SOFIA
Stratospheric Observatory For Infrared Astronomy

Nans Kunz, NASA Ames Research Center
Al Bowers, NASA Dryden Flight Research Center
Outline

• Heritage & History
• Level 1 Requirements
• Top Level Overview of the Observatory
• Development Challenges
• Highlight Photos
The Great Observatories

- Mt Wilson
- Mt Palomar
- Keck (Hawaii)
Hubble
Hubble Discoveries
HISTORY OF SOFIA

1965-1985

- **1965-1969** First use of NASA aircraft for infrared (IR) astronomy (CV-990 & Lear Jet)
- **1969** Planning started for installation of 36-inch telescope in a CV-990
- **1969** First astronomy community interest in a Boeing 747
- **1971** National Academy of Sciences (NAS) Decade Survey (Greenstein) Report recommended study of Large Airborne Telescope (LAT)
- **1974** First research flight of Kuiper Airborne Observatory; Initial studies on larger system
- **1983-1984** Success of Infrared Astronomy Satellite (IRAS) shows need for follow-up/exploitation
- **1984** "Stratospheric Observatory For Infrared Astronomy (SOFIA) Preliminary Feasibility Study" report issued (10th KAO Anniversary)
- **1985** SOFIA study funding provided – partnership with Germany started
HISTORY OF SOFIA

1986

• JANUARY Ames Research Center (ARC) establishes SOFIA Study Office
• JANUARY Challenger accident
• MAY SOFIA technology workshop at Ames;
• MAY-NOVEMBER Boeing-Military Aircraft Company Phase I Study; Confirms feasibility of installing a 2.5 meter telescope in a 747SP
• JULY Draft of the Memorandum of Understanding (MOU) for Telescope System study established with Germany
• OCTOBER Ames in-house Conceptual System study begins
• NOVEMBER Collaborative agreement made with DFVLR (Deutsche Forschungsanstalt für Luft und Raumfahrt)
• NOVEMBER German Phase A Telescope System studies kickoff

1987

• FEBRUARY Telescope System Phase A Study midterm review at ARC
• FEBRUARY-SEPTEMBER Boeing-MAC Phase II Study
• MAY German Phase A studies completed
• JULY SOFIA concept review held at ARC
• SEPTEMBER Ames Conceptual System study finished; SOFIA "Phase A System Concept Description" (The Red Book) published
HISTORY OF SOFIA

1988

- **JUNE** Space and Earth Sciences Advisory Committee (SESAC) recommends that SOFIA proceed into definition phase
- **JUNE** – Began planning for wind tunnel tests
- **OCTOBER** Phase B (Definition Study) kickoff for Aircraft System at Ames
- **OCTOBER** Phase B (Definition Study) kickoff for Telescope Assembly at Zeiss

1989

- **JANUARY** Telescope fixed at 2.5 meters by NASA HQ/DFVLR agreement
- **FEBRUARY** Wind tunnel model design complete and fabrication begins
- **MAY** Project Definition Review completed at ARC; Found SOFIA well planned and defined and approved the project to proceed into the development phase contingent on a successful completion of wind tunnel test
- **JUNE** Draft MOU for development & operations phases reviewed by Ames & DLR
- **JULY** Non-Advocate Cost Review successfully completed, Affirmation of project readiness for 1991 start; FRG listed as responsible for telescope assembly
- **JULY** Definition studies completed by NASA
- **SEPTEMBER** Telescope and Aircraft System Phase B final reviews are completed and reports published
- **OCTOBER** Boeing re-organizes; No longer interested in "one-off" mods like SOFIA
- **NOVEMBER** Berlin wall falls; Reunification of East and West Germany considered
HISTORY OF SOFIA

1990

- **MARCH** SOFIA I wind tunnel model tests start
- **MAY** DARA budget cuts begin
- **JUNE** Non-Advocate Review is held for SOFIA in accordance with the agency's new start-gate policy; SOFIA deemed ready to proceed to development again and recommended for 1992 start
- **JUNE** Preliminary engineering study of SOFIA Ground Support Facility
- **JUNE** Aircraft System modification procurement activities underway, Source Evaluation Board (S.E.B.) established
- **JULY** Wind tunnel tests successfully completed; A low drag passive shear layer control device derived that exceeds performance expectations
- **OCTOBER** Reunification of Germany, requires reduction of German government agencies' budgets

