
Symbolic LTL Compilation for Model Checking:
Extended Abstract

Kristin Y. Rozier⋆ with Moshe Y. Vardi

Rice University, Houston, Texas 77005,

In Linear Temporal Logic (LTL) model checking, we check LTL formulas repre-
senting desired behaviors against a formal model of the system designed to exhibit
these behaviors. To accomplish this task, the LTL formulas must be translated into au-
tomata [21]. We focus on LTL compilation by investigating LTL satisfiability checking
via a reduction to model checking. Having shown that symbolic LTL compilation algo-
rithms are superior to explicit automata construction algorithms for this task [16], we
concentrate here on seeking a better symbolic algorithm. Wepresent experimental data
comparing algorithmic variations such as normal forms, encoding methods, and vari-
able ordering and examine their effects on performance metrics including processing
time and scalability.

Safety critical systems, such as air traffic control, life support systems, hazardous
environment controls, and automotive control systems, pervade our daily lives, yet test-
ing and simulation alone cannot adequately verify their reliability [3]. Model checking
is a promising approach to formal verification for safety critical systems which involves
creating a formal mathematical model of the system and translating desired safety prop-
erties into a formal specification for this model. The complement of the specification is
then checked against the system model. When the model does not satisfy the specifi-
cation, model-checking tools accompany this negative answer with a counterexample,
which points to an inconsistency between the system and the desired behaviors and aids
debugging efforts.

LTL model checkers follow the automata-theoretic approach[21], in which the
complemented LTL specification is translated to a Büchi automaton, which is then com-
posed with the model under verification; see also [20]. The model checker then searches
for a trace of the model that is accepted by the automaton. Symbolic model checkers,
such as CadenceSMV [15], NuSMV [4], or VIS [1], represent themodel and analyze it
symbolically using binary decision diagrams (BDDs) [2]. All symbolic model checkers
use the symbolic translation described in [5] and the analysis algorithm of [8], though
CadenceSMV and VIS try to optimize further.

Arguably the most pressing challenge in model checking today is scalability. We
must make model checking tools more efficient, in terms of thesize of the models they
can reason about and the time and space they require to verifya safety property, in order
to scale our verification ability to handle real-world safety-critical systems.

A basic observation underlying our work is that LTL satisfiability checking can be
reduced to model checking. Consider a formulaϕ over a setProp of atomic proposi-

⋆ Work contributing to this paper was completed at Rice University, Cambridge University, and
NASA Langley Research Center, and was supported in part by the Rice Computational Re-
search Cluster (Ada), funded by NSF under Grant CNS-0421109and a partnership between
Rice University, AMD and Cray.



tions. If a modelM is universal, that is, it contains all possible traces overProp, then
ϕ is satisfiable precisely when the modelM doesnot satisfy¬ϕ. Thus, it is easy to add
a satisfiability-checking feature to LTL model-checking tools. Measuring the perfor-
mance of LTL satisfiability checking enables us to benchmarkthe performance of LTL
model checking tools, and, more specifically, of LTL translation tools.

We have coded our own front-end LTL-to-automaton symbolic translator for NuSMV
and CadenceSMV. Our tool compiles an input LTL formula into asymbolic automaton
which can be checked against a universal model using either NuSMV or CadenceSMV
for the back-end. We investigated numerous novel combinations of algorithmic con-
structs, including representing the formula specifications in Boolean Normal Form and
Negation Normal Form, constructing the automaton using sloppy or fussy encoding,
utilizing variable resolution, and applying several variable ordering algorithms from
the current literature.

We report here on an experimental investigation of LTL satisfiability checking via a
reduction to model checking. By using large LTL formulas, weoffer challenging model-
checking benchmarks. We tested our front-end LTL-to-automaton translation algorithm
against the algorithms of both CadenceSMV and NuSMV, using both tools as a back-
end for our translation. We used a wide variety of benchmark formulas, either generated
randomly, as in [7], or using a scalable pattern (e.g.,

Vn
i=1 pi). LTL formulas typically

used for evaluating LTL translation tools are usually too small to offer challenging
benchmarks. Note that real specifications typically consist of many temporal properties,
whose conjunction ought to be satisfiable. Thus, studying satisfiability of large LTL
formulas is quite appropriate in our goal of extending the scalability of LTL model
checking tools.

