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The engineering tools of choice for the computation of practical engineering flows
have begun to migrate from those based on the traditional Reynolds-averaged
Navier-Stokes approach to methodologies capable, in theory if not in practice, of
accurately predicting some instantaneous scales of motion in the flow. The migra-
tion has largely been driven by both the success of Reynolds-averaged methods
over a wide variety of flows as well as the inherent limitations of the method itself.
Practitioners, emboldened by their ability to predict a wide-variety of statistically
steady, equilibrium turbulent flows, have now turned their attention to flow control
and non-equilibrium flows, that is, separation control. This review gives some cur-
rent priorities in traditional Reynolds-averaged modeling research as well as some
methodologies being applied to a new class of turbulent flow control problems.
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1. Introduction

In studying aerodynamic flows, new technologies in flow control, renewed inter-
est in high-speed (sub-orbital) vehicles, drag and/or noise reduction and improved
propulsion systems are now the driving research incentives. Although the usual
Reynolds-averaged methodologies have well-known deficiencies, they do remain the
front-line methodology for industrial prediction. Aerodynamic flows are character-
ized by a wide parameter range associated with, for example, Mach number and
Reynolds number and are turbulent or are transitioning to or from turbulent. Of
course, the challenge from a practical engineering standpoint is to be able to pre-
dict these flows so that design cycle times are reduced and designs optimized. It is
clear that improving operating efficiencies are crucial in developing next generation
aircraft and aerospace vehicles. For this reason, accurate and efficient prediction of
turbulent flows has become an important topic.

Even with the current level of computational power, the direct numerical simu-
lation (DNS) of such complex turbulent flows is not feasible and will not be for the
foreseeable future. The problem is simply the inability to resolve all the component
scales within the turbulent flow. Even with computational grids exceeding 109 grid
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points, simple fully developed channel flow simulations are still limited to Reynolds
number (based on friction velocity) of O(103). Therefore, either all or part of those
scales that cannot be directly computed need to modeled. The general task then
is to develop means to partition the resolved and unresolved scales, and then to
develop suitable models for them. Within the context of scale partitioning, two
(related) approaches exist.

The first approach is offered by the partitioning of the flow field into a mean
and fluctuating part, an idea first proposed by Osborne Reynolds (1895) over a
hundred years ago. This process, known as the Reynolds decomposition, assumes
the instantaneous flow can be partitioned into a fluctuating part representing all the
turbulent motion centered about a statistical mean value. This partitioning and ac-
companying ensemble averaging leads to a set of Reynolds-averaged Navier-Stokes
(RANS) equations. Although this process eliminates the need to completely resolve
the turbulent motion, its drawback is that unknown single-point, high-order corre-
lations appear in both the mean and turbulent transport equations. The need to
model these high-order correlations is the well-known closure problem. The RANS
method is a robust, easy to use, and cost effective means of computing both the
mean flow as well as the turbulent stresses (velocity second-moments) and has been,
overall, a useful flow prediction technology.

The second approach is a filtering approach, and is most commonly known as
the large eddy simulation (LES) method. Here the flow field variables are parti-
tioned into resolved and unresolved scales. The original ideas were proposed over
40 years ago by Smagorinsky (Smagorinsky 1963), and extended a few years later
by Deardorff (Deardorff 1970). In these early works, the formal analogy between
the unclosed subgrid scale stresses in LES and the unclosed Reynolds stresses in the
RANS approach was exploited. The LES method is becoming a popular method for
flow field predictions due to the rapid increase in computational power. While not
as computationally demanding as DNS, proper implementation of LES – especially
in the vicinity of solid boundaries – does require extensive computational resources.
In addition, subtle issues associated with filter size and subgrid scale stress models
are still being debated. What remains to be determined is whether LES can be
used with sufficient confidence to provide the accuracy now being demanded of the
more established RANS methods. It is clear, however, that as computational power
increases the LES approach as well as variants to it (e.g. Geurts 2001) will become
more prevalent.

The increasing demand for more detailed information about the flow fields over
complex aerodynamic configurations or in turbine engines, and the need to control
such flows, has led to the need for methodologies capable of capturing some part
of the instantaneous motion. These turbulent flows may still be statistically steady
or stationary, but now only a portion of the turbulent motion needs to be modeled.
For statistically unsteady flows, the need for alternatives to the RANS approach is
more obvious since the foundation for RANS models is based on (spectral) equilib-
rium hypotheses that may no longer be valid (e.g., Carpy & Manceau, 2006). The
need for such predictions has led to the development of hybrid methods capable of
having a RANS-type behavior in the vicinity of a solid boundary and an LES-type
behavior away from the boundary. Such methods can also be interpreted within the
usual LES context but with specially designed subgrid-scale (SGS) models capable
of the dual behavior just described. The most often utilized approach to date is
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the detached eddy simulation (DES) approach developed by Spalart and colleagues
(Spalart et al.1997, Spalart 2000). An insightful discussion of this topic, from an
LES perspective, is given by Piomelli and Balaras (2002). Hybrid methods can be
essentially classified in two categories: methods where the domain is decomposed
into zones where LES is performed and zones where RANS is performed, with a
sharp interface or, possibly, an small overlap region; or methods where the govern-
ing set of equations is smoothly transitionning from a RANS behavior to a LES
behavior, based on criteria updated during the computation. The models in the first
category are often termed as zonal and the models in the second category as non
zonal (Bunge, 2006), although this terminology is ambiguous since both are using
different models in different zones. Both kinds of models will be a topic of interest
and active research in the future. Currently, while such methods are often employed,
little research has been conducted into formulating a consistent mathematical the-
ory where such blending of methodologies is employed. Although the presentation
will be somewhat general at the outset to show how the various approaches, at
least formally, have the same form-invariant equations, the distinction being in the
closure of these equations, the focus of this review will be on the traditional RANS
approaches. Indeed, even in the hybrid RANS/LES frame, RANS modeling remains
a cornerstone: the hybrid models highly rely on a RANS model in the near-wall re-
gion, such that the influence of pressure gradients on the boundary layer and the
prediction of flow separation is completely determined by the performance of the
RANS model. Moreover, using a RANS-type model as subgrid-scale model can be
favourable to account for complex phenomena such as heat transfer, effects of ro-
tation or stratification, etc. In industrial applications, where a cost reduction is
requested, the use of coarse meshes is not compatible with the hypotheses of a
simple inertial behavior of the subgrid-scales, and the use of RANS-like transport
equations and/or complex constitutive relations is and will be an active research
field (e.g., Chaouat and Schiestel, 2005).

From a physical standpoint in RANS model development, the task is to charac-
terize the turbulence. One obvious characterization is to correctly describe the evo-
lution of representative turbulent velocity and length scales, an idea that originated
over 60 years ago (Kolmogorov 1942). This is the physical motivation behind the
development of turbulent closure models. There is a hierarchy of turbulence models
currently available for solving aerodynamic flow problems. These classes include the
differential Reynolds stress models (DRSM), the algebraic Reynolds stress models
(ARSM), the nonlinear eddy viscosity models (NLEVM), and the linear eddy vis-
cosity models (LEVM). While other alternatives may exist, these form the basis for
the majority of methodologies used, and amongst these the linear eddy viscosity
models are the most common.

