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Abstract 

 

This report presents the mechanical verification of a 

simplified model of a rapid Byzantine-fault-tolerant self-stabilizing 

protocol for distributed clock synchronization systems.  This 

protocol does not rely on any assumptions about the initial state of 

the system.  This protocol tolerates bursts of transient failures, and 

deterministically converges within a time bound that is a linear 

function of the self-stabilization period.  A simplified model of the 

protocol is verified using the Symbolic Model Verifier (SMV) 

[SMV].  The system under study consists of 4 nodes, where at most 

one of the nodes is assumed to be Byzantine faulty.  The model 

checking effort is focused on verifying correctness of the simplified 

model of the protocol in the presence of a permanent Byzantine 

fault as well as confirmation of claims of determinism and linear 

convergence with respect to the self-stabilization period.  Although 

model checking results of the simplified model of the protocol 

confirm the theoretical predictions, these results do not necessarily 

confirm that the protocol solves the general case of this problem.  

Modeling challenges of the protocol and the system are addressed.  

A number of abstractions are utilized in order to reduce the state 

space. Also, additional innovative state space reduction techniques 

are introduced that can be used in future verification efforts 

applied to this and other protocols. 
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1.  Introduction 

 

The concept of self-stabilizing distributed computation was first presented in a classic 

paper by Dijkstra [Dijkstra 1974].  In that paper, he speculated whether it would be possible for a 

set of machines to stabilize their collective behavior in spite of unknown initial conditions and 

distributed control.  A fundamental criterion in the design of a robust distributed system is to 

provide the capability of tolerating and potentially recovering from failures that are not 

predictable in advance.  Overcoming such failures is most suitably addressed by tolerating 

Byzantine faults [Lamport 1982].  There are many algorithms that address permanent faults 

[Srikanth 1987], where the issue of transient failures is either ignored or inadequately addressed.  

There are many efficient Byzantine clock synchronization algorithms that are based on 

assumptions on initial synchrony of the nodes [Srikanth 1987, Welch 1988] or existence of a 

common pulse at the nodes, e.g. the first protocol in [Dolev 2004].  There are many clock 

synchronization algorithms that are based on randomization and, therefore, are non-

deterministic, e.g. the second protocol in [Dolev 2004]. 

 

Solving these special cases is insufficient to claim that an algorithm is self-stabilizing.  

The main challenges associated with self-stabilization are the complexity of the design and the 

proof of correctness of the protocol.  Another difficulty is achieving an efficient convergence 

time for the proposed self-stabilizing protocol.  Typically, verification of a protocol is conducted 

by the composition of a paper-and-pencil proof.  Verification of such proofs is another challenge 

associated with self-stabilization, especially as the complexity of the protocol increases.  Such 

proofs are error prone.  One recent work in this area is the algorithm developed by Daliot et al 

[Daliot 2003] called the Byzantine self-stabilization pulse synchronization (BSS-Pulse-Synch) 

protocol.  A flaw in BSS-Pulse-Synch protocol was found and documented in a report by 

Malekpour et al. [Malekpour 2006A].  Such flaws are harder to pinpoint in the proof argument 

than finding a counterexample via simulation or model checking. 

 

Another technique sometimes used to verify the correctness of a design is based on 

extensive simulation but it too can miss significant errors when the number of possible states is 

very large.  Simulation of specific scenarios requires proper set up of the system for each case.  

As the number of cases to be examined increases, this process becomes impractical. 

 

Model checking is a method for mechanically verifying finite-state concurrent systems.  

Specifications about the system are expressed as temporal logic formulas, and efficient symbolic 

algorithms are used to traverse the model defined by the system and check if the specification 

holds or not.  The verification procedure is an exhaustive search of the state space of the design.  

As a result, model checking is a viable means for mechanically verifying the claims of a 

distributed clock synchronization protocol.  Model checking also provides insight into the 

behavior of the system even if it cannot fully explore the entire state space.  Therefore, model 

checking is a practical alternative for accessing correctness of a protocol and proving correctness 

of a protocol instance. 

 

This report presents model checking efforts in support of the claims of a rapid Byzantine-

fault-tolerant self-stabilizing protocol for distributed clock synchronization systems [Malekpour 
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2006B, 2006C].  In particular, this effort encompasses the verification of correctness of a 

simplified model of the protocol by confirming that a candidate system self-stabilizes from any 

state and tolerates bursts of transient failures in the presence of permanent Byzantine faulty 

nodes.  A permanent Byzantine faulty node is a node with arbitrarily malicious behavior.  This 

effort, furthermore, includes the verification of claims of determinism and linear convergence of 

the simplified model of the protocol with respect to the self-stabilization period and in the 

presence of permanent Byzantine faulty nodes.  Although model checking results of the 

simplified model of the protocol are promising, these results do not necessarily imply that the 

protocol solves the general case of this problem. 

 

N2

N3N4

N1

 
 

Figure 1.  A 4-node system. 

 
As shown in Figure 1, the system under study consists of 4 nodes, where 3 of the nodes 

are assumed to be good and one of the nodes is Byzantine faulty.  Toward this objective, a 

number of abstractions and reduction techniques are devised to reduce the state space.  Also, in 

order to further reduce the state space to a more manageable size, system parameters are reduced 

to their minimal values.  The amount of memory needed for the construction of the Binary 

Decision Diagram (BDD) readily reaches the 4GB available after construction of the state space.  

Therefore, model checking of larger and more complex systems poses a greater challenge. 

 

The following sections describe the model checking efforts in detail.  The report begins 

with a description of the protocol followed by a brief history of the model checking effort.  

