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Popular Summary 

Aerosols and especially their effect on clouds are one of the key components of the 
climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect 
on clouds remains largely unknown and the processes involved not well understood. A 
recent report published by the National Academy of Science states "The greatest uncevtainfy 
about the aerosol climate forcing - indeed, the largest of all the uncertainties about globat 
climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The 
aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" 
effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect 
on cloud coverage. The aerosol effect on precipitation processes, also known as the second 
type of aerosol indirect effect, is even more complex, especially for mixed-phase convective 
clouds. In this paper, the aerosol radiative effects (ARE) on the deep convective clouds are 
investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiatiol~ 
scheme and an explicit land surface model. 

The sensitivity of cloud properties and the associated radiative forcing to aerosol single- 
scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid- 
visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth 
decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number 
concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease 
significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K 
and significantly high heating rates in the lower troposphere (about 0.6 K day-1 higher at 2 Ian), 
both of which lead to a more stable atmosphere and hence weaker convection. The weaker 
convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud 
optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-r~nean 
direct forcing induced by black carbon is about 2.2 W m-2 at the top of atmosphere (TOA) and - 
17.4 W m-2 at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 1 2.2 
W m-2 at the TOA and surface, respectively. Both the TOA and surface total radiative forcing 
values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect 
forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive 
semi-direct forcing compensates the negative direct forcing at the surface, the surface 
temperature and heat fluxes decrease less significantly with the increase of aerosol absorption 
(decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation 
decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due 
to enhanced surface cooling and atmospheric heating. 
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Abstract. The aerosol radiative effects (ARE) on the deep convective clouds are i~~vestigated 

by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an 

explicit land surface model. The sensitivity of cloud properties and the associated radiative 

forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is 

pronounced for mid-visible SSAof 0.85. Relative to the case excluding the ARE, cloud fraction 

and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle 

number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size 

decrease significantly when the ARE is introduced. The ARE causes a surface coolilng of about 

0.35 K and significantly high heating rates in the lower troposphere (about 0.6 I< dayei higher at 

2 km), both of which lead to a more stable atmosphere and hence weaker convection. The 

weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower 

cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The 

daytime-mean direct forcing induced by black carbon is about 2.2 W m'2 at the top of 

atmosphere (TOA) and -17.4 W m" at the surface for SSA of 0.85. The semi-direct forcing is 

positive, about 10 and 11.2 W mW2 at the TOA and surface, respectively. Both the TOA and 

surface total radiative forcing values are strongly negative for the deep convective clouds, 

attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very 

sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct 

forcing at the surface, the surface temperature and heat fluxes decrease less significantly with 

the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, 

convective strength, and precipitation decrease with the increase of absorption, resulting from a 

more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating. 
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1. Introduction 

Aerosols interact directly and indirectly with the Earth's radiation budget and climate. As a 

direct effect, aerosols scatter and absorb solar radiation [Charlson and Pilat, 1969; Coakley et 

al., 19831. As an indirect effect, aerosols act as cloud condensation nuclei (CCN) and afkct 

cloud properties [Twomey, 1977; Rosenfeld, 20001. Also, aerosol absorption modifies the 

atmospheric temperature structure, decreases the solar radiation at the surface, and lower 

surface moisture fluxes, which may suppress convection and reduce cloud fraction [Ackerr7zan. 

et al., 2000; Ramanathan et al., 2001bl. This phenomenon has been termed the "semi-direct 

effect" [Hansen et al., 1997; Johnson et al., 20041. The addition of anthropogenic aerosols to 

the atmosphere may change the radiative fluxes at the top-of-atmosphere (TOA), at the surface, 

and within the atmospheric column. Recent reports summarize that on a global average the sum 

of direct and indirect forcing by anthropogenic aerosols (ACF) at the TOA is likely to be 

negative and may be comparable in magnitude to the positive forcing of about 2.4 W m-%y 

anthropogenic greenhouse gases [IPCC, 20011. Large uncertainties exist in current estiinates of 

aerosol forcing because of incomplete knowledge concerning the distribution and the physical 

and chemical properties of aerosols as well as aerosol-cloud interactions. 

The estimation of the direct radiative forcing exerted by aerosol is complex to quantify 

because anthropogenic particles are generally a complex mixture of different chemical 

components [Hegg et al., 1997; Rarnanathan et al., 2001 a]. Each component is characterized by 

its own microphysical, chemical, and related optical properties, which lead to variable direct 

radiative forcing. The uncertainty for the aerosol direct climate forcing is about a factor of 2 to 



3 whereas that for the indirect forcing is much larger and difficult to quantify [IPCC, 20011. The 

global mean TOA aerosol direct forcing values range from -0.5 to +0.2 W m-2 [Ramanathan et 

al., 2001b], and the measured TOA direct forcing on the regional scale ranges from -9 to 2 W 

an'' [Ranzanathan et al., 2001b; Ramachandran, 20051. The semi-direct effect introduces the 

added feedbacks due to the radiative properties of the aerosol (i.e., absorption) and has been 

studied in the recent years. Ackerman et al. [2000] showed decreases in cloudiness 

com~nensurate with the heating rates associated with the absorbing aerosol. Johnson et al. 

[2004] and Feingold et al. [2005] suggested that the vertical location of the absorbing aerosol is 

important: absorbing aerosol may reduce cloud water and cloud fraction or increase them. On 

the other hand, the reduction in downwelling solar radiation and associated decrease in surface 

latent and sensible heat fluxes result in significant reduction in cloud water and cloud fraction 

[Feingold et al. 2005; Jiang and Feingold, 20061. The semi-direct forcing was estimated to be 

about 15 W m-' for stratocumulus by Johnson et al. [2004] and 7.5 W m-' for trade cumulus by 

Acker-man et al. [2000]. 

Black carbon (BC) is an important absorbing aerosol produced primarily from fossil fuel 

and biomass burning. In the atmosphere, BC particles interact with other aerosol particles and 

gas phase species and exist at various mixing states [Zhang and Zhang, 20051. The impact of 

BC on cloluds and radiative forcing depends on the mixing state. Coating on BC aerosols may 

significantly increase the absorption of solar radiation [Chylek et al., 19951. Three mixing 

treatments for BC have been discussed in literatures: externally mixed, well-internally mixed, 

and core-coated [Jacobson, 20001. Of the three mixing types, the core-coated treatment covers 



the largest range of particle configurations. Posfai et al. [I 9991 found that internally nixed soot 

and sulfate appear to comprise a globally significant fraction of aerosols in the troposphere. BC 

was commonly treated as a core coated by the other components to study aerosol radiative 

properties [Ackerman and Toon, 198 1 ; Jacobson, 19991. 