The most commonly used linear eddy viscosity models in aeronautics are the
Spalart and Allmaras (SA) model (Spalart & Allmaras 1994) and the shear stress
transport (SST) model (Menter 1994), but in general purpose codes, different forms
of high-Reynolds number K − ε models, such as the standard K − ε model (Laun-
der & Spalding, 1974), the RNG K − ε model (Yakhot & Orszag, 1986) and the
K − ε model of Shih et al. (1995a), often termed as “Realizable K − ε” model,
are still widely used. The main improvement of RNG and Shih et al. K − ε model
compared to the standard K − ε model is the correction of the so-called stagnation
point anomaly, through a modification of the ε equation (RNG model) or of the
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eddy-viscosity (Shih et al.). The SA model is a one-equation model based primarily
on empiricism and on dimensional analysis arguments. It is easily used with any
type of grid: structured or unstructured, single block, or multiple blocks. The SA
model has become popular among industrial users due to its ease of implementation
and relatively inexpensive cost. The (SST) model has gained increasing favor due
primarily to its robust formulation and improved performance for separated flows.
It is a blend of the original K − ω formulation near walls and a K − ε formulation
in the outer region and in free shear flows. An important feature of the SST model
is the modification to the definition of the eddy viscosity to account for the effect of
the transport of the principal turbulent shear stress. More detail about the math-
ematical form of these models can be found in the review by Gatski and Rumsey
(2002).

In aerodynamic flows where the turbulence is not confined to relatively narrow
regions of the flow domain, such as on multi-element configurations at high angle of
attack, wing-body junctions or turbine blades where separation or near-separation
conditions exists, the demands on both accurate computational modeling of the
physical problem as well as the quality of the turbulence model increase significantly.
In proportion, the role of the CFD practitioner becomes more critical since poor
modeling of the physical problem and/or poor choice of turbulence model can lead
to correspondingly poor predictions.

These increased demands on turbulence model performance have also high-
lighted inherent deficiencies in the models themselves. For example, the inability
to consistently predict separation accurately or to properly account for pressure
gradient effects have become apparent in trying to replicate multi-element airfoil
flow fields at higher angles-of-attack (Rumsey et al. 1998; Rumsey & Gatski 2001).
Other examples are the difficulties to correctly account for rotation effects (Jakirlić
et al., 2002) and wall heat transfer (Thielen et al., 2005), which are both relevant
to turbomachinery. A new deficiency has also been identified that is not directly
related to turbulence model prediction itself, but to the application of turbulence
models in predicting aerodynamic flow fields. This deficiency is related to the tur-
bulence model being properly sensitized to transition onset location. While turbu-
lence models are calibrated for fully turbulent flow predictions, aerodynamic flows
include regions where the flow may be laminar and transitioning to fully turbulent.
In attempting to predict and replicate such flows, a single system of equations is
used throughout the computational domain and these equations are expected to
predict the entire flow field which can include regions of laminar flow as well as
fully turbulent flow. Some of these issues will be discussed further here.

2. The Filtering Process and Governing Equations

As detailed in the last section, it is currently necessary for numerical calculation
of practical engineering turbulent flow fields to solve a set of equations for flow
variables that represent the motion of a limited spectral range of scales. This de-
scription holds true for LES, RANS formulations and any of the newly developed
hybrid or composite methodologies currently being proposed. As such, the equa-
tions describing the filtered motions in any of these formulations are form-invariant.
They obviously differ with respect to the flow field motions being described, and
this is predicated on how the higher-order correlations are parameterized.
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As is customary in all these formations, the flow variable f is decomposed into
a filtered part, f , and a sub-filtered part, f ′, given as

f = f + f ′ . (2.1)

Generally, the filtering process can be defined as a subset of the general operation
(e.g. Sagaut 2006)

f(x, t) = G ∗ f =

∫

G(x − x′, t − t′) f(x′, t′) dx′ dt′ . (2.2)

Different forms for the convolution kernel can be associated with the various solution
methodologies. For the Reynolds-averaged formulation, for example, stationarity is
usually assumed and a long time average then corresponds to an ensemble average.
The filter function in Eq. (2.2) is given by

G(x, t) ≡ GT (x, t) = G(x) GT (t) = δ(x)
1

T H(T − t)H(t) , (2.3)

such that

fT (x, t) = GT ∗ f =
1

T

∫ t

t−T

f(x, t′)dt′ . (2.4)

In such flows, the entire spectral range of scales is modeled so the sub-filtered part
f ′ is a fluctuating quantity whose average is zero f ′ = 0, and the mean quantity f
can be extracted from

E{f(x, t)} = lim
T →∞

fT (x, T ) = lim
T →∞

1

T

∫ T

0

f(x, t) dt, (2.5)

Note that, since limT→∞ GT (t) ≡ 0, Reynolds averaging cannot be expressed as a
convolution filter, although the Reynolds averaged function is the limit of a series
of functions obtained by convolution, as shown by Eq. (2.5). As a practical matter,
Reynolds averaging is evaluated as long-time averaging, where “long-time” is not
infinity but rather a time sufficiently large compared to the turbulence time scale.
Therefore, Reynolds averaging can be considered, within any predefined accuracy,
as the convolution filter GT with a sufficiently large T . A useful property of this
filtering is that the average of the product of two quantities is f g = f g + f ′g′.
This allows for the easy extraction of stationary correlation data from numerical
simulations where the instantaneous values of f and g are computed.

For a flow statistically periodic in time (cyclo-stationary), it is customary to use
phase averaging, corresponding to a filter function given by

GT (x, t) = G(x) GT (t) (2.6)

= δ(x)

[

lim
N→∞

1

N + 1

N∑

n=0

δ(t + nT )

]

, (2.7)

where T is the period of the cycle. In that case, the phase average of the sub-filtered
part f ′ is zero, < f ′ >= f ′ = 0, and the filtered, or phase-averaged quantity < f >
can be extracted from

< f(x, t) >= f(x, t) = GT ∗ f = lim
N→∞

1

N + 1

N∑

n=0

f(x, t + nT ), (2.8)
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For the most part, the large eddy simulation methodology has been based on
spatial filtering. The convolution filters most commonly employed are the top-hat
filter, the Gaussian filter and the spectral cutoff filter. In numerical algorithms
requiring structured meshes applicable to multi-dimensional flows, such spatial fil-
tering can become problematic since anisotropies in the filtering process need to be
introduced. For unstructured grid schemes, the anisotropy issue is compounded. An
alternative approach that helps to alleviate this problem is the Eulerian temporal
filtering approach. (It is recognized that the problem cannot be completely solved
since an inherent filtering occurs even on the spatial scales with a temporal filtering
process.) This procedure has received little attention in the past although some re-
cent work (Pruett 2000; Pruett et al. 2003) suggests it can be an effective alternative
to the spatial filtering process. Causal time domain filters can be constructed that
are analogues to the spatial filters. A simple example of causal filter is the top-hat
filter given by Eq. (2.3) where T is the temporal filter width. Analogous to the spa-
tial filtering approach, only a portion of the spectral range of scales is modeled with
sub-filtered part f ′. The filtered quantity f can then be extracted from Eq. (2.4). It
can thus be seen that within the realm of temporal filtering, it is possible to develop
a more rigorous linkage between the large eddy and Reynolds-averaged approaches
(Pruett et al. 2003), since the Reynolds-averaged function E{f} is the limit of the
temporally-filtered function fT when the temporal filter width T goes to infinity. In
the frame of spatial filtering, such a linkage can only be established in homogeneous
flows.

The aerodynamic flows of current relevance are compressible and the relevant
governing equations, for whichever solution methodology is used, should be cast in
the appropriate form. This is becoming even more important as the interest in high-
speed flow fields increases. It should be noted, however, that having a turbulent flow
compressible does not mean the turbulence dynamics is necessarily compressible.
For attached flows, mean or filtered flow fields over most of the supersonic regime
(M < 5) are described reasonably well by using incompressible dynamics under
adiabatic conditions and in the absence of shocks.