Modeling specifications and abstractions used in describing a basic case of this protocol are 

described in the following section.  The underlying topology and network models are defined, 

followed by the SMV models of the individual parts.  The propositions are then enumerated.  A 

summary of the model checking results is presented.  Additional reduction techniques are also 

introduced, followed by the concluding remarks. 

 

 

2.  The Protocol 

 

A distributed system is defined to be self-stabilizing if, from an arbitrary state and in the 

presence of bounded number of Byzantine faults, it is guaranteed to reach a legitimate state in a 

finite amount of time and remain in a legitimate state as long as the number of Byzantine faults 

are within a specific bound.  A legitimate state is a state where all good clocks in the system are 

synchronized within a given precision bound. 
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The self-stabilization problem has two facets.  First, it is inherently event-driven and, 

second, it is time-driven.  Most attempts at solving the self-stabilization problem have focused 

only on the event-driven aspect of this problem.  The protocol presented here properly merges 

the time and event driven aspects of this problem in order to self-stabilize the system in a gradual 

and yet timely manner.  Furthermore, this protocol is based on the concept of a continual 

vigilance of the state of the system in order to maintain and guarantee its stabilized status, and a 

periodic reaffirmation of nodes by declaring their internal status.  Finally, initialization and/or 

reintegration are not treated as special cases.  These scenarios are regarded as inherent parts of 

this self-stabilizing protocol. 

 

The self-stabilization events are captured at a node via a selection function that is based 

on received valid messages from other nodes.  When such an event occurs, it is said that a node 

has accepted or an accept event has occurred.  In order to achieve self-stabilization, the nodes 

communicate by exchanging two self-stabilization messages labeled Resync and Affirm.  The 

Resync message reflects the time-driven aspect of this self-stabilization protocol, while the 

Affirm message reflects the event-driven aspect of it.  The Resync message is transmitted when a 

node realizes that the system is no longer stabilized or as a result of a resynchronization timeout.  

The Affirm message is transmitted periodically and at specific intervals primarily in response to a 

legitimate self-stabilization accept event at the node. 

 

The time difference between interdependent consecutive events is expressed in terms of 

the minimum event-response delay, D, and network imprecision, d.  As a result, the approach 

presented here is expressed as a self-stabilization of the system as a function of the expected time 

separation between the consecutive Affirm messages, ∆AA.  To guarantee that a message from a 

good node is received by all other good nodes before a subsequent message is transmitted, ∆AA is 

constrained such that ∆AA ≥ (D + d).  Unless stated otherwise, all time dependent parameters of 

this protocol are measured locally and expressed as functions of ∆AA. 

 

Three fundamental parameters characterize the self-stabilization protocol presented 

here, namely K, D, and d.  The number of faulty nodes, F, the number of good nodes, G, and the 

remaining parameters that are subsequently enumerated are derived parameters and are based 

on these three fundamental parameters.  Furthermore, except for K, F, G, TA and TR, which are 

integer numbers, other parameters are real numbers.  In particular, ∆AA is used as a threshold 

value for monitoring of proper timing of incoming and outgoing Affirm messages.  The derived 

parameters TA = G - 1 and TR = F + 1 are used as thresholds in conjunction with the Affirm and 

Resync messages, respectively. 

 

The assessment results of the monitored nodes are utilized by the node in the self-

stabilization process.  The node consists of a state machine and a set of (K-1) monitors.  The state 

machine has two states, Restore state (T) and Maintain state (M), that reflect the current state of 

the node in the system as shown in Figure 2, where Resync messages are represented as R and 

Affirm messages are represented as A. 
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Figure 2.  The node state machine. 

 

2.1.  Transitory Conditions 
 

The transitory conditions enable the node to migrate to the Maintain state and are 

defined as: 

1. The node is in the Restore state,  

2. At least 2F accept events in as many ∆AA intervals have occurred after the node entered 

the Restore state, 

3. No valid Resync messages are received for the last accept event. 

 

 

2.2.  Message Validity 
 

Starting from the last transmission of the Resync message consecutive Affirm messages 

are transmitted at ∆AA intervals, where ∆AA ≥ (D + d).  In [Malekpour 2006B, 2006C] ∆RR,min is 

defined to be ∆RR,min = 2F∆AA + 1 clock ticks.  At the receiving nodes, the following definitions 

hold: 

 

– A message (Resync or Affirm) from a given source is valid if it is the first message from 

that source.  A message shall remain valid for the duration of one ∆AA. 

– An Affirm message from a given source is early if it arrives earlier than (∆AA - d) after 

previous valid message (Resync or Affirm) from the same source. 

– A Resync message from a given source is early if it arrives earlier than ∆RR,min after 

previous valid Resync message from the same source. 

– An Affirm message from a given source is valid if it is not early. 

– A Resync message from a given source is valid if it is not early. 

 

 

2.3.  System Assumptions 
 

1. The cause of transient faults has dissipated. 

2. All good nodes actively participate in the self-stabilization process and correctly execute 

the protocol. 

3. At most F of the nodes are faulty. 

4. The source of a message is distinctly identifiable by the receivers from other sources of 

messages. 

5. A message sent by a good node will be received and processed by all other good nodes 

within ∆AA, where ∆AA ≥ (D + d). 
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6. The initial values of the state and all variables of a node can be set to any arbitrary value 

within their corresponding range (In an implementation, it is expected that some local 

capabilities exist to enforce type consistency of all variables.) 

 

 

2.4.  Protocol Functions  
 

The functions used in this protocol are described in this section. 

 

Two functions InvalidAffirm() and InvalidResync() are used by the monitors.  The 

InvalidAffirm() function determines whether or not a received Affirm message is valid.  The 

InvalidResync() function determines if a received Resync message is valid.  When either of these 

functions returns a true value, it is indicative of an unexpected behavior by the corresponding 

source node. 