It has been demonstrated that the climate effects of BC aerosols are more significant on the 

regional scale than on the global scale [Wang, 20041. A polluted urban atmosphere typically has 

an elevated aerosol loading because of emissions fiom transportation and industry [Zhang et a!., 

2004a1, which may exert significant aerosol radiative forcing. Houston, TX is one of the most 

polluted urban cities in the US. Houston hosts one of the world largest petrochemical 

complexes and several large fossil-fueled electric power plants. Transportation and industty 

emit a great quantity of VOCs, NO,, and SO2 [Li et al., 2005; 2007; Zhang et al., 2004bl. In 

association with the Texas 2000 Air Quality Study (TexAQS 2000), there exist several 

ground-based and aircraft measurements of aerosol compositions, number size distributions, 

and optical properties [Brock et al., 2003; Fast et al., 20061. High aerosol n u d e r  

concentrations (over lo5 ~ m ' ~ )  have been identified to exist in this area, associated wit11 

transportation and industrial activities [Brpock et al., 2003; Fan et al., 20061. The observed BC 

mass concentrations at LaPorte in Houston were high up to 2.0 pg m-' [Fast et al., 20061, and 

the simulated mass mixing ratio of BC to ammonium sulfate was high up to 1:8 [Far? et at., 

20051. The effect of anthropogenic aerosols on direct radiative forcing is significant in the 

vicinity and downwind of the urban area of Houston. The observed aerosol radiation forcing 

during the afternoon periods was between -30 and -80 W m-2 [Fast et al., 20061. Fast et a/. 
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[2006] also indicated that the predicted shortwave radiation was 30 to 40 W m-2 closer to the 

observations in the vicinity of Houston when the aerosol radiative properties were incorporated 

into the shortwave radiation scheme. 

We have previously investigated the aerosol indirect effect on the cumulus clouds in the 

Houston area using a two-dimensional cloud-resolving Goddard Cloud Ensemble (GCE) model 

with the spectral-bin cloud microphysics [Fan et al., 2007a; b]. In this paper, a more 

co~nprehensive investigation of aerosol effects on deep convective clouds is performed by 

incorporating the radiative transfer processes and the land-atmosphere interaction processes 

into the above-mentioned GCE model, with the focus on radiative effects of anthropogenic 

aerosol containing BC. An aerosol radiative module is developed to calculate the 

wavelength-dependent aerosol radiative properties based on the aerosol composition, size 

distribution, mixing state, and ambient relative humidity. The significance of the aerosol 

radiative effects (ARE) is investigated by comparing with the case excluding the ARE. The 

associated aerosol direct, semi-direct and indirect radiative forcing values for deep convective 

clouds are estimated, and the sensitivity of cloud properties and radiative forcing to aerosol 

single-scattering albedo (SSA) are examined. Although the effects of aerosols including 

absorbing components on clouds and radiative forcing have been investigated by model 

simulations in previous studies [Johnson et al., 2004; Feingold et al. 2005; Jiang and Feingold, 

2006; McFarquhar and Wang, 20061, few studies have simultaneously examined the aerosol 

direct, semi-direct, and indirect effects on clouds using a spectral-bin CRM coupled with a 

state-of-the-art land surface model and an aerosol radiative module to online calculate the 



aerosol radiative properties. 

2. Model Description 

The GCE model employed in the present study is 2-D and nonhydrostatic. The  description 

of the model dynamics and microphysics has been presented in Fan et al. [2007a], and more 

details on those processes can also be found in Khain et al. [2004] and Tao et al. [2003a]. The 

spectral-bin microphysics is based on solving an equation system for eight number size 

distributions for water drops, ice crystals (columnar, plate-like and dendrites), snowflakes, 

graupel, haillfrozen drops and aerosols1CCN. Each size distribution is represented by 33 mass 

doubling bins. Originally, the initial aerosol size distribution is calculated by an empirical 

formula: N = ~ $ 7 :  [Pruppacher and Klett, 19971, where S,, is the supersaturation wit11 respect 

to water, and the CCN activation is calculated for single-component aerosols according to the 

Kohler theory. We have modified the initial aerosol size distribution and CCN activation, as 

discussed in our previous studies [Fan et al., 2007a, b], to reflect the aerosol/CCN 

characteristics in this region. The activation schemes for multiple-component soluble aerosols 

and aerosols with a slightly soluble or insoluble core have been incorporated into the CCE 

model to investigate the effects of aerosol compositions on clouds [Fan et al., 2007al. 

The GCE model employed in this study has been further updated by incorporating a 

Goddard radiation scheme and an explicit Goddard land surface model of a Parameterization 

for Land-Atmosphere-Cloud Exchange (PLACE) [ Wetzel and Boone, 1995; Tau et al., 2003a], 

to investigate the aerosol radiative effects on deep convective clouds and the associated forcing. 



An aerosol radiative module has been developed and coupled into the radiation scheme to 

on-line calculate the wavelength-dependent aerosol optical depth (AOD), single-scattering 

albedo (SSA), and asymmetry factor (AF) based on the aerosol characteristics and ambient 

relative humidity. 

2.1 PLACE land surface model and Goddard radiation scheme , 

The PLACE model is a detailed interactive process model of the heterogeneous land surface 

(soil and vegetation) and adjacent near-surface atmosphere. PLACE consists of linked process 

models (e.g., net radiation, evapotranspiration, ground heat storage) and emphasizes the 

vertical transport of moisture and energy through the 5 layer soil moisture and the 7 layer soil 

texnperature column to the overlying heterogeneous land surface. The additional two soil 

temperature layers are used to aid in resolving large temperature gradients near the surface. 

