or s and others). 
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Timescale (s) 

Figure 1 The timescale of water vapor condensation varies with pressure (or 

temperature). The results with NJ,= 500 and 3000 ~ m - c r n - ~  are displayed with thm and 

thick lines, respectively. 
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/Given s, qf, qi and p I 

Compute T,, and qvs,v d= 

Compute Ti and qi + out 

Figure 2 Schematic on the diagnosis of temperature from the moist entropy and the total 

mixing ratio of airborne water. 
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Figure 3 Change in output variables with height while two sets of prognostic variables 

are used. Thin solid lines display the variables from the model with At-0.1 s and the first 

set of prognostic variables (T, q,,, qc); thin dashed lines display those fiom the model with 

At=3 s and the first set of prognostic variables (T, q,, qc); and thick dashed lines display 

those fi-om the model with A ~ 1 0  s and the second set of prognostic variables. Thin solid 

lines coincide with thick dashed lines. 
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Figure 5 the same as Figure 4 except for he10 s and the second set of prognostic 

variables (s, qt). Solid and dashed thin lines display the variables from the model with an 

upstream scheme and the Smolarkiewicz scheme, respectively. 
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Figure 6 Magnitudes of the microphysical timescales scaling temperature adjustment. 
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Figure 7 Change in output variables with height while two sets of prognostic variables 

are used. Thin solid lines display the variables fi-om the model with At-0.1 s and the first 

set of prognostic variables (or T and others); and thick dashed lines display those fi-om 

the model with At-10 s and the second set of prognostic variables (or s and others). 
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