1991

- **NAS Decade Survey (Bahcall) Report recommends SOFIA as the top priority moderate new missions for NASA**
- **MAY** With the realization of DARA budget cuts, SOFIA plans FY92 to prepare for an all U.S. program with optional help from DARA in FY94
- **MAY** Aircraft Modification Contractors road trip to find companies w/interest/capability to perform the SOFIA aircraft modification
- **JULY - SEPT** In-house descope studies, to reduce total cost; 5 cases considered, one considers an aft cavity location to reduce aircraft modification costs
- **OCTOBER** Aft cavity location adopted as new baseline for the Aircraft System
HISTORY OF SOFIA

1992

- **JANUARY** IR measurements made of the Shuttle Carrier Aircraft (SCA) engine plumes using IR cameras mounted in Lear jet
- **DECEMBER** Final reports of Aircraft Systems NRA concur with Ames in-house study regarding feasibility and cost savings for the aft cavity configuration

1993

- **JUNE** ARC Code R agrees to de-mothball 14 ft wind tunnel for SOFIA test; Test entry planned for 1994
- **AUGUST** Headquarters OSS proposes SOFIA as an FY95 new start to Administration/Comptroller

1994-1995

- SOFIA New Start approved
- Headquarters mandates Privatization concept:
 - "Government owned, contractor operated"
 - "Better-Faster-Cheaper"
- Procurement proceeds for development & operations phase
 - Science organization prime - Government work packages

1996

- **December** - SEB process complete - NASA [contract awarded](#) to USRA-UAL-Chrysler Tech Team
- **December** - DLR [awards contract](#) to team of MAN-G, MAN-T, & KT

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
The Org structure for majority of the development phase
Major Components of SOFIA

Observatory

Science and Mission Operations Center

Science Instruments

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
HISTORY OF SOFIA

Milestones

• 1997
 – System requirement reviews completed (2)
 – Baseline Flight test completed
 – SOFIA V Wind Tunnel test completed
• 1998
 – TA PDR completed
 – AS PDR completed
• 1999
 – Schedule slips
 – 3% S&C wind tunnel tests completed
• 2000
 – TA CDR completed
 – AS CDR completed
 – Schedule continues to slip
• 2001
 – TA ground I&T begins
 – September 11 attack - impacts US airlines
HISTORY OF SOFIA

Contract Milestones

• 2002
 – TA ground testing & Project Final Review completed
 – TA shipped to Waco September 2002
• 2003
 – TA integration into aircraft begins
 – Columbia accident
 – UAL departs SOFIA program under bankruptcy protection (9/11)
• 2004
 – TA functional, SI mounted, First Light August 2004
 – Aircraft Proof pressure test completed
 – DSI selected in Germany to support SOFIA Ops
• 2005
 – Push for flight leads to multiple mishaps then work stoppage
 – Mod audit conducted
 – Per ICSMR recommedations Re-baseline & new approach begins
HISTORY OF SOFIA

Contract Milestones

- **2006**
 - SOFIA Budget zeroed for FY07 budget
 - SORT commissioned to consider options for future
 - GVT conducted on aircraft in June per IMS established 8/2005
 - HQ dropped requirement for FAA certification (Public Use)
 - Budget rebaselined & program office transferred to Dryden
 - Flight Readiness Review started in Oct

- **2007**
 - Airworthiness Flight Safety Review Board on 15 Mar 07
 - First Flight on 26 Apr 07
 - Ferry Flight of SOFIA to Dryden 31 May 07
 - Begin Phase 1 flights (door closed envelope expansion) Sep 25 07?
Heritage