Momentum, sensible, and latent heat fluxes are calculated using similarity relationships 

[Zilitinkevich, 1975; Businger et al., 19911. More details on the description of PLACE can be 

found in Wetzel and Boone [1995]. The atmospheric component of GCE provides surface winds, 

surface air temperature, surface pressure, moisture, shortwave and longwave radiation, and 

precipitation to the land surface model (PLACE). The land surface component returns 

momentuni, sensible heat, and latent heat fluxes to the atmosphere. The coupling is two-way 

interactive. A 2-D GCE coupled with the PLACE model has previously been used to investigate 

landscape-generated deep convection [Lynn et al., 1998; Baker et al., 20011 and the sensitivity 

of convection to land cover in the semi-arid regions of West Africa [Mohr et al., 2003; Alonge 

et cd . ,  20071. 

The latest version of the Goddard radiation scheme includes shortwave and longwave 



radiation models [Tao et al., 2003a, b]. The shortwave radiation model of Chou and Suarez 

[I9991 is used to compute the solar fluxes due to absorption and scattering by clouds, aerosols 

and gases (including water vapor). Fluxes are integrated virtually over the entire spectmm, 

from 0.175 to 10 pm. The spectrum is divided into seven bands in the ultraviolet (TJV) region 

(0.175-0.4 pm), one band in the photosynthetically active radiation (PAR) region (0.4-0.7 pm), 

and three bands in the near infrared region (0.7-10.0 pm). In the UV and PAR region, a single 

O3 absorption coefficient and a Rayleigh scattering coefficient are used for each of the eight 

bands. In the infrared wavelength range, the k-distribution method is applied to compute the 

absorption of solar radiation. Reflection and transmission of a cloud and aerosol-laden layer are 

computed using the 6-Eddington approximation. Fluxes for a composite of layers are then 

computed using the two-stream adding approximation. The longwave radiatio~l 

parameterizations developed by Chou et al. [I9991 and Kratz et al. [I9981 are implemented snto 

the GCE model. The IR spectrum is divided into nine bands. In addition, a narrow band in the 

17 pm region is added to compute flux reduction due to N20. As in the solar spectral region, the 

k-distribution method with temperature and pressure scaling is used to compute the 

transmission function in the weak absorption bands of water vapor and minor trace gases (N20, 

CH4, CFC's). A look-up table method is used to compute the transmission function in the strong 

absorption bands. 

2.2 Aerosol radiative module 

The wavelength-dependent aerosol radiative properties such as AOD (z), SSA (o), and AF 

(g)  are the key factors to determine the aerosol radiative effects on clouds and associated 



forcing. Instead of using the fixed aerosol radiative properties during the simulations as in some 

previous studies [e.g., Johnson et al., 2004; McFavquhar and Wang, 20061, an aerosol radiative 

module has been developed and incorporated into the radiation scheme to online calculate the 

aerosol radiative properties as a function of wavelength (A) based on the aerosol composition, 

size distribution, mixing state, and ambient relative humidity. The module includes the 

meihodologies for the external and core-coated internal mixing states. The calculations of 

aerosol radiative properties for the core-coated internal mixture are presented below. 

For the internally mixed aerosol components, the complex refractive index of aerosol 

particles is calculated based on the volume-weighted average of the individual refractive index 

[Hiifzel, 19761. The real and imaginary parts of the complex refractive index, denoted by 

- 
n ( i , l )  and k(i,A), respectively, for aerosols in a size bin (i) at a certain wavelength (A) are 

determined by: 

where 1n is the number of aerosol components andfll) is the volume fraction of the component 

( I ) .  The Mie theory [Bohren and HtIffman, 19831 is employed to calculate the extinction 

efficiency (Q,), scattering efficiency (Q,), and asymmetry factor (g)  as functions of the size 

parameter, x = 2 m l A ,  where v is the particle's wet radius. The hygroscopic growth of a 

water-soluble component at a certain ambient humidity is calculated by the relation defined by 

Mallet et al. [2004], 



where h is the relative humidity. The coefficient e depends on the considered type of aerosol. It 

is equal to 0.25 for particulate organic matter [Chazette and Liousse, 20011, and 0.285 for 

ammonium sulfate, nitrate, and sea salt [Hanel, 19761. To avoid repeated Mie calculations, the 

first step of this methodology is to obtain a look-up table containing aerosol optical propelrties, 

i.e., Q,, cr, and g, over all size ranges covered by 33 bins and a set of refractive indices that 

represent a range of indices typical of atmospheric aerosols by performing full Mie calculations. 

In all subsequent calls to this algorithm, the Mie calculations are skipped, and the Q,, a, and g 

for an aerosol particle are obtained by interpolating linearly from the look-up table with the 

calculated complex refi-active index and size parameter. 

The aerosol optical depth (z(A, j )  ) at a certain h and atmospheric layer d j )  is calculated by 

integration over the aerosol particles in all of 33 size bins and given by 

where rz(r;, j )  represents the aerosol number concentrations and dzj is the height of the 

atmospheric layer. It is noted that r, is the wet particle radius, corrected with the hygroscopic 

growth and calculated with eq. (2). Assuming i(A, q , j )  = Qe (A, q )rn,%(q, j )dz,  , the 

weighted-mean values of SSA (o) and AF (g) for the aerosol mixture at a certain wavelength 

and layer are then calculated by 



For the externally mixed aerosol components, the aerosol radiative properties z, o, and g are 

calculated for each component first, and the ensemble aerosol radiative properties for the total 

aerosol population are summed over all of the components [WOK 20021. 

Once the wavelength-dependent aerosol radiative parameters z, o, and g are found, they are 

transferred to the shortwave and longwave radiative transfer models, and then interact with the 

other components of GCE such as dynamical, microphysical, and surface processes along with 

the cloud radiative properties. 

3. Model Configuration and Validation 

3.1 "kinitial conditions and design of numerical experiments 

The initial sounding used in the simulations is from Lake Charles (93.21 W, 30.1 1N) near 

the Houston area, and is at 7:00 am (local time) on August 24,2000 (Figure I). The vertical 

temperature and dew point profiles reveal an unstable atmosphere with convective available 

potential energy (CAPE) of 1800 J kg-', integrated from the level of 500 m. For an early 

morning sounding, the surface temperature is low (23.2"C) and the surface relative humidity 

is high (87%) (Figures l a  and lb). The sounding also reveals weak wind shear (Figure lc). 