The filtering processes described above yields governing equations that are all
formally equivalent. They differ, not in form, but in the models or parameterizations
needed to close the equations. The formal similarity of these equations, irrespective
of the filtering process invoked to derive them, is the foundation upon which hybrid
or composite methods can be constructed. However, the modeling or parameteri-
zations of the various terms requiring closure is a difficult and challenging problem
since the scales of motion being represented by each filtering procedure can be dif-
ferent. In addition, for compressible flows it has been found that a rewriting of the
equations using mass-weighted (Reynolds 1895), or Favre variables (Favre 1965) is
advantageous, since the equations take a more compact form and are structurally
similar to their incompressible counterpart.

For a dependent variable f , the Favre mean is defined as

f̃ =
ρf

ρ
. (2.9)

The instantaneous value f can then be decomposed into either the usual Reynolds

Article submitted to Royal Society



Modeling Turbulent Aerodynamic Flows 7

averaged variables or the Favre-averaged variables

f = f + f ′ = f̃ + f ′′. (2.10)

As might be expected, an extensive list of relations exist between the Reynolds-
averaged variables and the Favre variables (Barre et al. 2001).

The equations for the mean density ρ and mean momentum ρũi are given by

∂ρ

∂t
+

∂

∂xj

(ρũj) = 0, (2.11)

ρ
Dũi

Dt
=

∂(ρũi)

∂t
+

∂

∂xj

(ũjρũi) = − ∂p

∂xi

+
∂σij

∂xj

− ∂(ρτij)

∂xj

, (2.12)

and the mean viscous stress tensor σij is

σij = 2µ

(

Sij −
1

3
Skkδij

)

' 2µ

(

S̃ij −
1

3
S̃kkδij

)

, (2.13)

where µ is the mean molecular viscosity, and τij = ũ′′
i u′′

j is the Favre-averaged
velocity correlation tensor. Equation (2.13) neglects contributions from µ′, and
assumes that ui ≈ ũi. This assumed equality between the average velocities implies
that the average fluctuating velocity u′′

i is small since ui − ũi = u′′
i .

The equation for the mean total energy ρẼ is

∂(ρẼ)

∂t
+

∂

∂xj

(

ũjρH̃
)

= − ∂

∂xj

(

qj + ρE′′u′′
j

)

, (2.14)

where

Ẽ = cvT̃ +
ũiũi

2
+

ũ′′
i u′′

i

2
, (2.15)

H̃ = Ẽ +
p

ρ
, (2.16)

qj = −kT

∂T

∂xj

' − kT

∂T̃

∂xj

, (2.17)

and

ρE′′u′′
j = cpρũ′′

j T ′′ + ũi (ρτij − σij) +
ρu′′

i u′′
i u′′

j

2
− σiju′′

i − σ′
iju

′
i, (2.18)

In the approximation of (2.17), fluctuations in the thermal conductivity are ne-
glected, and the Favre-averaged and Reynolds-averaged mean temperatures are
taken as approximately equal. The equation of state in mean variables is

p = ρRT̃ , (2.19)

or in terms of the mean total energy ρẼ

p = (γ − 1)

[

ρẼ − 1

2
ρ

(
ũ2 + ṽ2 + w̃2

)
− ρK

]

(2.20)
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where γ is the ratio of specific heats (cp/cv), and R is the gas constant. The presence
of the turbulent kinetic energy term K,

ρK = ρ
τii

2
= ρ

ũ′′
i u′′

i

2
, (2.21)

suggests a strong coupling between the mean equations and the turbulent transport
equations.

3. Closure Strategies for RANS

The closure problem arises at all levels of the statistical moment equations. At
the mean flow level, the RANS momentum equations Eq. (2.12) require closure
through a specification of τij , and the mean energy equation Eq. (2.14) requires the

closure of the turbulent heat flux ρcpũ′′
j T ′′. At the second-moment level, closure is

required for the velocity-pressure gradient correlation, tensor dissipation rate, the
velocity-triple moments, and the turbulent mass flux u′′

i = −ρ′u′/ρ. Closure for
these terms is achieved either through the solution of partial differential transport
equations or by assuming a tensor polynomial expansion for the unknown corre-
lation in terms of basis tensors formed from the independent tensors on which it
depends (Gatski 2004). It is not possible in the space allotted here to discuss the
modeling of all these unknown higher-order correlations. Only the correlations re-
lated to the velocity-pressure gradient correlation and the tensor dissipation rate
will be discussed. These correlations are relevant to the solution of both incom-
pressible and compressible flows and, in the case of the tensor dissipation rate, it
has been found that the solenoidal (incompressible) dissipation rate need only be
accounted for (e.g., Kreuzinger et al. 2006). It is safe to assume that the newer
hybrid methodologies have not reached a level of maturity where detailed modeling
issues associated with many of these correlations have been addressed.

(a) Levels of Turbulence Closure

It is often desirable to work with the turbulent anisotropy tensors or scaled
scalar flux vectors in analyzing turbulent flows. For the Reynolds stress tensor, the
anisotropy tensor bij = (τij −2Kδij/3)/(2K), where K = τii/2, can be defined, and

for the heat flux vector, for example, the scaled scalar flux vector ũ′′
i T ′′/(KT ′′2)

can be defined.
The differential Reynolds stress model requires the solution of six partial differ-

ential equations for the Reynolds stress components and a transport equation for a
variable from which a length scale can be obtained. For the most part, this scale re-
lated equation is the turbulent kinetic energy dissipation rate equation. In addition,
various scalar flux equations, each having three components, are also required. As-
sociated in general with the scalar flux equation is the need for a scalar variance and
corresponding scale equation for the scalar variance. In general, the full differential
form at the second-moment level can be computationally challenging.

Subsets of this full differential set are often desired and can be obtained. Implicit
algebraic Reynolds stress and scalar flux equations can be obtained directly from
the differential forms by invoking what are termed weak equilibrium assumptions.
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Applicable models are developed through explicit polynomial expansions (represen-
tations) of the anisotropy tensor and scaled scalar flux vector. The proper choice of
basis is dependent on the functional dependencies associated with the anisotropy
tensor and scalar flux vector. Note that the equations for the Reynolds stress
anisotropy bij are only frame-indifferent under the Galilean group of transforma-
tions. Under the more general Euclidean group, the equations exhibit a dependence
on system rotations and translational accelerations. Transport equations are still
required since the algebraic models developed simply yield an expression for the
components of the Reynolds stress anisotropy tensor and the scalar (heat) flux
vector. These transport equations are associated with the turbulent kinetic energy
and the energy dissipation rate (or dissipation rate per kinetic energy), and scalar
variance and scalar variance length scale.

What are termed nonlinear eddy viscosity models form a link between what one
would call the higher-order models – the differential and algebraic Reynolds stress
models, and the lower-order linear eddy viscosity models. The nonlinear eddy vis-
cosity models describe the turbulent Reynolds stress field by a polynomial expansion
similar to the algebraic stress model; however, the expansion coefficients are deter-
mined from calibrations with experimental or numerical data, and on some physical
consistency constraints (e.g., Shih et al. 1995b; Craft et al. 1996). This contrasts
with the algebraic stress models where the expansion coefficients are extracted di-
rectly from the Reynolds stress transport equations. An analogous situation holds
for the scaled scalar flux vector. Once again, transport equations are required as in
the case of the algebraic anisotropy tensor and algebraic scalar flux vector repre-
sentations.

At the linear eddy viscosity and diffusivity level of closure, the mean momentum
and temperature equations are closed by using a Boussinesq-type approximation
between the turbulent Reynolds stress and the mean strain rate tensors, and scaled
scalar flux and gradient of the mean scalar property. Although computational re-
sources have become less of a prohibitive factor in choosing turbulence models,
many practitioners have continued to rely on the lower-order eddy viscosity and
diffusivity models. Much of this is due to robustness issues associated with the
higher-order models as well as to lack of familiarity with the formulations.