- Kuiper Airborne Observatory is the direct Predecessor to SOFIA
 - Modified C-141 with 36” Diameter Telescope
 - Flew w/open port cavity 1974-1995
 - Cavity in forward fuselage
 - Porous fence was primary Shear Layer Control device
 - Aft Ramp augmentation based on SOFIA development wind tunnel test results was implemented in 1993
 - Flow attachment significantly improved
 - Internal Cabin noise significantly reduced for Open cavity flight
 - Cavity Environment significantly improved
 - Allowed fence position to be lowered from 30° to 10°
 - Reduced drag - improved flight performance
Kuiper Airborne Observatory (KAO)

1974-1995

Lockheed C-300
(Modified C-141)

36” Telescope
KAO Aft Ramp - Passive Flow Fairing

- Installed in 1993
- Developed from wind tunnel test data and research performed during initial development of the SOFIA Shear Layer Control System
- KAO design represents a compromise due to existing OML & cavity door constraint
KAO Aft Ramp - Passive Flow Fairing

- Designed to stabilize the shear layer re-attachment downstream of the open cavity.
- Enabled KAO to fly with the cavity fence at 10° instead of 30°
- Reduced Shear layer thickness
- Significant improvements in “Seeing”
- Reduced cavity aero-acoustics
- Reduced structural fatigue in and around cavity
- Pilot noticed improvements in open door flight
SOFIA - Airborne Astronomy Size Comparison

SOFIA - OPERATIONAL 2001
AIRCRAFT - BOEING 747SP
MAXIMUM GROSS WEIGHT - 703,000 lb
TELESCOPE APERTURE - 98 in. diam (2.5 m)

KAO - OPERATIONAL 1975
AIRCRAFT - LOCKHEED C-141A
MAXIMUM GROSS WEIGHT - 326,000 lb
TELESCOPE APERTURE - 36 in. diam (0.91 m)

LEARJET OBSERVATORY - OPERATIONAL 1965
AIRCRAFT - LEARJET, MODEL 24
MAXIMUM GROSS WEIGHT - 15,000 lb
TELESCOPE APERTURE - 11.8 in. diam (0.3 m)
SOFIA - Requirements/Specifications

- Wavelength Range 0.3 - 1600 microns
- Unvignetted elevation range 20° to 60° above the horizon
- Configuration: Instrument Access in Cabin
- Telescope effective Aperture Diameter 2.5 meters
- Time at ≥ 41,000 feet ≥ 6 hours
- Observing hours per year ≥ 960
- Lifetime ≥ 20 years
- PI Teams per year capability ≥ 40
- Education Goals: NASA OSS Guidelines
- Airworthiness: FAR FAA Certification
- IR functional capabilities: chopping, nodding, & scanning
- Image quality 80% encircled energy within 1.5 arcsec at visible wavelength
- Image stability at focal plane 0.2 arcsec rms

Combined to 80% encircled energy within 5.3 arcsec diameter image size at First Science Flight improving to 1.6 arcsec within 3 years.
Location of future cavity opening
Pressurized Cabin - containing mission equipment, the science instrument, the flight crew, the observatory crew, and the scientists

Open Port cavity - containing telescope

New pressure bulkhead
Airborne Observatory Layout

- Mission Control & Science Operation Section
- Education & Public Outreach Section
- Pressure Bulkhead
- Open Port Telescope Cavity
- Science Instrument
- Cavity Door System
- Telescope 2.7m
- Cavity Environmental Control System
2.5 Meter effective aperture

- Aircraft Size
- Large 2.7 Meter Primary Mirror
- “Fast” Mirror to fit within aircraft
 - Drives alignment/stiffness requirements

Telescope Size is Maximum that can fit Available Volume
Telescope Optical Layout
2.5 Meter effective aperture
Major Telescope Components

Science Instrument

Counter Weight

Hydraulic System

Motors

Brakes

Bearing Sphere

Focal Plane Imager

Forward Bulkhead

Cameras

Vibration Isolation

Primary Mirror M1

M3-1

M3-2

M2
Telescope pre-ship integration
Configuration: Instrument Access in Cabin

Cabin Side
- Shirt Sleeve Environment

Cavity Side
- Open to Atmosphere
 (0.18 atm - -40°C)

Pressure Bulkhead
- Thermal & Pressure Boundary

Forward
New Pressure Bulkhead
Bulkhead Simulator for TA Integration
Large Structural Opening