The computational domain is comprised of 1024 x 33 grid points with a horizontal resolution 

of 500 rn. There are 33 stretched vertical levels with a resolution of 280 m at the lowest level 

and 1260 in at the top. Open boundary conditions are used at the lateral boundaries. The 



dynamic time step is 6 s. The radiation and land surface processes are calculated every 3 min. 

The initial surface conditions for PLACE are broadly representative of land cover in the 

Houston area as shown in Table 1. In this heavily urbanized region is a mixture of impervious 

cover, lawns, and deciduous broadleaf trees and bushes. The soils are typical of coastal plains, 

sandy and silty clays and clay loams. The low percentage of vegetation cover reflects the 

sprawling urban infrastructure of buildings and transportation networks. Initial soil moisture 

and soil temperature values are based on examination of the NCEPNCAR daily reanalysis of 

soil moisture, soil temperature, and precipitation for the week preceding 24 August, 2000. The 

reanalysis of volumetric soil moisture in the layers 0-10 cm and 10-200 cm for the I-loustsn 

area has a range of 0.20-0.28 cm3 ~ m - ~ .  The initial soil moisture values in Table 1 assume 

additional drying in the layers above 10 cm after rainfall on 22 August. Both soil telnperature 

and moisture are randomly varied within the ranges in Table 1 across the model domain to 

account for the variability of the urban landscape. 
# 

A series of simulations have been performed. We first perform the control run (AR-85) 

considering aerosol radiative effects. The initial aerosol size distribution in AR - 85 is from the 

modeled results and has been compared and validated with the observations [Fan et al., 2006, 

2007al. Aerosols are represented by internal BC-cores surrounded by ammonium sulfate. The 

preliminary analysis of the recent in-situ measurements of the mixing states of BC during 

TexAQS 2006 shows about 70% internally mixed BC in the Houston area [J. P Schwar-z of 

NOAA, personal communication]. The mass mixing ratios are assumed to be about 0.1 for BC 

and 0.9 for ammonium sulfate (Table 2). The activation scheme accounting for the effect of the 



insoluble core is employed to calculate CCN activation [Fan et al., 2007al. As shown in Table 2, 

the mid-visible (at 0.55 pm) AOD, SSA and AF calculated from the aerosol radiative module at 

the initial time of the simulation are 0.27, 0.85, and 0.76, respectively, consistent with the 

observations in Houston. Generally, the observed mid-visible AOD is between 0.25 and 0.4, 

and the SSA falls in the range of 0.85-0.95. In order to isolate the aerosol radiative effects, an 

additional simulation (NAR-00) is set to be similar with AR-85, except that the aerosol 

radiative properties, i.e., AOD, SSA, and AF, are set to zeroes (without calling the aerosol 

radiative module) (Table 2). To estimate the aerosol radiative forcing, two other simulations are 

performed for background aerosols (ammonium sulfate only) considering the aerosol radiative 

effects: one corresponds to the polluted case (SA-100) and the other corresponds to the clean 

case (SAC-100). SA-100 has the same initial aerosol size distribution as AR-85, but a simple 

Kijhler theory is employed for the activation of ammonium sulfate. SAC-100 has the similar 

configuration with SA-100, except that the aerosol concentration is only about 7% of SA-100, 

which is about 3000 cm-j (sum over the size distribution Wldln(D,)). As shown in Table 2, the 

AOD at 0.55 nm is 0.25 for SA-100 but is only 0.009 for SAC-100. The values of SSA are 1.0 

for both cases because ammonium sulfate only has a scattering effect. An exponential decrease 

of aerosol concentrations with height is used as the initial condition for all of the simulations, 

similarly to our previous studies [Fan et al., 2007a, b]. 

Further tests are performed for the sensitivity of aerosol radiative effects to SSA. The mass 

ratio of BC to ammonium sulfate is varied to yield the aerosol mixtures with a range of 

mid-visible SSA: 0.85, 0.9, 0.95, and 1.0 for pure ammonium sulfate. These reflect the typical 



range of mid-visible SSAvalues observed in the atmosphere. The tests with the SSA of 0.85 and 

1.0 correspond to the simulations AR-85 and SA-100, respectively. The other two tests with 

SSA = 0.90 and 0.95 have the similar configurations with AR - 85, with the exception of 

different mixing ratio of BC to ammonium sulfate. The initial mid-visible AOD decreases 

gradually from 0.27 to 0.25 as SSA increases from 0.85 to 1 .O. 

All simulations have been run for 10-hr daytime, from 7:00 -17:OO. The analyses are 

performed for the middle 6 hrs by excluding the model spin-up time, except for the forcing 

estimates, which are calculated based on the entire daytime simulations. 

3.2 Validation of the coupled GCE model 

Although the surface model PLACE and the Goddard radiation scheme have been 

validated separately in previously studies [Mohu et al., 2003; Alonge et al., 2007; Tao et al., 

2003b1, the fully coupled model system is validated here by comparing with the observations 

and other modeling results. Figure 2 shows the comparisons of the surface temperature and the 

downwelling surface infrared fluxes between the modeled values from AR-85 and the observed 

values from the site of La Porte in Houston [Zamora et al., 2003; 20051. The modeled surface 

temperature and the downwelling surface infrared fluxes are in generally agreement with the 

observations, although the model tends to slightly overestimate the surface temperature and 

underestimate the downwelling surface infrared fluxes. The sharp decrease in observed 

temperature at 480 min is attributed to a storm occurring at that site. The maximum difference 

in the downwelling surface infrared fluxes between the modeled and observed values is only 

about 10 W m-2. Because of the poor data quality of the sensible and latent heat fluxes in 



observations, comparisons of those parameters with the values fiom the MM5 simulations in 

the study of surface heat fluxes [Zamora et al., 20031 are provided. The modeled maximum 

sensible and latent heat fluxes from AR-85 are about 3 14 and 3 18 W m-2, occurring at 330 and 

250 min, respectively. They are consistent with the values of 310 and 300 W m-? at 360 and 300 

min, respectively, fiom MM5 simulations. Also, the modeled maximum surface solar flux is 

945 W rn-2, consistent with the observed value of 960 W m-2. The good agreement of these 

parameters with the observations and simulations indicates that the surface model responds 

correctly to the changes in net radiation and the coupled system is able to provide robust 

simulations. The overestimation of surface temperature and the earlier peak for heat fluxes have 

also been observed in some other model studies with PLACE [Mohr et al., 2003; Alonge et al., 

20071. 