 

The Accept() function is used by the state machine of the node in conjunction with the 

threshold value TA = G - 1.  When at least TA valid messages (Resync or Affirm) have been 

received, this function returns a true value indicating that an accept event has occurred and such 

an event has also taken place in at least F other good nodes.  When a node accepts, it consumes 

all valid messages used in the accept process by the corresponding function.  Consumption of a 

message is the process by which a monitor is informed that its stored message, if it existed and 

was valid, has been utilized by the state machine. 

 

The Retry() function determines if at least TR other nodes have transitioned out of the 

Maintain state, where TR = F +1. When at least TR valid Resync messages from as many nodes 

have been received, this function returns a true value indicating that at least one good node has 

transitioned to the Restore state.  This function is used to transition from the Maintain state to the 

Restore state. 

 

The TransitoryConditionsMet() function determines proper timing of the transition from 

the Restore state to the Maintain state.  This function keeps track of the accept events, by 

incrementing the Accept_Event_Counter, to determine if at least 2F accept events in as many ∆AA 

intervals have occurred.  It returns a true value when the transitory conditions are met. 

 

The TimeOutRestore() function uses PT as a boundary value and asserts a timeout 

condition when the value of the State_Timer has reached PT.  Such a timeout triggers the node to 

reengage in another round of self-stabilization process.  This function is used when the node is in 

the Restore state. 

 

The TimeOutMaintain() function uses PM as a boundary value and asserts a timeout 

condition when the value of the State_Timer has reached PM.  Such a timeout triggers the node to 

reengage in another round of synchronization.  This function is used when the node is in the 

Maintain state. 

 

In addition to the above functions, the state machine utilizes the TimeOutAcceptEvent() 

function.  This function is used to regulate the transmission time of the next Affirm message.  
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This function maintains a DeltaAA_Timer by incrementing it once per local clock tick and once 

it reaches the transmission time of the next Affirm message, ∆AA, it returns a true value.  In 

response to such a timeout, the node broadcasts an Affirm message. 

 

 

2.5.  The Self-Stabilizing Clock Synchronization Problem 
 

To simplify the presentation of this protocol, it is assumed that all time references are 

with respect to a real time t0, where t0 = 0 when the system assumptions are satisfied, and  for all 

t > t0 the system operates within the system assumptions.  Let  

• C be the bound on the maximum convergence time,  

• ∆Local_Timer(t), for real time t, the maximum difference of values of the local timers of any 

two good nodes Ni and Nj, where Ni, Nj ∈ KG, and KG is the set of all good nodes, and  

• ∆Precision, also referred to as self-stabilization precision, the guaranteed upper bound on the 

maximum separation between the local timers of any two good nodes Ni and Nj in the 

presence of a maximum of F faulty nodes, where Ni, Nj ∈ KG. 

 

A good node Ni resets its variable Local_Timeri periodically but at different points in 

time than other good nodes.  The difference of local timers of all good nodes at time t, 

∆Local_Timer(t), is determined by the following equation while recognizing the variations in the 

values of the Local_Timeri across all good nodes. 

∆Local_Timer(t) = min ((Local_Timermax(t) – Local_Timermin(t)),  

         (Local_Timermax(t - ∆Precision) – Local_Timermin(t - ∆Precision))), 
where, 

Local_Timermin(x) = min ({Local_Timeri(x) | Ni ∈ KG}),  

Local_Timermax(x) = max ({Local_Timeri(x) | Ni ∈ KG}), and 

 

There exist C and ∆Precision: 

Convergence:  ∆Local_Timer(C) ≤ ∆Precision  

Closure:          ∀ t, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision 

 

The values of C, ∆Precision, and the maximum value for Local_Timeri, Local_Timer_Max, are 

determined to be: 

C = (2PT + PM) ∆AA, 

∆Precision = (3F - 1) ∆AA - D + ∆Drift, 

Local_Timer_Max = PT + PM,  

 

and the amount of drift from the initial precision is given by 

∆Drift = ((1+ρ) - 1/(1+ρ)) PEffective ∆AA. 

 

Note that since Local_Timer_Max > PT /2 and since the Local_Timer is reset after reaching 

Local_Timer_Max (worst case wraparound), a trivial solution is not possible. 
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2.6.  The Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock 

Synchronization Systems  
 

The presented protocol is described in Figure 3 and consists of a state machine and a set 

of monitors which execute once every local oscillator tick. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The self-stabilization protocol. 

Monitor: 

case (incoming message from the 

corresponding node) 

{Resync: 
if InvalidResync() then 

Invalidate the message 

 

else 

Validate and store the message,  

Set state status of the source. 

 

Affirm:  
if InvalidAffirm() then 

Invalidate the message 

else 

Validate and store the message.  

 

Other:   
Do nothing. 

 

} // case 
 

Node: 

case (state of the node) 

{Restore:  
if TimeOutRestore() then  

Transmit Resync message, 

Reset State_Timer, 

Reset DeltaAA_Timer, 

Reset Accept_Event_Counter, 

Stay in Restore state, 

 

elsif TimeOutAcceptEvent() then 

Transmit Affirm message, 

Reset DeltaAA_Timer, 

if Accept() then  

Consume valid messages, 

Clear state status of the sources, 

Increment Accept_Event_Counter, 

if TransitoryConditionsMet() then 

Reset State_Timer, 

Go to Maintain state, 

else 

Stay in Restore state. 

 else 

Stay in Restore state., 

else 

Stay in Restore state. 