(b) Improved High-Order Correlation Closures

The main focus of advanced RANS turbulence modeling research for aerody-
namic flows is on correlations associated with the turbulent velocity field in isother-
mal flows. This does not suggest that modeling issues associated with the scalar
fluxes (e.g. heat and mass) are unimportant, rather it is a reflection on the limited
scope of advanced modeling activity currently being supported. For the turbulent
velocity field, the differential Reynolds stress transport equations are the starting
point for model development. The two unknown correlations that currently receive
the most attention are the velocity-pressure-gradient and tensor dissipation rate
correlations. These terms are important because they represent the mechanisms
responsible for the redistribution of normal and shear stress throughout the entire
boundary layer flow including the near-wall region.
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(i) Pressure-Strain Rate Correlation

In the case of the velocity-pressure-gradient correlation, it is customarily rewrit-
ten in terms of the pressure-strain rate correlation and the pressure-velocity corre-
lation as

u′
i

∂p′

∂xj

+ u′
j

∂p′

∂xi
︸ ︷︷ ︸

φij

= −p′
(

∂u′
i

∂xj

+
∂u′

j

∂xi

)

︸ ︷︷ ︸

−Πij

+
∂

∂xj

(p′u′
i) +

∂

∂xi

(
p′u′

j

)

︸ ︷︷ ︸

D
p
ij

. (3.1)

Initially, this partitioning was intended to isolate the effects of the pressure trans-
port terms which predominantly contribute to the dynamics near solid boundaries.
The pressure-strain rate correlation term Πij is then decomposed into a rapid and
slow part. The rapid part is modeled by assuming dynamic equilibrium conditions
in both physical and spectral space, and the slow part is modeled by assuming either
a linear or nonlinear relationship with the Reynolds stress anisotropy tensor. The
wall proximity corrections required will be discussed separately below. As might
be expected, an extensive literature base deals with the full range of issues asso-
ciated with developing specific models (Hanjalić & Jakirlić 2002). Almost all the
research efforts have focused on the pressure-strain rate correlation since this term
is of the same order as the production term and acts as a redistribution between
the Reynolds stress components. In compressible flows without shocks and close
to adiabatic conditions, the partitioning in Eq. (3.1) is applicable and for the most
part the pressure-velocity term is neglected. In compressible flows with shocks, the
pressure-velocity correlation has a non-negligible effect on the dynamics even away
from solid-boundaries and should be accounted for.

Away from solid boundaries, the pressure-strain rate correlation also acts to
diminish the difference between the normal stress components. In the vicinity of
the solid-boundaries, its action, along with pressure-velocity correlation, increase
the anisotropy of the stress field. This action along with that of the tensor dissipa-
tion rate, is to enforce the two-component limit on the Reynolds stress tensor. In
aerodynamic flows of interest, these inhomogeneous effects can be important, so it
is clear why such terms have received so much attention.

In all of the commonly used second-moment closure models, the pressure-strain
rate correlation Πij is modeled away from solid-boundaries in the general form
(Chou 1945; Lumley 1978) as

Πij = εAij(b) + KMijkl(b)
∂uk

∂xl

, (3.2)

where Aij(b) and Mijkl(b) are tensor functions of the anisotropy tensor and are
related to integrals over the flow volume derived from a pressure Poisson equation
for incompressible flows or a convective pressure wave equation for compressible
flows, and ε is the isotropic dissipation rate. The isotropic dissipation rate is by
the second law of thermodynamics always positive, and this Reynolds-averaged
turbulent dissipation rate can be written as

ρε = 2µ

(

[s′:s′] − 1

3
{s′}2

)

(3.3)
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where s′ = s′ij = (u′
i,j +u′

j,i)/2, { } is the trace, and [ : ] is the trace of the product.
The second term on the right is associated with fluctuating dilatation and can be
neglected (Pantano & Sarkar 2002; Pirozzoli et al. 2004), and the first term can be
related to the fluctuating enstrophy (e.g. Sarkar et al.1991).

In Eq. (3.2), the Aij(b) term is usually associated with the “slow” relaxation of
the turbulence toward isotropy, and the Mijkl(b) term is usually associated with
the “rapid” response of the turbulence to imposed mean velocity gradients. This
partitioning has its origins in incompressible flows where the turbulent pressure
field p′ is split into slow p′(S) and rapid p′(R) parts. The p′(S) part is the solution
of a Poisson equation that only involves gradients of the turbulent velocity field;
the p′(R) part is the solution of a Poisson equation involving the mean velocity
gradients. The terminology originated from the observation that the slow part will
only adjust as the turbulence itself adjusts, but the rapid part will adjust instantly
through the mean velocity gradient.

For statistically stationary turbulence, the starting point for the model devel-
opment of the rapid part can be treated with the transform pair

Πij(r) = p′(x + r, t)

(
∂

∂xj

u′′
i (x, t) +

∂

∂xi

u′′
j (x, t)

)

, (3.4a)

and its equivalent Fourier transform,

Πij(r) =
ι

V

∫

d3x

∫

d3k′d3k′′eιk′
·(x+r)eιk′′

·x

×
〈
p̂(k′)

(
k′′

j ûi(k
′′) + k′′

i ûj(k
′′)

)〉
, (3.4b)

where r is the two-point separation distance (r → 0 for single point closures), û
and p̂ are the transformed fluctuating velocity and pressure fields. From this equa-
tion, it is now possible to obtain an expression for the rapid part of the pressure-
strain rate correlation once an appropriate representation for the energy spectrum
tensor is found. (The slow part of the pressure-strain rate correlation, represent-
ing turbulence-turbulence interactions, yields triple-velocity terms. Models for this
“slow” contribution are derived in an alternative manner by simply relating it to
the Reynolds stress anisotropy.)

For incompressible flows, the fourth order tensor Mijkl(b) given in Eq. (3.2) is
related to the energy spectrum tensor through the simple relation

Mijpq(b) =

∫
kpkq

k2
Eij(b,k)d3k , (3.5)

where the energy spectrum tensor Eij(b,k) can be represented by a polynomial ex-
pansion involving both the Reynolds stress anisotropy and the wavenumber vector.
The simplest representation that can be used is given by four-term representation

Eij(k,b) =
E(k)

4πk2

(

δij −
kikj

k2

)

+
Ea(k)

8πk2

(
knkm

k2
bnm

) (

δij +
kikj

k2

)

+
Ea(k)

4πk2

[

bij −
(

bin

knkj

k2
+

kikn

k2
bnj

)]

(3.6)

where E(k) is the isotropic energy spectral density and Ea(k) is the anisotropic
energy spectral density.
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With the functional dependency outlined in Eq. (3.2), the proper representation
for Π would be generated from the integrity basis given by the invariant combina-
tions of b, S, and W (e.g. Gatski 2004). Obviously, any representation composed
of the full integrity basis would be unmanageably large. Even though the energy
spectrum tensor given in Eq. (3.6) is only a linear function of the anisotropy tensor
b, many representations for the rapid part of the pressure-strain rate correlation
have used bases with quadratic and cubic terms in b (cf. Sjögren & Johansson
2000) although they only retain a linear dependence on the mean velocity gradient
field. This linear dependence on the mean velocity gradient is consistent with the
functional form for the pressure-strain rate correlation given in Eq. (3.2); however,
appearance of the higher-order powers of the anisotropy tensor is inconsistent with
the linear dependence on the anisotropy tensor assumed for the energy spectrum
tensor.