In addition, the simulated cloud optical depth (z,) is compared with the observed z, from 

MODIS satellite observations for deep convective clouds in the area. By averaging the zc values 

ii-orn 40 -100 (deep convective clouds), the model yields a value of about 69, close to the 

observed average value of 73 for the period of August 2002. The analysis of satellite 

observations indicates that the average zc for deep convective clouds from 2002 to 2006 does 

not change appreciably. 

4. Results and Discussion 

4.1 Aerosol radiative effects (ARE) 

Comparisons are made between the simulations with (AR-85) and without the ARE 



WAR-00). Figure 3 shows the time series of cloud microphysical fields averaged over all 

cloudy grids from 120-480 min. Note that the aerosol composition and initial size disb-ibution 

are the same for these two simulations. The differences in droplet number concentration 

between NAR-00 and AR-85 are insignificant since the droplet number is mainly determined 

by aerosol composition and size distribution (Figure 3a). However, the simulation with the 

ARE (AR-85) has much lower ice particle concentrations than that without the ARE (NAR-00) 

(Figure 3b). The liquid water path (LWP) and ice water path (IWP) for the two cases are 

presented in Figures 3c and 3d, respectively. The LWP is defined as the sum of the 

mass-integrated mixing ratios of cloud water and rain water that determine water clouds, while 

IWP is defined as the sum of the mass-integated mixing ratios of ice crystal, snow, graupel, and 

hail that determine the ice clouds. With the inclusion of the ARE, both LWP and IWP decrease 

significantly (Figures 3c and 3d). Also as shown in Figure 3, the peak values of cloud 

microphysical properties are delayed when the ARE is considered. The averaged cloud 

microphysical properties over the cloudy grids and during the simulation time from 120 to 480 

min are shown in Table 3. The average ice particle number concentration (N,) in AR - 85 is about 

35% lower than that in NAR-00. The average LWP and IWP decrease by about 15% when 

including the ARE. The ice microphysical properties respond more significantly to the ARE 

than the warm-cloud microphysical properties. With the ARE, the droplet effective radius (re) 

becomes significantly smaller, as shown in Figure 4. The average re decreases from 5.9 pnl in 

NAR - 00 to 5.6 pm in AR-85 (Table 3). The vertical profile of r,(Figure 4b) reveals that the 

differences in re are especially noticeable at heights above 6 km, probably because ice processes 



are more sensitive to aerosol radiative effects. 

The direct radiative effect of strongly absorbing aerosols reduces the incoming solar 

radiative fluxes at the surface. The reduction in the surface radiative fluxes leads to a decrease 

in surface heat fluxes and consequently suppresses convection. Figure 5 presents the temporal 

variation of the updraft velocity averaged over the grids with a velocity greater than 1.0 m/s in 

the siimlation domain. Generally, the convective strength is significantly weaker in AR-85 

than that in NAR-00. The averaged domain-maximum updraft velocity (v,,,) during 120-480 

anin is about 5.0 m/s in NAR-00 and 4.6 m/s in AR-85. The comparisons of surface 

teanperahlre and heat fluxes between AR-85 and NAR-00 are shown in Figure 6. With the ARE, 

the average surface temperature decreases by about 0.35 K. The surface sensible heat fluxes 

decrease by up to 28 W m-" but the latent heat fluxes decrease less significantly than the 

sensible heat fluxes. The decrease in surface heat fluxes suppresses convection and results in 

less cloudiness. Moreover, the semi-direct effect of BC heats air and leads to a more stable and 

dryer atmosphere, and consequently decreases cloud cover and LWP. The weaker convective 

strength leads to shallower clouds and then weaker ice processes, resulting in less ice particle 

concentrations and IWP. As show in Figure 7a, the cloud fractions (Gld) averaged over the entire 

domain in AR-85 are significantly less than those in NAR-00. TheLld decreases by about 18% 

on average (Table 3), with the maximum of over 60%, when the ARE is considered. The cloud 

optical depth (z,) also decreases significantly (Figure 7b), with an average value of over 20% 

(Table 39. Figure 8 illustrates the vertical profiles of the heating rates averaged over the 

sirnulation time of 120-480 min. The heating rates below 5 krn in AR - 85 are significantly 



higher than those in NAR-00 due to aerosol absorption. The peak heating rate is at about 2 kan 

with an average value of 2.7 K daye' in AR-85, which is about 0.6 K dayF' higher than that in 

NAR - 00. An extra 0.6 K day-' of heating rate resulting from the ARE dries the atmosphere and 

bums the lower clouds, contributing to significant decreases in cloud fraction and cloud optical 

depth as shown in Figure 7. The decreases in LWP, cloud fraction, and cloud optical depth by 

including the ARE have also been found in Jiang and Feingold [2006] for warm convective 

clouds. 

The aerosol radiative effects impact precipitation dramatically. The domain-averaged rain 

rate (r,,,,) during 120-480 min is reduced by about 50% (Table 3). With the ARE (AR-851, the 

accumulated rain per grid shown in Figure 9 decreases by a factor of 2. The decrease en 

precipitation primarily results from the shallower clouds due to weaker convection and the 

desiccation of the cloud layers caused by aerosol semi-direct effect. 

In order to estimate the aerosol radiative forcing, the simulations SA - 100 and SAG 100 - 

with the background aerosols (ammonium sulfate only) are conducted for the polluted and 

clean conditions, respectively, with the inclusion of the ARE. Without the absorbing colnponent 

of aerosols, the cloud fraction and cloud optical depth shown in Figure 7 for SA-100 are close 

to those for NAR - 00, but significantly higher than those for AR - 85. The clean case (SAG - 100) 

has the largest cloud cover and lowest cloud optical depth, relating to much more convective 

cells and much larger droplet sizes (Figure 7 and Table 3). The simulations without the 

absorbing component of aerosols (i.e., SA-100 and SAC-100) have the similar vertical profiles 

of the heating rates with the simulation without the ARE (NAR - OO), as shown in Figure 8. The 



difference in the average surface temperature between the SA-100 and NAR - 00 is about 0.25 

K, and the differences in the sensible and latent heat fluxes are only a few W m-2. Therefore, the 

scattering effect of ammonium sulfate on surface heat fluxes is small. Also as shown in Table 3, 

5% - 100 has a higher cloud droplet number concentration (253.3 ~ m ' ~ )  than NAR-00 (191.2 

resulting from the CCN activation processes. The higher droplet number concentrations 

are responsible for the smaller droplet size in SA-100. Although the clean case (SAC-100) has 

a lower cloud droplet and ice particle number concentration, LWP and IWP are higher because 

of the higber mass content of liquid water and ice water due to efficient growth (Table 3). 