 

Maintain: 
if TimeOutMaintain() or Retry() then 

Transmit Resync message, 

Reset State_Timer, 

Reset DeltaAA_Timer, 

Reset Accept_Event_Counter, 

Go to Restore state,  

 

elsif TimeOutAcceptEvent() then 

if Accept() then  

Consume valid messages., 

if (State_Timer = ∆Precision) 
Reset Local_Timer., 

Transmit Affirm message, 

Reset DeltaAA_Timer, 

Stay in Maintain state,  

 

else 

Stay in Maintain state. 

} // case  
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2.7.  Semantics of the pseudo-code 

• Indentation is used to show a block of sequential statements. 

• ‘,’ is used to separate sequential statements. 

• ‘.’ is used to end a statement. 

• ‘.,’ is used to mark the end of a statement and at the same time to separate it from other 

sequential statements. 

 

3.  Mechanical Verification 

 

Several approaches were explored toward the mechanical verification of the correctness 

of the initial design of this protocol.  This effort started, chronologically, by simulation of the 

known cases and grew into model checking of all scenarios using various model-checking tools.  

Initially, verification of a self-stabilizing protocol for a 4-node system seemed deceptively trivial, 

but in time its complexity became clearer. 

 

The initial model of the 4-node system required more memory for the construction of the 

state space than the available 2GB of memory.  As a result, many abstractions were made and a 

number of reduction techniques were devised to circumvent the state space explosion problem.  

Some of the techniques used are explained in the following sections. 

 

 

3.1.  Simulation 
 

The first mechanical verification was accomplished using a VHSIC Hardware 

Description Language (VHDL)
1
 implementation that verified the proper operations of the 

protocol for specific cases.  The VHDL tools run on a PC with 1GB of memory under the 

Windows 2000 operating system.  The VHDL environment is primarily suited for simulation of 

specific scenarios where examination of the known cases requires proper set up of the system for 

each case, separately.  The simulation effort provided the sanity checks needed to embark into 

more complex model checking efforts.  Nevertheless, within the simulation environment, proper 

operation of the protocol under fault-free conditions were examined and verified.  Proper 

operation of the protocol in the presence of faults and for the known scenarios were also 

examined and verified.  As the number of cases to be examined increased, this process became 

impractical.  As a result, and in an effort to examine all possible scenarios, this approach was 

abandoned in favor of symbolic model checkers. 

 

 

3.2.  SMV 
 

The Symbolic Model Verifier (SMV) was used in the second attempt at modeling of this 

protocol on a PC with 2GB of memory running Linux.  SMV allows the designers to formally 

verify temporal logic properties of finite state systems.  Developers use SMV to verify the design 

for all possible input sequences, instead of a chosen selection of sequences as in simulation.  

                                                 
1
 Very High Speed Integrated Circuit (VHSIC) Hardware Description Language. 
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SMV’s language description and modeling capability provide relatively easy translation from 

VHDL.  SMV also provides the desired capability to introduce randomness into the initial values 

of the variables.  Despite many abstractions employed, the model’s large state space was beyond 

SMV’s capability for the available platform.  In fact, the amount of memory needed for the 

construction of the Binary Decision Diagram (BDD), approximately 10
44

 initial states, readily 

exceeded the 2GB available on the PC after a few steps.  To further reduce the state space, only a 

subset of critical scenarios was selected.  Although this subset was much larger than the number 

of simulation cases, it still lacked the full coverage needed to rule out unforeseen scenarios. 

 

Clearly, more memory and computing power were needed.  A new PC with 4GB of 

memory running Linux was purchased.  Once again, the amount of memory needed by SMV 

readily exceeded the 4GB available memory. 

 

 

3.3.  SMART 
 

The next modeling effort of this protocol was in Stochastic Model checking Analyzer for 

Reliability and Timing (SMART) [Ciardo 2003] on a PC with 4GB of memory running Linux.  

SMART is a software package that integrates various high-level logical and stochastic modeling 

formalisms (e.g., stochastic Petri nets) in a single modeling study.  For model checking, SMART 

uses Multi Decision Diagram (MDD) to store large sets of states, a Kronecker matrix encoding 

of transition relation between state, and the saturation algorithm for state space construction 

[Siminiceanu 2004].  This symbolic approach can manage the memory consumption problem in 

a more efficient manner.  Unlike SMV, SMART lacks an intuitive interface, thus, using it 

requires greater level of expertise.  Unfortunately, due to the complexity of the protocol, the 

analysis of the model in SMART also exceeded the 4GB available memory and could not fully 

examine all possible cases in a reasonable amount of time.  Nevertheless, using SMART, more 

scenarios were examined than with SMV and the protocol was demonstrated to be self-

stabilizing as expected.  Many attempts were made to get around the limitations, but at the end 

this effort was also abandoned. 

 

 

3.4.  SMV Revisited 
 

The intuitive solution to this problem is to provide more memory.   There is a hardware 

limitation on the amount of memory that can be added to a given system.  Furthermore, although 

additional memory would ease the state space construction, it may not eliminate the problem. 

 

Another solution, if there is one, is to redesign the protocol.  What is presented in 

[Malekpour 2006B and 2006C] and model checked here is the redesigned version of the 

protocol.  The amount of memory needed to fully model check the general case of this protocol 

far exceeds the available 4GB of memory.  Nevertheless, the protocol can now be exhaustively 

model checked for a 4-node system. 
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4.  Modeling Simplifications and Abstractions 

 

The local measures within each node are used to keep track of timing of the self-

stabilization events.  Although the derived parameters are defined with respect to the real time, 

ultimately, in implementations they have to be translated into discrete values.  Discretization of 

the derived parameters is performed using the ceiling operation.  In this protocol, all local 

variables and watchdog timers are discretized and represented by integer values.  These local 

variables are, therefore, measured with respect to the local clock. 