(ii) Dissipation Rate Tensor

The other unknown correlation that appears in the differential Reynolds stress
equations and that continues to be of modeling interest is the tensor dissipation
rate εij . Even though it is possible to derive a transport equation for ρεij from the
fluctuating momentum equation by taking the moment (cf. Speziale 1991)

2µ

[

∂u′
i

∂xk

∂

∂xk

(
Nu′

j

)
+

∂u′
j

∂xk

∂

∂xk

(Nu′
i)

]

= 0 , (3.7)

where N is the Navier-Stokes differential operator, the final form of this equation is
quite complex and contains terms where very little, if any, information is available
for closure modeling.

It has been assumed, that away from solid boundaries, the tensor dissipation
rate becomes isotropic (εij = 2/3 ε δij); although, there have been suggestions that
such assumption may not be generally true (Durbin & Speziale 1991). Thus, early
attempts at modeling the deviatoric part of the dissipation rate tensor focused on a
coupling with the Reynolds stress anisotropy (Hanjalić & Launder 1976; Hallbäck
et al. 1990).

The quantity ρε represents more than a transformation of kinetic energy to
internal energy since it can be further decomposed into

ρε = µ
∂u′

i

∂xk

∂u′
i

∂xk
︸ ︷︷ ︸

ρε

+
∂

∂xk

[

µ
∂u′

iu
′

k

∂xi

]

︸ ︷︷ ︸

ρε′

. (3.8)

The second term, ρε′, is the divergence of a flux, and as such is purely a transport
term since it redistributes energy from one region to the other, but does not con-
tribute to the global time evolution of kinetic energy. This term has been evaluated
by Bradshaw & Perot (1993) in a channel flow and represents less than 2% of the
total.

The energy dissipation rate also plays a pivotal role in the dynamics of the
turbulent kinetic energy. It can be extracted from the viscous term,

ρT µ ≡ µ u′
i

∂2u′
i

∂xj∂xj

, (3.9)
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which is not necessarily positive and requires modeling, that appears in the trans-
port equation for the turbulent kinetic energy. It is customary to decompose this
term into

ρT µ = µ
∂2K

∂xj∂xj
︸ ︷︷ ︸

ρDµ

−ρε , (3.10)

where the first term, ρDµ is called turbulent diffusion. This decomposition has two
very desirable properties: ρDµ does not require modeling, and ρε is always positive
which facilitates its modeling.

The variable ε is often called the homogeneous dissipation, since ρT µ = ρε = ρε
in homogeneous flows, and ε′ = ε−ε is sometimes called the inhomogeneous dissipa-
tion. It is worth emphasizing that the decomposition of homogeneous/inhomogeneous
dissipation is completely artificial, since there is an infinity of possible decompo-
sitions: for instance, any linear combination of the form ε + βDµ can be called
homogeneous dissipation, since it goes to ε in homogeneous flows. In the differential
Reynolds stress formulation, where the isotropic assumption for the dissipation rate
tensor is used, this isotropic dissipation rate is obtained from a modeled transport
equation (Hanjalić & Launder 1976).

There have been recent attempts to account for dissipation rate anisotropy
through a tensor dissipation rate equation (e.g., Oberlack 1997; Speziale & Gatski
1997, Jakirlić & Hanjalić 2002). While not explicitly focused on developing closures
to account for wall proximity effects, these studies used tensor representations to
extract either an explicit algebraic dissipation rate model or a differential model
for the tensor dissipation. Unfortunately, extensive validation studies are difficult
due to the lack of data available for a quantity such as εij . Numerical simulations
provide the best source of data for such quantities but are unfortunately limited to
simpler flow geometries.

It is now recognized that effects of anisotropies in the turbulence statistics should
be accounted for in some way for many flows of practical interest. Obviously, the
full differential models do this, but at a higher computational overhead than the
linear eddy viscosity models. One of the main reasons that algebraic vector and
tensor polynomial representations have become popular is that such anisotropies
can be accounted for at only a small increase in computational cost over the linear
eddy viscosity models. The details of this representation procedure have been put
forth previously (e.g. Gatski 2004, Gatski & Wallin 2004) and it is not necessary
to repeat them here.

(c) Modelling of Near-Wall Turbulence

While the discussion up to this point has been focused on mathematical repre-
sentations of the rapid pressure-strain rate correlation in the case of homogeneous
flows, the practical application of such models to inhomogeneous flows requires
accounting for the effects of solid boundaries. This inherently brings into consid-
eration the proper accounting of turbulence anisotropy into the modeling process.
Although this effort has sometimes been called low Reynolds number modeling,
it is more properly called near-wall modeling to distinguish it from the separate
problem of transition prediction discussed in the next section.
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14 T. B. Gatski, C. L. Rumsey & R. Manceau

Both the pressure-strain rate correlation and the anisotropic dissipation rate
that appear in the τij transport equation require modification, and the pressure-
velocity correlation cannot be neglected anymore. Along with these parameteriza-
tions, which focus on the stress transport equations, is the behavior of the dissipa-
tion rate equation itself in the vicinity of the wall. Overall, the issue of near-wall
modeling is at least as complex as the issue of developing the high-Reynolds-number
models, and unfortunately less precise.

Several attempts have been made to develop near-wall closure corrections for
the Reynolds stress transport equations and the dissipation rate equation. For the
turbulent stress transport equations, attempts have almost exclusively focused on
extending the high Reynolds number pressure-strain models. This approach has
been taken by Launder and co-workers who have developed a methodology that
enforces the two-component limit of the turbulent Reynolds-stress field as the solid
boundary is approached (Craft & Launder 2001). For the dissipation rate equation,
additional terms and modified coefficients have been proposed to account for the
anisotropic near-wall effects and the correct limiting behavior at the wall (e.g.
Speziale & Gatski 1997, Jakirlić & Hanjalić 2002).

A major focus over the last decade has been on what is termed the “elliptic
relaxation method” (Durbin 1991, 1993; Manceau & Hanjalić 2000; Manceau et al.
2001; Manceau et al. 2002; Laurence et al. 2005). Based on a theoretical analysis of
the influence of the blocking of the wall, this approach introduces a tensor function
representing the combined effects of a near-wall velocity-pressure gradient corre-
lation and anisotropic dissipation rate. The tensor function asymptotes to a high
Reynolds number form away from solid boundaries through an elliptic relaxation
equation.

It is worthwhile to briefly outline the formulation. The transport equation for
τij can be written in the form

∂τij

∂t
+ uk

∂τij

∂xk

= Pij + φij − εij + Dt
ij + ν

∂2τij

∂xk∂xk

, (3.11)

where φij is not traceless (cf. Πij), since it includes pressure diffusion (see Eq. 3.1).
In the elliptic relaxation method, the variation of the dissipation rate anisotropy dij

(dij = (εij−2εδij/3)/(2ε)) as the wall is approached is accomplished by a relaxation
to its wall value, which is assumed to be equal to bij . With this assumption, φij−εij

in Eq. (3.11) can be written as

φij − εij = εKfij −
τij

K
ε , (3.12)

with the relaxation function fij defined by

εKfij = φij − 2ε (dij − bij) . (3.13)

The original scaling of the relaxation function fij was solely through the turbulent
kinetic energy; however, Manceau et al. (2002) have shown that adding a dissipation
rate factor ε to the scaling (εKfij) eliminates an unwanted amplification effect
inherent in the original scaling. The system is closed through the solution of a
relaxation equation for fij

(
1− L2∇2

)
fij =

1

εK
(Πij + 2εbij) , (3.14)
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where Πij can in principle be any of the high Reynolds forms found in the literature.
Although some authors have tested nonlinear models (Wizman et al. 1996), terms
linear in bij are used in general. Moreover, despite the fact that pressure diffusion
can readily be accounted for in Eq. (3.14), this term is usually considered negligible
far from the wall, i.e., in the right hand side. Thus, the elliptic relaxation equation
is driven by the high Reynolds number form of the pressure-strain rate correlation
Π and a contribution from the Reynolds stress anisotropy 2εb (away from the wall
the dissipation rate is assumed to be isotropic dij = 0).