However, compared with three polluted cases (NAR-00, AR-85, and SA-IOO), the ice particle 

nuinber concentrations and IWP in SAC-100 are much lower, indicating a weaker ice process 

in the clean case due to much less droplet number concentrations and much stronger warm rain 

processes (coalescence). Figure 9 shows much more precipitation for the clean case than for the 

polluted cases. In contrast to the increases in convection and precipitation with aerosols in our 

previous study of aerosol indirect effects on a warm-bubble initiated cumulus cloud [Fan et al., 

2007b1, the convection and precipitation are suppressed by aerosols for the clouds induced by 

the surface heating through radiation, consistent with the study by Jiang and Feingold [2006] 

for warm convective clouds. 

Separate estimates of the direct, semi-direct, and indirect forcing values at the TOA and 

swface (SIFC) are made based on the definitions in McFarquhar and Wang [2006]. The total 

forcing ('&,,I) is the difference in the net radiative fluxes between the simulation for the polluted 

air with BC (AR-85) and the simulation with the clean background aerosols (SAC-I 00). The 



combination of the direct and semi-direct forcing, fd,,,c,+,,,i, is defined as the difference ixz the 

net fluxes between the simulation for the polluted air with BC (AR - 85) and the simulation with 

the polluted background aerosols (SA-100). The difference in the net fluxes between the 

simulation with the polluted background aerosols (SA-100) and the simulation with the clean 

background aerosols (SAC-100) corresponds to the non-absorbing aerosol indirect forcing 

V;ndZrect). The direct forcing of BC, fdirect7 is derived from the difference in the clear-sky net 

fluxes between the simulations of the polluted air with BC (AR-85) and the polluted 

background aerosols (SA). Table 4 summarizes the calculated forcing values for AR-85 

averaged over the entire domain and during the daytime (from 7:00 to 17:OO local tilne). The 

total aerosol radiative forcing, &,[, at the TOA and surface are -1 1.6 and -3 1.9 W ~ n - ~ ,  

respectively, in good agreement with the values of -9 W mm2 at the TOA and -30 Vd rn-' at the 

surface reported over the Bay of Bengal where the aerosols consisted of soot, sulfate, and 

organics [Rarnachandran, 20051. The semi-direct forcing of BC,JenTi, is 10.0 W m-' at the TOA 

and 11.2 W mW2 at the surface. The direct forcing induced by BC is positive (2.2 W m-') at the 

TOA, but is strongly negative at the surface (-17.4 W m*2). The sum of direct and semi-direct 

f~rcing,fd,~.~~,+~,,, warms the TOA by 12.2 W m-' and cools the surface by a smaller magniwcle 

(-6.2 W m-'). Because the semi-direct forcing compensates the direct forcing at the surface, the 

reduction of the surface fluxes due to the ARE is not so significant, as shown in Figure 6. 

Compared with the semi-direct forcing estimates of 15 W m-2 for stratocumulus by Johnson rf 

al. [2004] and of 7.5 W m'" for the trade cumulus by Ackermaa et al. [2000] at the surface, the 

estimates of 11.2 W m-2 reported in the present work is close to the median value between the 



previous studies. Xu et al. [2003] reported a daily-mean surface direct radiative forcing of -1 1.2 

W m-' over Yangtze delta region in China, slightly higher than our daily-mean value of -8.7 W 

nm-' estimated from the daytime-mean value of -17.4 W m-2 because of a larger AOD. The TOA 

indirect radiative forcing sndireci) is estimated to be -23.8 W m-2 and the surfaceJndimct is about 

-25.7 W m-', much higher than those reported over the tropical Indian Ocean (INDOEX) by 

Rawzanathan et al. [2001b]. For much more polluted air in Houston, the aerosol indirect forcing 

should be higher than that for the INDOEX case. 

4.2 Sensitivity to SSA 

Table 5 shows the TOA and surface solar radiative fluxes averaged over the entire domain 

and during the daytime for the simulations with different SSA and the relative net fluxes to the 

pure ammonium sulfate case (i.e., SSA = 1.0). At the TOA, the upwelling fluxes (F?(TOA)) are 

reduced with the decrease of SSA due to the increase of aerosol absorption, leading to an 

increase in the net solar radiative fluxes (F,,,(TOA)). The net TOA solar radiative flux increases 

by 14.05 W m*' when SSA decreases from 1.0 to 0.85, while the net surface solar radiative flux 

decreases by 5.8 1 W m-' because of the decrease of the downwelling radiative flux (F~SFC))  

due to the increase of absorption (Table 5). Increasing aerosol absorption leads to higher 

heating rates in the lower troposphere (Figure 10). The heating rate at 2 km for SSA = 0.85 is 

abou"i.5 1C day-' higher than that for SSA= 1 .O. At the surface, the heating rate for SSA = 0.85 

is also about 0.3 K day-' higher. This surface heating compensates the negative direct forcing, 

causing the surface temperature to be insensitive to SSA. As shown in Table 6, the average 

surface temperature (Tsfc) decreases slightly from 306.09 to 305.98 K as SSA decreases from 



1.0 to 0.85. Consequently, the decreases in the surface sensible (FSH) and latent heat fluxes (FLH) 

with the decrease of SSA are insignificant (Table 6). Huang et al. [2007] also found that the 

surface temperature did not change much because of the canceling effect of semi-direct forchg, 

consistent with the results reported here. 