 

The state space for modeling of the general case of this protocol far exceeds the available 

4GB memory.  Thus, in a bottom-up approach, a basic case is modeled such that the number of 

parameters needed are minimal and the range of each parameter is at its minimum.  A distributed 

system tolerating as many as F Byzantine faults requires a network size of more than 3F nodes 

[Lamport 1982, Lamport 1985] to maintain synchrony.  In other words, to guarantee the closure 

property a minimum of 3F+1 nodes are needed.  Therefore, the basic case is defined as the 

minimum number of nodes that can self-stabilize in the presence of at least one Byzantine faulty 

node and with all other parameters at their minimum.  Thus, for the basic case, the number of 

nodes in the system K = 4, the upper bound on the number of faulty nodes F = 1, and the 

minimum number of good nodes, G, is determined to be G = K - F = 3 nodes. 

 

Other aspects of the basic case are topological issues.  The logical topology is a fully 

connected graph of a 4-node system, where each node is directly connected to another node via a 

dedicated bi-directional channel.  As shown in Figure 4, each node and the source of a message 

is distinctly identifiable by other nodes.  The physical topology can be either a fully connected 

graph, similar to the logical topology, or equivalently, a graph where a message from a source is 

broadcast to all other nodes at the same time.  For the basic case, broadcast is modeled using a 

single variable. 

 

N2

N3N4

N1

 
 

Figure 4.  A 4-node system. 

 

Recall that all parameters are defined as integers.  The event response delay, D, and the 

network imprecision, d, are chosen to be at their minimum values of 1 and 0 clock ticks, 

respectively.  As a result, ∆AA is at its minimum of one clock tick.  This simplification, 

consequently, implies that the logical timers of the good nodes are in phase with each other.  

Note that this simplification does not imply that the nodes are synchronized with each other.  To 

further minimize the state space, the clock drift rate, ρ, is chosen to be zero.  This simplification 

guarantees that the nodes’ State_Timer will remain in phase with each other.  Model checking of 
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the system with ∆AA > 1 where the logical timers of the good nodes are in phase with respect to 

each other, is equivalent to model checking for ∆AA = 1 and the basic case.  However, model 

checking of the system with ∆AA > 1, where the logical timers of the good nodes are out-of-phase 

with respect to each other, poses a greater challenge. 

 

We recognize that the choice of the value for network imprecision, d = 0, is a nonrealistic 

assumption.  Nonetheless, these simplifications are necessary in order to reduce the state space to 

a manageable size.  Furthermore, we believe that the basic case specifies the set of necessary 

conditions that all candidate solutions to this problem should satisfy.  As an example, the flaw in 

[Daliot 2003] was discovered as a direct result of applying that protocol to the basic case as 

documented in [Malekpour 2006A].  We also acknowledge that satisfying the basic case does 

not necessarily imply that the candidate solution solves the general case of this problem. 

 

In order to expedite the self-stabilization process, in general, and in order to minimize the 

state space for model checking purposes, in particular, the convergence time has to be 

minimized.  It was argued in [Malekpour 2006B] that PT,min = 10 and PM ≥ PT.  Although the 

maximum duration of the Restore state, PT, can be any value larger than the required minimum, 

PT is chosen to be PT,min.  In order to minimize the state space, PM is chosen to be equal to PT.  

Therefore, synchronization period, P, for the basic case is chosen to be P = PM = PT = 10.  For 

the basic case, the parameters d and ρ are chosen to be zeros.  In other words, there are no 

variations in the communication delay and the nodes do not drift with respect to each other.  

Model checking of the system with larger values for PM and PT is equivalent to model checking 

for P = PM = PT = 10. 

 

A system clock, SCLK, is introduced to keep track of passage of time from the global 

perspective.  The SCLK is managed at the system level and is incremented per SMV cycle.  Each 

node has a logical clock, Local_Timer, that locally keeps track of time.  This logical clock is 

used to measure the convergence time, C, as well as the self-stabilization precision, ∆Precision, 

across good nodes (i.e. external view of the system).  Since for the basic case the logical timers 

(State_Timer and Local_Timer) of the good nodes are in phase with each other and since ∆AA = 1 

and ρ = 0, a single SCLK suffices to drive timers of all nodes.  The use of a single SCLK also 

eliminates redundancies at the node level for replicating behavior of local oscillators and, thus, 

reduces the state space substantially.  The SCLK, therefore, binds the whole system together, 

providing a means for advancing the State_Timer and Local_Timer at the node and an external 

view of the system at any time.  Although the use of a single clock does not imply synchrony at 

the nodes, it does imply that the nodes are in phase with each other at the State_Timer and 

Local_Timer levels.  However, due to the inherent randomness of the operation of the model 

checkers, the order of execution of the nodes is not predetermined.  Since there is no control over 

the order of transmission of messages and the start of execution of the nodes at each model 

checker cycle, the nodes potentially broadcast and receive messages out of order of issuance. 
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5.  Modeling the System 

 

To accommodate for proper timing of operations of the system, variables are needed to 

keep track of passage of time in each monitor and node.  Introduction of such variables 

exponentially increases the state space beyond the 4GB available memory.  For the general case 

of modeling this protocol, a Transmit_Timer is needed at every node to regulate proper timing of 

outgoing messages.  A Receive_Timer is needed at each monitor to keep track of proper timing 

of incoming messages from its corresponding source [Malekpour 2006B].  As ∆AA increases 

linearly, the state space associated with Transmit_Timer and Receive_Timer increases 

exponentially. 