It is interesting to contrast the predictive capabilities of previous near-wall cor-
rections with the performance of the more rigorous elliptic relaxation approach.
One of the first Reynolds stress models proposed to handle near-wall effects was
developed by Hanjalić and Launder (1976). Figure 1 shows a comparison of results
from the elliptic relaxation method (Manceau et al.2002) and the Reynolds stress
model (Hanjalić & Launder 1976) with direct simulation data at Reτ = 180 for
the Reynolds shear stress (in wall units). The results of the Speziale, Sarkar, and
Gatski (SSG) model (Speziale et al.1991), without near-wall correction, is also in-
cluded for comparison. At this low Reynolds number, the RSM approach based
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Figure 1. Comparison of wall proximity cor-
rections to RANS closure for fully devel-
oped turbulent channel flow.

Figure 2. Isocontours of α2 in a backstep
flow. The solid lines correspond to the levels
0.25, 0.5, 0.75 and 0.9.

on a modification of the tensor dissipation rate and the introduction of an extra
production term was not able to accurately predict the near-wall behavior of the
Reynolds shear stress. The elliptic relaxation method, on the other hand, did an
excellent job at this Reynolds number, and as shown in Manceau et al.(2002) also
made excellent predictions over a much larger Reynolds number range.

However, Reynolds-stress models based on elliptic relaxation have not spread
into industrial codes and applications, because of the huge additional numerical
effort required compared to simpler closures (the v2–f model for instance, which
includes elliptic relaxation in a linear eddy-viscosity framework, has become popular
and is now available in several commercial codes). The reason does not only lie in
the requirement of solving six additional differential equations Eq. (3.14), but also
in the numerically problematic wall boundary conditions for the components f22,
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16 T. B. Gatski, C. L. Rumsey & R. Manceau

f12 and f23:

fij |w = −20
ν2

ε2
lim

x2→0

τij

x4
2

, (3.15)

where x2 is the wall-normal direction. (The boundary conditions for the other com-
ponents are: f11 = f33 = − 1

2f22 and f13 = 0.) One of the difficulties is that these
boundary conditions must be applied in the local frame determined by the orien-
tation of the wall, which couples the Reynolds stress equations via the boundary
conditions when the wall is not aligned with the global reference frame.

Manceau and Hanjalić (2002) have proposed the elliptic blending Reynolds-
stress model (EB-RSM), which tries to preserve all the desirable properties of the
elliptic relaxation model, in particular, those properties related to the representation
of the blocking effect of the wall; while decreasing the number of equations and the
numerical stiffness of the boundary conditions. In the most recent version of the
model (Manceau 2005), φij − εij is modeled as

φij − εij = (1 − α2) (φw
ij − εw

ij) + α2 (φh
ij − εh

ij) , (3.16)

The purpose of the introduction of the near-wall form φw
ij − εw

ij is the reproduction
of the asymptotic behavior of φij − εij , a role that is played by the boundary
conditions Eq. (3.15) in the elliptic relaxation model. Here, the near-wall form of
the dissipation tensor is chosen as εw

ij = τijε/k, but any other choice is possible:
the important point being that to satisfy the behavior of φw

ij − εw
ij , the model for

φw
ij must be adapted to the model for εw

ij . In that case, φij must take the form

φij ∼
x2→0

φw
ij ∼

x2→0
Kε fij |w = −5

ε

K





−v′2/2 u′v′ 0

u′v′ v′2 v′w′

0 v′w′ −v′2/2



 (3.17)

Contrary to boundary conditions that can be imposed in a local frame linked to
the wall where they are applied, Eq. (3.16) is applied inside the flow domain, and
requires information about the wall distance and the orientation of the wall. The
wall distance is felt implicitly by the blending function α, which goes from 0 at the
wall to 1 far from the wall, since it is obtained via an elliptic relaxation equation,
very similar to the ones used in the elliptic relaxation model

α − L2∇2α = 1 , (3.18)

with the boundary condition α = 0 at the wall. In a semi-infinite domain bounded
by a flat plate, the analytical solution of this equation would be

α = 1 − exp
(

− y

L

)

(3.19)

if L was taken as a constant. Therefore, α is a function of the ratio y/L=Wall
Distance/Integral Length Scale that the model feels. Figure 2 shows isocontours of
α2 around the step corner in the case of a backstep flow at Re = 37500. It can
be seen that the width of the region over which the near-wall model is active is
strongly dependent on the local flow conditions, via the length scale L, which is
much larger in the recirculation region than in the incoming boundary layer.
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The second important issue is the orientation of the wall. It is crucial that the
model is valid regardless of the relative orientations of the wall and the reference
frame, i.e., the near-wall model must be objective. Indeed, since the φij tensor is
objective, it is crucial to ensure that φw

ij is as well. This requirement is automatically
ensured if φw

ij is made a function of objective quantities. In order to correctly enforce
the asymptotic behavior Eq. (3.17), it is seen that the model cannot be proportional
to τij , but must rather be able to distinguish between the components, depending
on the orientation of the wall. Therefore, an objective tensor must be defined that
provides information about the orientation of the wall. First, it can be noted that
the vector n = ∇α is normal to the wall in its vicinity, since the wall is the
isocontour α = 0, and is objective, since it is the gradient of an objective scalar.
Thus, the tensor

N = n ⊗ n = (ninj) (3.20)

is also objective, and a simple way to reproduce Eq. (3.17) is to use the model

φw
ij = −5

ε

K

[

τN + Nτ − 1

2
[τ :N] (N + I)

]

. (3.21)

This near-wall form is then transitioned to the high Reynolds number form

φh
ij − εh

ij = Πij −
2

3
εδij . (3.22)

Here, the SSG model (Speziale et al.1991) is used for Π, although any high Reynolds
number model could be used.

Thus, with such a blending approach, the distance to the wall and its orientation
are felt by the model through α and the tensor N. Since no geometrical information
is explicitly introduced in the equations, the model is easy to use in complex ge-
ometries. Moreover, the number of equations necessary to enforce correct near-wall
behaviors is reduced from 6 to 1, as compared to the elliptic relaxation model, and
the wall boundary conditions are much simplified, which is crucial from a numerical
stability point of view. It is worth pointing out that the model is able to reproduce
the near-wall anisotropy of turbulence as well as, or better than the full elliptic
relaxation model, as shown in Fig. 3.

Another focus of near-wall research, that has and continues to be of interest, is
the modeling of the near-wall anisotropy dij of the dissipation tensor εij . Contrary
to the elliptic relaxation/blending strategies, discussed above, in which the differ-
ence φij −εij is modeled as a whole, many authors have investigated separately the
dissipation tensor. Provided that all the models are based on an isotropic dissipa-
tion far away from solid boundaries, the modeling challenge consists of providing a
smooth transition towards an anisotropic near-wall formulation.

The decomposition Eq. (3.10) between viscous diffusion and homogeneous dissi-
pation discussed previously is not without modeling implications for the dissipation
tensor. Indeed, all the models are based on an algebraic formulation of the dissi-
pation tensor, which ensures a smooth transition between a high Reynolds form,
applied in regions far away from solid boundaries, and a near-wall form, derived in
order to reproduce the asymptotic behavior of the dissipation tensor in the vicin-
ity of the wall. In the standard decomposition, where the homogeneous dissipation
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tensor εij is defined by

ρT µ
ij = µ

∂2u′
iu

′
j

∂xj∂xj
︸ ︷︷ ︸

ρD
µ
ij

−µ
∂u′

i

∂xk

∂u′
j

∂xk
︸ ︷︷ ︸

ρεij

, (3.23)

the asymptotic behavior of the anisotropy of the dissipation dij is difficult to relate
to the anisotropy of the Reynolds stress bij . Indeed, for a wall located in x2 = 0,
the components of dij and bij are asymptotically related by

dij =





b11 2 b12 b13

2 b12 4 b22 2 b23

b13 2 b23 b33



 (3.24)

which shows that the two tensors are not proportional. Therefore, the standard way
of modeling the dissipation anisotropy

dij = fεbij , (3.25)

where fε is any function approaching unity at the wall and going to zero far away
from the wall, does not provide the correct limiting anisotropy for the components
12, 23 and 22.