Figure 11 illustrates the aerosol radiative forcing versus SSA at the TOA (Figure I la) and 

surface (Figure Ilb). All the forcing values correspond to the daytime-means. Aerosol 

absorption generates significant positive direct and semi-direct radiative forcing at the TOA, 

and the semi-direct effect overwhelms the direct effect for moderately or strongly absorbing 

aerosol mixtures (Figure 1 la). The sum of the direct and semi-direct forcing yields only about 

0.6 W m*' positive TOA forcing at SSA = 0.95, but the value increases to 12.1 W m-' at SSA - 
0.85. The TOA total radiative forcing values are strongly negative for all SSA cases due to the 

aerosol indirect effect (Figure lla).  The indirect effect related increase in cloud albedo, and 

subsequently negative TOA forcing, dominates the positive TOA direct and semi-direct forcing 

above the clouds for this case. This is in agreement with the investigation by Keil and Haywood 

[2003] of the radiative forcing of biomass-burning aerosols in Southern African. Also seen 

from Figure 1 la, there is significantly less negative TOA forcing with the decrease of SSA due 

to the absorption of aerosols induced by BC (semi-direct effect). 

At the surface, BC leads to strongly negative direct forcing and the value is up to 17.4 W 

m-2 at SSA = 0.85 (Figure llb). However, the positive semi-direct forcing partially 

compensates the negative direct forcing. Thus, the sum of direct and semi-direct forcing is 

much less negative, with a value of -6.2 W m-2 at SSA = 0.85. Johnson et al. [2004] indicated 



that for marine stratocumulus the semi-direct forcing may well exceed the direct forcing even 

for moderately absorbing aerosols. Both direct and semi-direct effects are very sensitive to SSA 

at the surface. Note that aerosol indirect forcing is dominant for the deep convective clouds. 

Therefore, the surface total radiative forcing is much more negative by including the indirect 

effects, bwt it is not as sensitive to SSA as the TOA total forcing, due to the compensation of 

positive semi-direct forcing. The more strongly negative surface radiative forcing for the lower 

SSA cools the surface and decreases the sensible and latent heat fluxes, leading to weaker 

convection, less cloudiness and hence lower cloud albedo. These effects are enhanced by the 

semi-direct effect of absorbing aerosols, which warms air, enhances the stability of the lower 

atsnosphere, and dries the lower cloud layer. As shown in Table 6, the averaged 

domain-maximum updraft velocity during 120-480 rnin decreases from 4.82 d s  to 4.56 d s ,  

and the cloud fraction decreases from 0.18 to 0.15 with the decrease of SSA from 1.0 to 0.85. 

The domain-averaged cloud optical depth decreases from 5.06 at SSA = 1.0 to 3.83 at SSA = 

0.85. 

As illustrated in the section 4.1, the aerosol radiative effects reduce the precipitation. With 

the increase of absorption (i.e., decrease of SSA), the accumulated rain per grid averaged over 

120 to 480 min decreases significantly (Table 6). The reduction in precipitation with the 

decrease of SSA is likely caused by the increase in thermal stability from the BC-induced 

surface cooling and atmospheric heating, which inhibits cloud formation and dries the clouds. 

The suppressed precipitation has also been found in a study over the east of Asia on the 

radiative effect of core-coated internally mixed aerosols containing BC [Huang et al., 20071. 



5. Conclusion 

A spectral-bin cloud-resolving model Goddard Cloud Ensemble (GCE) coupled with a 

Goddard radiation scheme and an explicit land surface model has been employed to investigate 

the radiative effects of core-coated internally mixed aerosols containing BC on the deep 

convective clouds. An aerosol radiative module has been developed to online calculate the 

wavelength-dependent aerosol radiative properties on the basis of the aerosol composition, size 

distribution, mixing state, and ambient relative humidity. The sensitivity of cloud properties 

and the associated radiative forcing to aerosol single-scattering albedo (SSA) have also been 

examined. 

Aerosol radiative effects on cloud properties are pronounced f o ~  mid-visible SSA of 0.85. 

Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% 

and 20%, respectively. Cloud droplet and ice particle number concentrations, LWP, IWR and 

droplet size decrease significantly when the ARE is introduced. The results also reveal that the 

ice microphysical properties respond much more significantly to the ARE than the warm-ram 

microphysical properties. The ARE causes a surface cooling of about 0.35 K and significantly 

high heating rates in the lower troposphere (about 0.6 K day-' higher at 2 Ian), both of wl~ieh 

lead to a more stable atmosphere and hence weaker convection. The semi-direct effect of 

aerosols dries the atmosphere and bums the cloud layer. The weaker convection and the more 

desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, less LWP and 

IWP, smaller droplet size, and less precipitation resulting from the ARE. The daytlme-mean 



direct forcing induced by black carbon is about 2.2 W m2 at the TOA and -17.4 W m-' at the 

surface for SSA = 0.85. The positive semi-direct forcing of 11.2 W m-' compensates the 

negative direct forcing at the surface, causing a much less negative forcing. Both the TOA and 

surface total radiative forcing values are strongly negative for the deep convective clouds, about 

- 1 1.6 and -3 1.9 W m-', respectively, attributed mostly to aerosol indirect forcing. 

Aerosol direct and semi-direct effects are very sensitive to SSA. The TOA semi-direct 

forcing increases significantly with the decrease of SSA by decreasing the upwelling radiative 

fluxes due to the increase of aerosol absorption. At the surface, decreasing SSA (increasing 

absorption) leads to a significant reduction of direct forcing, and a significant increase of 

semi-direct forcing. Because the positive semi-direct forcing compensates the negative direct 

forcing at the surface, the surface temperature and heat fluxes decrease less significantly. The 

aerosol indirect forcing is dominant for deep convective clouds. The cloud fraction, optical 

depth, convective strength, and precipitation decrease with the increase of absorption, resulting 

from a moire stable and dryer atmosphere due to enhanced surface cooling and atmospheric 

heating. 