 

There are two different ways of modeling this protocol, either all operations are done 

sequentially in one big module, or the operations are partitioned between the node and its 

monitors.  In a sequential model, all activities take place within the same scope and during one 

clock tick.  Such a model is not readily scalable.  A modular model is readily scalable, but 

requires coordinated interactions between the node and its monitors.  Either the monitors have to 

inform the node of the changes in their current status or the node has to poll the status of the 

monitors to stay current with the changes in the system.  In turn, the monitors have to be 

informed by the node to take certain actions at the appropriate time.  Since the node and its 

monitors operate with respect to a local clock, there will be a delay in a monitor’s response to the 

node’s commands.  The interactions between the node and its monitors can be coordinated either 

based on time or by passing a control token in a master-target fashion. 

 

In this SMV model, a modular approach is employed where the interactions between a 

node and its monitors are coordinated based on time.  Also, to minimize the state space both 

positive and negative edges of the SCLK are used.  In particular, the nodes operate at the positive 

edge of the SCLK while the monitors operate at the negative edge of the SCLK.  For ∆AA = 1, 

operating at the positive edge of the SCLK, the nodes are guaranteed not to violate the minimum 

transmission time requirement for their consecutive output messages.  Therefore, for the basic 

case there is no need for the Transmit_Timer variable and, consequently, no need for the 

Receive_Timer variable.  Thus, further reduction in memory and computation requirements is 

achieved.  Since ∆AA = D = 1 and ∆Drift = 0,  

 

∆Precision = (3F - 1) ∆AA - D + ∆Drift = 2∆AA - D + 0 = ∆AA, and  

∆Precision = ∆AA = 1. 

 

Since ∆AA = 1 and PT = PM = P = 10,  

C = (2PT + PM) ∆AA = 3P = 30∆AA = 30. 
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6.  Models and Data Structures 

 

In this section, the system components are modeled and subsequently their data structures 

are defined. 

 

 

6.1.  Modeling Faulty Nodes 
 

The fault tolerant requirement of K ≥ 3F+1 implies that the system of 4 nodes can tolerate 

up to one Byzantine faulty node.  Therefore, the system is devised to consist of 3 good nodes and 

one faulty node.  In Figure 5 the faulty node, N4, is shown in gray.   

 

N2

N3N4

N1

 
 

Figure 5.  A 4-node system with a faulty node. 

 

To properly portray the behavior of the faulty node, Figure 5 needs to be redrawn.  Figure 

6 portrays a symmetric faulty node and a crash-silent node that is a special case of a symmetric 

faulty node where every good node, N1 through N3, have the same view of the faulty node, N4. 

 

N2

N3N4

N1

   

N2

N3

N1

 
 

Symmetric faulty      Crash-silent  

 

Figure 6.  A 4-node system with a symmetric faulty node. 

 

Modeling of an asymmetric (Byzantine) faulty node is more complex than the symmetric 

faulty node.  The malicious nature of the Byzantine faulty node is such that as if each good node 

is affected independently by the Byzantine faulty node.  Such behavior of the Byzantine faulty 

node is depicted in Figure 7 by replicating the effects of the Byzantine faulty node, N4, for each 

good node N1 through N3.  Furthermore, the Byzantine faulty behavior modeled here is a node 
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with arbitrarily malicious behavior.  Defined earlier as permanent Byzantine faulty, the 

Byzantine faulty node is allowed to influence other nodes at every clock tick and at all time. 

 

N2

N3N4,3

N1N4,1 N4,2

 
 

Figure 7.  A 4-node system with an asymmetric (Byzantine) faulty node. 

 

Since the behavior of a faulty node is not the same as a good node, modeling of a faulty 

node requires rethinking.  Proper modeling of faulty nodes can potentially result in considerable 

state space reduction.  It particular, a Byzantine faulty node may transmit any one of the three 

possible messages, namely, NONE, Resync, or Affirm at any time.  Additionally, unlike the good 

nodes, local state of a faulty node does not play a role in the operation of this protocol.  

Therefore, the faulty node is modeled as a special node only capable of randomly producing any 

one of the three messages at any clock tick and without any internal state.  Consequently, the 

faulty node’s data structure has only one parameter, Message_Out.  The range of values that this 

element can hold is enumerated as follows. 

 

Message_Out = {NONE, Resync, Affirm} 

 

 

6.2.  Modeling Monitors 
 

The assessment results of the monitored nodes are utilized by the node in the self-

stabilization process.  The node consists of a state machine and a set of (K -1) monitors.  The 

state machine describes the collective behavior of the node, Ni, utilizing assessment results from 

its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in Figure 8, where Mj is the monitor for the 

corresponding node Nj. 
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Node i 

State 

Machine

From Nk

From Ni+1

From N1

To other nodes

Mi+1

Mk

From Ni-1
Mi-1

M1

Node i 

 
 

Figure 8.  Interaction of the node’s state machine and its monitors. 

 

A monitor keeps track of activities of its corresponding source node.  A monitor detects 

proper sequence and timeliness of the received messages from its corresponding source node.  A 

monitor reads, evaluates, time stamps, validates, and stores only the last message it received 

from that node.  A monitor also keeps track of the state of the source node by keeping track of 

received Resync messages, separately.  The monitor’s data structure consists of Last_Message, 

Receive_Timer, Message_Valid, Delta_RR_Timer, and Received_Resync.  The Last_Message 

element represents the last valid message received from the corresponding source node.  The 

Receive_Timer element represents the time interval between arrival of the last two messages 

from the corresponding source node.  As discussed in the previous section, there is no need to 

model this element for the basic case.  The Message_Valid element indicates whether or not the 

last message received was valid.  The Delta_RR_Timer element represents the duration of time 

between any two consecutive valid Resync messages from the corresponding source.  The 

Received_Resync element indicates whether the last valid message received was a Resync 

message.  The range of values that these elements can hold is enumerated as follows. 