The analysis of the transport equations of the two-point correlation tensor
u′

iA
u′

jB
(Jovanović et al. 1995) suggests that the decomposition of viscous diffu-

sion/homogeneous dissipation should be written as

ρT µ
ij =

1

2
µ

∂2u′
iu

′
j

∂xj∂xj
︸ ︷︷ ︸

D
µ∗

ij

−µ
∂u′

i

∂xk

∂u′
j

∂xk

+
1

2
µ

∂2u′
iu

′
j

∂xj∂xj
︸ ︷︷ ︸

ε∗

ij

, (3.26)

Jakirlić & Hanjalić (2002) have pointed out that with this decomposition, it is much
more justified to assume proportionality between the anisotropies

d∗ij = fεbij , (3.27)
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since the asymptotic analysis leads to

d∗ij =





b11 b12 b13

b12 2 b22 b23

b13 b23 b33



 (3.28)

although the 22 component is still not exact. Figure 4 shows a comparison of the
model fεbij with the dissipation anisotropy obtained from the DNS of Moser et al.
(1999), based either on the standard decomposition Eq. (3.23) or on the decompo-
sition Eq. (3.26) proposed by Jakirlić & Hanjalić. The blending function is modeled
as fε = 1−

√
AE2, where A and E are the flatness parameters associated with the

Reynolds stress and the dissipation, respectively (Jakirlić & Hanjalić 2002). It can
be seen that the model better represents d∗

ij than dij , although, quite surprisingly,
the improvement is especially visible on the components 11 and 33.

These types of approaches, focusing either on terms involving the pressure fluc-
tuations or on the tensor dissipation behavior, have yielded encouraging results in
an effort to more accurately account for near-wall behavior, and improve the ro-
bustness of such numerical predictions. As with the other closures discussed in this
paper, only extensive validation tests will confirm their ability to handle a wide
range of flow fields.

4. Some Current Challenges

The challenge problems to be briefly discussed here are by no means complete. Ar-
guably, other application areas are of current high interest, including buffet onset
and compressible mixing. However, the two rather broad areas discussed here have,
in our view, been pacing items in the migration from traditional RANS methodolo-
gies to hybrid RANS-LES methods and ultimately to large-scale simulation method-
ologies.

(a) Accounting for Transition and Re-laminarization

Many aerodynamic flow fields of interest, where single-point closures based on
the Reynolds-averaged Navier-Stokes methodology are applicable, describe regions
where the flow is transitioning from laminar to turbulent or re-laminarizing from
the turbulent state. RANS models have routinely been applied to such regions and
the accuracy of the flow predictions in these “non-turbulent” regions have varied
significantly depending on the models. Obviously, the RANS turbulence models
were never calibrated to predict such transitioning regions; however, the current
demands on RANS predictions of aerodynamic flows requires that such models
predict with some degree of accuracy, the flow in these transitioning regions.

At the outset, it is necessary to recognize that what is required of a RANS model
is not the ability to predict the detailed transition dynamics per se, but rather that
the RANS model be properly sensitized to predict the statistical characteristics of
the flow in these transitioning regions. The basis for many of the models being used
today originated with the ideas of Emmons (1951) (see also Dhawan & Narasimha,
1958). The desire to account for transitional effects in RANS models has been given
renewed emphasis and has been ongoing for some time (Schmidt & Patankar 1991;
Stock & Haase 1999; Walters & Leylek 2004; see also Rumsey et al.2005 for a more

Article submitted to Royal Society



20 T. B. Gatski, C. L. Rumsey & R. Manceau

complete list). These efforts have mainly focused on engineering approaches rather
than on approaches more theoretically based. The latter approaches have received
much less attention (e.g., Thacker et al.1999a, b; Jovanović & Pashtrapanska 2004;
Rumsey et al.2005) and as yet have not reached a point where extensive flow field
predictions have been made. It is worth pointing out some characteristics that
a predictive transition-sensitized turbulence model should possess. These include:
properly identifying the quantities actually being computed by such models, not
requiring a priori input of transition or re-laminarization location, and properly
characterizing the dynamics that such quantities should possess. For methods uti-
lizing closed transport equations for dynamic variables, such as disturbance kinetic
energy or disturbance velocity second-moments (stresses), the intent is to compute
the entire flow domain such as upstream, over and downstream of airfoils, wings,
turbine blades, or aerodynamic bodies. It is necessary to formulate equations ca-
pable of describing both viscous dominated and turbulent fluctuations within the
same flow.

In general, the usual types of transition modes considered are natural and by-
pass transition. In natural transition, the fluid responds to a small random dis-
turbance, which spatially and temporally evolves into a complex nonlinear process
leading to a fully turbulent flow. The statistical correlations associated with these
disturbances in the laminar transition region can be described by transport equa-
tions. While stability theory focuses on the description of deterministic quantities,
the turbulent prediction methods such as RANS use equations for statistical corre-
lations. Thus, these transitioning disturbance fields are represented by correlations
of fluctuating quantities with an associated probability density function (Thacker et
al.1999a, b), and are governed by the same type of correlation transport equations
as the RANS stresses in the fully turbulent region. In by-pass transition or in a
re-laminarizing turbulent flow, the flow dynamics are governed by either turbulent
fluctuations in the free-stream (by-pass transition) or an existing turbulent field be-
ing subjected to some flow variation (such as pressure-gradients) causing the flow
to re-laminarize.

Although the characterizations of the disturbance field just described validate
the use of transport equations that are similar in form to the RANS equations,
the commonly used engineering prediction methods have directly applied modified
RANS models to the prediction of such transitioning flows. The most common and
simple approach to handling a transition region on an aerodynamic body is to
control the energy production term by having it “switched off” in the transition
region. Unfortunately, this a priori knowledge limits the range of applicability and
general predictive nature of such models. More sophisticated approaches have been
employed, such as the correlation-based method of Langtry and Menter (2005),
which is built strictly on local variables and solves two transport equations, one
for intermittency and one for a transition onset criterion. These currently accepted
engineering approaches to delimiting the transitioning regions of the flow need to be
investigated further. Criterion should be developed (e.g. Jovanović & Pashtrapanska
2004) that would identify such transitioning zones based on some dynamic measure
rather than a correlated input invoked by the user.

Having now identified the type of disturbance correlation fields being computed
as well as the threshold criterion commonly used delimiting these transitioning
zones, the next (more subtle) point is whether such correlation fields correctly
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describe the transitioning or re-laminarization processes. There are two dynamic
characteristics that the transitional and re-laminarization fields should possess: the
first is that the “disturbance” or eddy viscosity should be vanishing and second,
that the ratio of the mean flow time scale (represented by the mean shear S) to
the disturbance field time scale (represented by the kinetic energy K and kinetic
energy dissipation rate ε) vanish. The former dynamic characteristic is easily met
and is usually achieved in existing models by “turning off” the production term in
either the kinetic energy or second-moment equations in the transitioning region.