Our studies reveal that the aerosol effects on clouds and precipitation are strongly 

dependent on aerosol properties and cloud thermodynamic and dynamic conditions. In our 

previous work of a cumulus cloud initiated by a warm bubble, aerosol indirect effects are found 

to be dominant and lead to stronger convection, larger cloud coverage, and enhanced 

precipitation [Fan et al., 2007a, b]. However, for absorbing aerosols and the clouds induced by 



surface heat fluxes through radiation, aerosol radiative effects are significant, which suppress 

convection and lead to less cloud fraction, lower cloud optical depth, and less precipitation. 
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Table 1 Selected vegetation and soil characteristics used in PLACE 

Vegetation: Broadleaf bushesltrees 
with groundcover 

% Veg. cover 30% 1 Porosity 0.42 

Soil: sandy clay loam 

Albedo 0.14 

Leaf area index 4.0 

Albedo 0.15 

Root prafile layers 0.00 
1-5 0.25 

0.50 
0.20 
0.05 

Saturated hydraulic 6.1 x 1 ov4 
conductivity 

Initial soil moisture 0.1 8-0.2 1 
layers 1-5 0.20-0.22 

0.23-0.26 
0.25-0.28 
0.25-0.28 

Surface roughness 1 .O I % silt 20% 

Biomass heat capacity 5.0 I % Clay 25% 

Minimum stomata1 110.0 
resistance 

Legend: % veg. cover is the percentage of area covered by transpiring vegetation; root profile is the cumulative 

frequency distribution of roots in the 5 soil moisture reservoirs; surface roughness in m; minimum stomata1 

resistance is in s m-I; surface biomass (water-equivalent) heat capacity in J K' in-'. For soil, saturated hydraulic 

conduct~v~ty in in s-'. Initial soil moisture is expressed as volumetric (cm3 ~ m - ~ )  soil moisture, the ratio of the 

volume of soil water to total soil volume. 

% Sand 55% 



Table 2 Aerosol properties in numerical simulations 

Cases Composition a Conc. ( ~ m - ~ )  AOD SSA " AF 

0.9 Ammo. Sulf. 
NAR-oo 0.1 BC 

4 . 2 ~  lo4 0.0 0.0 0.0 

0.9 Ammo. Sulf. 
AR-85 0.1BC 

4 . 2 ~  lo4 0.27 0.85 0.76 

SA-100 1.0 Ammo. Sulf. 4 . 2 ~  lo4 0.25 1.00 0.76 

SAC-1 00 1.0 Ammo. Sulf. 3x10~ 0.009 1.00 0.72 

a Based on mass mixing ratios. 
b The concentration is the sum over the aerosol size distribution diVldln(D,) 

Values shown here are at the wavelength of 0.55 pm. 

Table 3 Cloud properties averaged over 120-480 min for the simulations NAR-00, AR85, 
SA - 100, and SAC-100 

Cases Nc Ni LWP IWP r, Vmax f'rain 

(cm") (cm-'> (g m-'> (g m-7 (pm) " &ld (m/s) ( r n ~ ~ ~ h r )  

NAR - 00 191.15 34.38 335.69 1944.99 5.85 4.83 0.18 4.98 0.06 

Table 4 Estimates of radiative forcing for AR-85 

W m-' TOA SFC 

f total -11.6 -31.9 

f direct+semi 12.2 -6.2 

f direct 2.2 -17.4 

f semi 10.0 11.2 

f indirect -23.8 -25.7 



Table 5 The solar radiative fluxes for different SSA and the relative forcing to pure ammonium 
sulfate (SSA=l .O) 

Net fluxes relative 
SSA F ~ T O A )  F~(TOA) F~(SFC) F~ (SFC) F,,, (TOA) F,,, (SFC) to SSA=I .o 

TOA SFC 

Table 6 Cloud and surface fields for different SSA. 

Accum. 
SSP,  VW,X FSH FLH 

TC j i l d  rain per T s f c  (K) (W m2) (W m-2) 

grid (mm) 



Figure captions 

Figure 1. Initial profiles of temperature (T), dew point (Td), water vapor mixing ratio (w), and 

horizontal winds u and v from a sounding near Houston at 7:00 am on August 24, 

2000. 

Figure 2. Time series of (a) the surface temperature and (b) the downwelling surface infrared 

fluxes from model simulation AR-85 (solid line) and observations (diamond). 

Figure 3. Time series of (a) cloud droplet number concentration, (b) ice particle number 

concentration, (c) LWP, and (d) IWP averaged over the cloud fields for NAR - 00 

(solid) and AR-85 (dotted). 

Figure 4. (a) Time series of average cloud droplet effective radius (r,), and (b) the vertical 

profiles of average re for NAR-00 and AR-85. 

Figure 5. Time series of average updraft velocity for NAR - 00 and AR-85. The values are 

averaged over the velocities greater than % .O mls. 

Figure 6. Time series of average (a) surface temperature, (b) sensible heat flux, and (c) latent 

heat flux for NAR-00 and AR-85. 

Figure 7. Time series of (a) cloud fraction, (b) averaged cloud optical depth over the domain for 

NAR - 00 (solid), AR - 85 (dotted), SA - 100 (dashed), and SAC - 100 (dash-dotted). 

Figure 8. Vertical profiles of the heating rates averaged over the horizontal domain for NAW - 00, 

AR-85, SA-100, and SAC-100. 

Figure 9. Time series of the accumulation rain per grid for NAR - 00, AR - 85, SA-100, and 

SAC-100. 

Figure 10. Vertical profiles of the heating rates averaged over the horizontal domain for SSA of 

0.85 (solid), 0.90 (dotted), 0.95 (dashed), and 1 .OO (dash-dotted). 

Figure 11. The aerosol raidative forcing vs. SSA at the (a) TOA and (b) surface. 



200 220 240 260 280 300 0 5 10 15 -10 -5 0 5 
T & Dew Point (K) w (glkg) U & V (mls) 

Figure 1. 



Figure 2. 





Time (min) 

Figure 4. 



'1 20 

Figure 5. 



NAR 00 1 
AR - 85 j 

- 
4-4 

- 
5 150' 

+- a ,.. 

-1 100' - .- 2 

120 180 240 300 360 420 480 

Time (Min) 

Figure 6 .  



120 180 240 300 360 420 480 

Time (min) 



Figure 8. 

Figure 9. 

180 240 300 360 420 

Time (min) 



Heating rate (k/day) 

Figure 10. 

U 
I +Direct 
2 -5.0 
@ - r- ,Direct + Semi 
.- 5 -10.0 , - - - A - - S e m i  
.- 
u fk... - -X- - Total -. . iZi -15.0 - _ -. 
d x- . .  -. 2 -20.0 -. -. 

%- - -------  &, 
-25.0 

- 4- .Direct e Semi 
- . -& - - Semi 

0.85 0.90 0.95 1 .OO 0.85 0.90 0.95 1 .OO 
SS A SSA 

Figure 1 1. 