 

Last_Message  = {Resync, Affirm} 

Receive_Timer = {0 .. (∆AA+1)}  

Message_Valid = {0, 1} 

Delta_RR_Timer = {0 .. (PT + PM)}  

Received_Resync = {0, 1} 

 

 

6.3.  Modeling Good Nodes 
 

The state machine describes the collective behavior of the node, Ni, utilizing assessment 

results from its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in Figure 8.  The good node’s data 

structure consists of State, Accept_Events, State_Timer, Local_Timer, Transmit_Timer, and 

Message_Out.  The State element represents the current state of the node.  The Accept_Events 

element is the count of accept events since the node entered the Restore state.  The State_Timer 
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element represents the duration of current state of the node.  The Local_Timer element represents 

the duration of time since the node has been synchronized with other good nodes.  The 

Transmit_Timer element represents the passage of time since the transmission of the last 

message by the node.  As discussed in the previous section, there is no need to model this 

element for the basic case.  The Message_Out element represents the out going message of the 

node.  The range of values that these elements can hold is enumerated as follows. 

 

State    = {Restore, Maintain} 

Accept_Events   = {0 .. (F+1)} 

State_Timer   = {0 .. PM} 

Local_Timer   = {0 .. (PT + PM)} 

Transmit_Timer = {0 .. (∆AA+1)} 

Message_Out   = {NONE, Resync, Affirm} 

 

 

6.4.  Modeling Communication Channels 
 

The communication channel’s data structure consists of Message_In, Comm_Delay, and 

Message_Out.  The Message_In element represents the message deposited by the transmitting 

node.  The Comm_Delay represents the amount of delay associated with the channel.  The 

Message_Out element represents the delayed message being delivered to the destination nodes.  

The range of values that these elements can hold is enumerated as follows. 

 

Message_In = {NONE, Resync, Affirm} 

Comm_Delay = {1 .. ∆AA} 

Message_Out = {NONE, Resync, Affirm} 

 

Since for the basic case ∆AA is one clock tick, a deposited message on a communication 

channel is available to the destination nodes at the next clock tick.  Therefore, a channel of depth 

one suffices.  Also since a message is broadcast to other nodes, a single variable suffices to 

represent the communication channel from a node to all other nodes.  Therefore, in order to 

reduce the state space, the communication channel is modeled implicitly and as part of the 

node’s out going message instead of introducing a new SMV module for the channels. 
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7.  Propositions 

 

Computational tree logic (CTL), a temporal logic, is used to express properties of a 

system in this context.  CTL uses atomic propositions as its building blocks to make statements 

about the states of a system.  CTL then combines these propositions into formulas using logical 

and temporal operators with quantification over runs.  The CTL operators have the following 

format. 

Q T 
 

there exists an execution E X next 

for all executions A F finally (eventually) 

G globally 

U until 

 

In this section the claims of convergence and closure properties as well as the claims of 

maximum convergence time and determinism of the protocol for the basic case are examined.  

Although in the description of the protocol these properties are stated separately, nevertheless, 

they are examined via one CTL proposition.  Validation of this general CTL proposition requires 

examination of a number of underlying propositions.  In particular, since ∆Local_Timer(t) is defined 

in terms of the Local_Timer of the good nodes and the Local_Timer is defined in terms of the 

State_Timer, examination of the properties that described proper behavior of the State_Timer 

take precedence.  As a result, in this section, the four underlying propositions are examined 

followed by the general proposition that validates the convergence and closure properties of the 

protocol as well as the claims of maximum convergence time and determinism. 

 

The following properties are described with respect to only one good node, namely 

Good_Node_1.  Since all good nodes are identical, due to the symmetry, the result of the 

propositions equally similarly applies to other good nodes. 

 

Proposition 1:  This property specifies whether or not the State_Timer of a good node takes on a 

given value in its range infinitely often, for instance, its maximum value of P.  The expected 

result for this proposition is a true value. 

 

 

 

 

Examining the negation of this property is expected to produce a false value.  This proposition 

verifies that the State_Timer of a good node cannot never reach a given value. 

 

 

 

Similar properties apply to the Local_Timer, but within its expected range. 

 

 

AF (Good_Node_1.State_Timer = P) 

EG !(Good_Node_1.State_Timer = P) 
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Proposition 2:  This property specifies whether or not the State_Timer of a good node takes on 

all values in its range infinitely often.  In other words, it verifies that the model does not 

deadlock.  Furthermore, the value of the State_Timer of a good node at the next clock tick is 

different from its current value and is its expected next value in the sequence of 0 to P.  The 

expected result for this proposition is a true value. 

 

 

 

 

 

 

 

 

 

Examining the negation of this property is expected to produce a false value.  This proposition 

verifies that the next value of the State_Timer of a good node cannot be the same as its current 

value.  In other words, its value always advances within the expected range. 

 

 

 

 

 

 

 

Similar properties apply to the Local_Timer, but within its expected range. 

 

 

Proposition 3:  This property specifies whether or not time advances and the amount of time 

elapsed, Elapsed_Time, has advanced beyond the predicted convergence time, 

Convergence_Time.  The expected result for this proposition is a true value. 

 

 

 

 

 

 

The Global_Clock is a measure of elapsed time from the beginning of the operation and with 

respect to the real time, i.e. external view.  The Elapsed_Time is indicative of the Global_Clock 

reaching its target maximum value of Convergence_Time. 