Recent studies by Rumsey et al.(2006) and Petterson-Reif et al.(2006) have
identified some distinguishing characteristics of several two-equation linear eddy
viscosity and algebraic stress models that can have an impact on any attempts
to utilize such formulations in predicting transitioning and re-laminarizing flows.
These studies have shown through a dynamical systems analysis using nullclines in
K and ε phase space that solution regions where disturbance (eddy) viscosities given
by K2/ε, for example, often do not predict the correct laminar limit in terms of the
mean flow to turbulent time-scale ratio, which should be ε/SK → 0 in the laminar
regime. Such regions showing incorrect behavior were termed “pseudo laminar.”
These results have a direct implication on the use of such models for the prediction of
transitioning and re-laminarizing flows. Without proper calibration and evaluation,
RANS type models can yield solutions qualitatively similar to transitioning flow
behavior but with the incorrect dynamic characteristics.

As an example of this anomalous behavior, the flow over an RAE2822 airfoil at
freestream Mach number M = 0.75, angle-of-attack = 2.72, and Re = 6.2×106 was
computed. A plot showing the airfoil shape and resulting pressure contours for these
conditions is given in Fig. 5. There is a strong shock wave present on the airfoil
upper surface near 65% chord; whereas, the flow on the lower surface remains sub-
sonic. In this example, the initial and boundary conditions were kept fixed but the
numerical solution method was changed (for details see Rumsey et al.2006). Figure
6 shows the skin-friction distribution on the lower surface of the airfoil obtained
using two different numerical solution strategies for obtaining converged solutions.
The converged results were completely different, with each suggesting a transition
location in a different place. This inconsistent behavior was due to the fact that
particular forms of the K-ε model can converge to either a “pseudo-laminar” state
or the intended turbulent state, depending on initial conditions or other numerical
parameters. Figure 7 shows the computed results along with the theoretical trajec-
tories at a point in the boundary layer on a flat plate that eventually converged to
a “pseudo-laminar” result. Here, diffusion effects were negligible, and there is ex-
cellent agreement between theory and computation. The SK − ε phase plot shows
that the degenerate fixed point at SK = ε = 0 is reached.

These results indicate that any attempt at using transport equations for statis-
tical correlations such as kinetic energy and associated dissipation rate can yield
solutions dependent on the character of the equations rather than on any physical
calibration. Thus, the utilization of such equations in predicting flows containing
transitioning and re-laminarizing regions can be problematic. A careful assessment
of the solutions is needed to determine whether they are replicating the calibration
characteristics, or are a result of phase plane trajectories inherent in the form of
the equations.
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Figure 5. RAE2822 airfoil solution
showing static pressure contours

Figure 6. Streamwise variation of skin--
friction coefficient on RAE2822 airfoil
lower surface for two different solution
procedures
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Figure 7. Comparison of theory with computed result at a point in the “pseudo-laminar”
of the flat plate
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(b) Separation and Control

Another topic of current interest is flow control, particularly for reduction or
elimination of separation. By using suction, small jets, or actuators on wings, for
example, it is possible to delay or eliminate the onset of separation. There have been
recent attempts to assess both the experimental measurement capabilities as well
as the model prediction capabilities of representative benchmark flows (Rumsey et
al.2006). In such flows, flow field characteristics not well understood or documented
need to be investigated. These include the effects of fluid injection through synthetic
jets into quiescent air and cross-flow, and the effects of steady and unsteady fluid
injection and suction on separated flow regions. A “hump model” configuration
(Seifert and Pack 2002) exemplifies the latter effect, and is also a realistic configu-
ration for flow control on wings. Some recent results can be shown highlighting the
predictive capabilities of current methods. This flow has been studied extensively
in both steady and time-dependent flow control applications using a wide vari-
ety of methods that included RANS, hybrid RANS/LES, LES and (underresolved)
DNS. The cases studied have included no-control, steady suction, and synthetic jet
(unsteady blowing/suction) control conditions.

The subsonic flow boundary layer in this case separates at the back side of the
hump, near 65% chord. With no flow control, the flow reattaches near x/c = 1.11.
With either steady suction or synthetic jet flow control applied near the separation
point, the separation extent can be either reduced or eliminated. Most RANS mod-
els appear to do a reasonable job predicting the separation point in these cases, but
all models ranging from one-equation eddy viscosity through full Reynolds stress
invariably predict too large a separation extent, either in steady-state or in the
mean. A typical example is shown in Fig. 8, using a K − ω Explicit Albebraic
Stress Model. In this figure, time-averaged mean results are shown for the synthetic
jet case, with oscillation frequency 138.5 Hz and peak velocity out of the slot of
26–27 m/s (freestream velocity was 34.6 m/s). In the experiment (Greenblatt et
al.2005), the mean flow reattaches near x/c = 1.0; whereas the RANS method
predicts later reattachment. The reason for the poor RANS behavior is believed
to be the fact that it dramatically underpredicts the turbulent shear stress in the
separated region, as shown for typical results in Fig. 9. This underprediction leads
to too little mixing, and hence a tendency to remain separated too long.

On the other hand, blended RANS-LES, LES, and DNS appear to do a better
job predicting the turbulence characteristics in the separated region. By resolving
the larger eddies (rather than modeling them), much of the turbulence dynamics
in the separated region can be properly accounted for, yielding earlier reattach-
ment. However, these methods are generally very time-consuming to compute, and
under-resolution in time or space can have a significant negative impact on results.
Nonetheless, recent LES results (Sarić et al.2006) suggest that careful application of
this method is capable of capturing important effects seen in the hump experiment.

Other recent studies have focused on circulation control applications using
Coanda-type jets over flaps (e.g., Lee-Rausch et al.2006, Shmilovich and Yadlin
2006) and over circular trailing edges (e.g., Swanson & Rumsey 2006, Slomski et
al.2006). In both of these types of aerodynamic flows, flow control can greatly en-
hance the maximum achievable lift. In the case of computing the Coanda flow over
circular trailing edges, the flowfield – particularly regarding where the jet separates
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Figure 8. Long-time-average streamlines for hump model with synthetic jet flow control.

– has been found to be very sensitive to both numerical parameters as well as to
turbulence modeling. For example, proper sensitization of the turbulence model to
streamline curvature effects appears to be very important. Typical examples show-
ing streamlines around a Coanda surface at the back of an airfoil are shown in
Fig. 10. The experiment is due to Novak et al.(Novak et al.1987). Here, a steady
jet issues out of a small slot located on the upper surface near x/c = 0.93. Be-
cause of the Coanda effect, the jet “sticks” to the airfoil surface and draws the flow
around to just beyond the back of the circular trailing edge, enhancing the circula-
tion around the body. In this case, a one-equation linear eddy-viscosity turbulence
model predicts the jet to separate from the Coanda surface too late; whereas, the
same model with a curvature correction predicts results in good agreement with
experiment. However, because it is also very difficult to perform high-quality val-
idation experiments (that provide sufficient information to evaluate and improve
turbulence models) on this type of configuration, separation flow control remains
an area of very active research both experimentally and computationally.

5. Concluding Remarks

Significant strides have been made in the prediction of turbulent aerodynamic flows
in the last quarter century. The availability and applicability of commercially avail-
able numerical solvers, that routinely solve very complex aerodynamic flow fields,
has led some to believe that the technical discipline has reached full maturity. Un-
derstanding and ultimately predicting complex turbulent flow fields has and still
remains as yet an unsolved problem. With each level of success comes increased
demands on accuracy and solution capabilities that at its limits remains beyond
current capabilities.

The topics addressed in this overview are but a brief glimpse into topical areas
of research that are currently being investigated and which will help extend our
ability to both understand and predict even more complex aerodynamic flows.
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Figure 9. Turbulent shear stress profiles at x/c = 0.8 at four times during the oscillation
cycle, for hump model with synthetic jet flow control.
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