- Unvignetted Elevation Range (20° - 60°)
Cavity Door System

- Upper Rigid Door (URD)
- Inflatable Seal
- Aperture
- Lower Flexible Door (LFD)
- Door Snubbers
- Seal Inflation System
- Aircraft Forward Direction
- Upper Rigid Door Drive

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Technical Challenges

- Open Port cavity
 - Final Verification pending completion of Flight Tests
 - Influence on aircraft Stability & Control
- Acoustic Issues
 - Resonance
 - Structural Fatigue
 - Environment for Telescope Performance
- Drag (aircraft performance)

<table>
<thead>
<tr>
<th>Structural Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
</tr>
<tr>
<td>Stiffness</td>
</tr>
<tr>
<td>Transition to unmodified areas</td>
</tr>
</tbody>
</table>
Technical Challenges

- Thermal Environment
 - Systems exposure
 - Science performance

- Cavity Door
 - Accommodate fuselage deformation
 - Track Telescope motion
 - Drive system safety

- Lightweight Primary Mirror
- Rotational Isolation System
 - KAO used air bearing but this technology does not scale well…
SOFIA Wind Tunnel Testing Overview

7% Scale Tests
- SOFIA I - March 1990 to July 1990 - Forward Cavity configuration
- SOFIA II - June 1994 to August 1994 - Aft Cavity configuration
- SOFIA III - February 1995 -SP only - Aperture Geometry - TA loads
- SOFIA IV - Sept 1995 to Dec 1995 Door design space evaluation
- SOFIA V - November 1997
 - Adjustment of Boundary Layer profile to match Baseline Flight tests
 - Verification of Final Partial External Door (PED) Design
 - Measurement of loads on Final Telescope design (pointing performance)
 - Measurement of loads for use in PED design

3% Scale Tests
Stability & Control - measure aero-coefficients between baseline 747-SP and SOFIA and provide substantiation for reduced flight test program
- Low Speed Tests - University of Washington Kirsten Wind Tunnel
- High Speed Tests - Boeing Transonic Wind Tunnel
 - November 1998
SOFIA 7% model in Ames 14ft Transonic Wind Tunnel

Primarily used to development shear layer control design technology and to determine cavity acoustic environment and resultant loads on Telescope
SOFIA CFD Predictions

- Example of CFD flow over the mod
• Stab & Control
• Negligible change in drag and pitching moment
• No other F&Ms affected
Objectives

- Per all Test and Analyses completed, data indicates Objectives will be met
 - Minimal impact on Stability & Control of Aircraft
 - Robust - Non resonating cavity (structural/safety)
 - “Quiet” cavity for optimum TA pointing performance
 - Minimize drag to maintain Aircraft performance
 - Optimize Aero-Optic performance “seeing” for short wave length image quality performance
- Flight Testing is remaining step to Verify
Summary

- SOFIA SLC development began with KAO heritage
- Open port cavity/SLC issues identified early (1980’s) as risk areas
 - Risk reduction activities were planned & completed accordingly
- Eight Separate Wind Tunnel Test Series Completed
 - Results Indicate:
 - Shear layer control implementation will provide quiet well behaved cavity acoustic environment
 - Stability & Control of aircraft will be essentially unaffected
- Multiple CFD and other analyses completed
 - Results concur with wind tunnel tests and provide additional data
- Multiple Independent Reviews Concur with approach
 - Latest NESC review extensively examined test and analysis data and planned program approach and recommend proceeding to flight test
- All data indicates that SOFIA will fly like an unmodified 747-SP
Telescope arrival in Waco- Sept 2002
Unloading Telescope Pieces
Inside aircraft just before SUA installation

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Lowering SUA into cavity
SOFIA Stratospheric Observatory for Infrared Astronomy

Presenter: Nans Kunz 650-604-5988 Nans.Kunz@nasa.gov Al Bowers 661-276-3716 Al.Bowers@nasa.gov
Primary Mirror Installation
7/15/03
Telescope inside Aircraft Cavity
First Light
August 2004
Roll out from paint hangar September 2006
First Flight
Ferry to Dryden