We have found that the existing literature on LTL to automatatranslation provides
little information on actual algorithm performance. Therehas been extensive research
over the past decade into explicit translation of LTL to automata [6, 7, 9, 10, 11, 14, 12,
13, 18, 17, 19], but we previously demonstrated that symbolic tools have a clear edge
over explicit tools with respect to LTL satisfiability checking [16]. Considerably less
research has been done on symbolic compilation yet it is verypromising. It has already
been noted that automata minimization may not result in model checking performance
improvement [9] and specific attention has been given to minimizing the size of the
product with the model [17]. Still, no previous study of LTL translation has focused on
model checking performance, leaving a glaring gap in our understanding of LTL model
checking.

References

[1] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng,
S. Edwards, S. Khatri, T. Kukimoto, A. Pardo, S. Qadeer, R.K.Ranjan, S. Sarwary, T.R.
Shiple, G. Swamy, and T. Villa. VIS: a system for verificationand synthesis. InCAV,
Proc. 8th Int’l Conf, volume 1102 ofLecture Notes in Computer Science, pages 428–432.
Springer, 1996.

[2] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond.Information and Computation, 98(2):142–170, Jun 1992.

2



[3] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of life-critical
real-time software.IEEE Trans. Software Eng., 19(1):3–12, 1993.

[4] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker.It’l J. on Software Tools for Tech. Transfer, 2(4):410–425, 2000.

[5] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another lookat LTL model checking.
Formal Methods in System Design, 10(1):47–71, 1997.

[6] J-M. Couvreur. On-the-fly verification of linear temporal logic. In Proc. FM, pages 253–
271, 1999.

[7] N. Daniele, F. Guinchiglia, and M.Y. Vardi. Improved automata generation for linear tem-
poral logic. InCAV, Proc. 11th Int’l Conf, volume 1633 ofLNCS, pages 249–260. Springer,
1999.

[8] E.A. Emerson and C.L. Lei. Efficient model checking in fragments of the propositional
µ-calculus. InLICS, 1st Symp., pages 267–278, Cambridge, Jun 1986.

[9] K. Etessami and G.J. Holzmann. Optimizing Büchi automata. In CONCUR, Proc. 11th
Int’l Conf., Lecture Notes in CS 1877, pages 153–167. Springer, 2000.

[10] C. Fritz. Constructing Büchi automata from linear temporal logic using simulation relations
for alternating büchi automata. InProc. 8th Intl. CIAA, number 2759 in Lecture Notes in
Computer Science, pages 35–48. Springer, 2003.

[11] C. Fritz. Concepts of automata construction from LTL. In LPAR, Proc. 12th Int’l Conf.,
Lecture Notes in Computer Science 3835, pages 728–742. Springer, 2005.

[12] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. InCAV, Proc. 13th Int’l
Conf, volume 2102 ofLNCS, pages 53–65. Springer, 2001.

[13] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification,
Testing, and Verification, pages 3–18. Chapman & Hall, Aug 1995.

[14] D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulae to Büchi automata. InFORTE, Proc of 22 IFIP Int’l Conf, Nov 2002.

[15] K. McMillan. The SMV language. Technical report, Cadence Berkeley Lab, 1999.
[16] K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. Technical report, Rice University,

2007.
[17] R. Sebastiani and S. Tonetta. “more deterministic” vs.“smaller” büchi automata for efficient

LTL model checking. InCHARME, pages 126–140. Springer, 2003.
[18] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. InCAV, Proc. 12th

Int’l Conf, volume 1855 ofLNCS, pages 248–263. Springer, 2000.
[19] X. Thirioux. Simple and efficient translation from LTL formulas to Büchi automata.Electr.

Notes Theor. Comput. Sci., 66(2), 2002.
[20] M.Y. Vardi. Automata-theoretic model checking revisited. In Proc. 7th Int’l Conf. on

Verification, Model Checking, and Abstract Interpretation, volume 4349 ofLNCS, pages
137–150. Springer, 2007.

[21] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. 1st LICS, pages 332–344, Cambridge, Jun 1986.

3