 

 

 

 

 

 

 

AG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->  

AX ((SCLK=0) & ((Good_Node_1.State_Timer= i) | (Good_Node_1.State_Timer = i+1)))) & 

AG (((SCLK = 1) & (Good_Node_1.State_Timer = P)) ->  

AX ((SCLK = 0) &  (Good_Node_1.State_Timer = 0))) 

 

For all i = 0 .. (P-1) 

EG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->  

EX ((SCLK = 0) & (Good_Node_1.State_Timer = i))) |  

 

For all i = 0 .. (P-1) 

Elapsed_Time := (Global_Clock >= Convergence_Time) ; 

 

AF (Elapsed_Time) 

init (Global_Clock) := 0 ; 

next (Global_Clock) :=  

case 

(SCLK = 1) & (Global_Clock < Convergence_Time) : Global_Clock + 1 ; 

1 : Global_Clock ; 

esac ; 

 

Elapsed_Time := (Global_Clock >= Convergence_Time) ; 
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Proposition 4:  Similar to Proposition 2, this property specifies whether or not the State_Timer 

of a good node takes on all values in its range infinitely often but beyond the convergence time, 

i.e. after Elapsed_Time has become true.  The expected result for this proposition is a true value. 

Examining the negation of this property is expected to produce a false value.  Similar properties 

apply to the Local_Timer, but within its expected range. 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 5: The convergence and closure properties are described in Section 2.5.  This 

proposition encompasses the criteria for the convergence and the closure properties as well as the 

claims of maximum convergence time and determinism.  This proposition specifies whether or 

not the system will converge to the predicted precision after the elapse of convergence time, 

Elapsed_Time, and whether or not it will remain within that precision thereafter.  The expected 

result for this property is a true value. 

 

 

 

 

 

 

The proper value of the All_Within_Precision is determined by measuring the difference of 

maximum and minimum values of the Local_Timers of all good nodes for the current SCLK tick 

and in conjunction with the result from the previous SCLK tick.  The expected difference of 

Local_Timers is the predicted precision bound. 

 

The negation of the above proposition is listed below and the expected result is a false value.  

This property specifies that after the elapse of convergence time, Elapsed_Time, whether or not 

the system will not converge or if it converges, whether or not it drifts apart beyond the expected 

precision bound. 

 

 

 

 

 

AF (Elapsed_Time) & 

AG (((SCLK = 1) & (Elapsed_Time) & (Good_Node_1.State_Timer = i)) ->  

AX ((SCLK=0) & ((Good_Node_1.State_Timer= i) | (Good_Node_1.State_Timer = i+1)))) & 

AG (((SCLK = 1) & (Elapsed_Time) & (Good_Node_1.State_Timer = j)) ->  

AX ((SCLK = 0) &  (Good_Node_1.State_Timer = j+1))) & 

AG (((SCLK = 1) & (Elapsed_Time) & (Good_Node_1.State_Timer = P)) ->  

AX ((SCLK = 0) &  (Good_Node_1.State_Timer = 0))) 

 

For all i = 0 .. 4 

For all j = 5 .. (P-1) 

AF (Elapsed_Time) &    -- Determinism Property 

AG (Elapsed_Time -> All_Within_Precision) & -- Convergence Property 

AG ((Elapsed_Time & All_Within_Precision) ->  

AX (Elapsed_Time & All_Within_Precision)) -- Closure Property 

AF (Elapsed_Time) &  

AG (Elapsed_Time -> All_Within_Precision) &  

AG ((Elapsed_Time & All_Within_Precision) -> EX (! All_Within_Precision)) 
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8.  Results 

 

This SMV model checking effort was performed on a PC with 4GB of memory running 

Linux.  SMV was able to examine all possible scenarios and the basic case of the protocol was 

model checked.  The model checking results are listed in the following tables.  The negation of a 

property is denoted by using the unary operator ‘!’. 

 

The Byzantine faulty behavior modeled here is a node with arbitrarily malicious 

behavior.  The Byzantine faulty node is allowed to influence other nodes at every clock tick and 

at all time as depicted in Figure 7.  Regardless of the nature of the faulty node, no assumptions 

are made about the initial internal status of the nodes, the monitors, and the system.  For 

instance, a node can wake up in the Maintain state and transmit a Resync, message.  Although 

such behavior from a good node is not exhibited during normal operation, nevertheless, it is 

allowed for the random start up.  Such a model is for the weakest assumptions about the behavior 

of the faulty nodes, the internal state of data structures of the nodes, the monitors, and the system 

as a whole, and thus produces the strongest results. 

 

Table 1.  Results in the presence of a Byzantine faulty node. 

 

Proposition Result Time (sec) Mem (GB) 

1 T 1311 1.2 

1! F 1318 1.2 

2 T 0.2 0.012 

2! F 8866 1.2 

3 T 0.04 - 

4 T 19 0.056 

4! F 4702 1.2 

5 T 2313 2 

5! F 3413 2.1 

 

 

Table 1 lists the results of model checking of the basic case for the stated propositions 1 

through 5, where the duration of the Maintain and Restore states, PM and PT, are  chosen to be 

PM = PT = Period = 10 and the maximum convergence time, Convergence_Time, is 30.  As 

shown in Table 1, the maximum memory usage is about 2GB after applying the state space 

reduction techniques.  The amount of memory used and processing time needed depend on the 

BDD construction and the nature of the query.  Although verification of the stated propositions 

suffices to validate the claims of correctness and determinism of the protocol and in the presence 

of a Byzantine fault, the propositions are further examined for other, and hence less severe, types 

of faults.  For the following scenarios, the values for the Period and Convergence_Time are the 

same as for Table 1. 

 



 

 21 

8.1.  Symmetric Fault 
 

In this case, all good nodes receive identical messages from a single faulty node as 

depicted in Figure 6.  The faulty node still behaves randomly, but its effect at the receiving nodes 

is identical.  As shown in Table 2, the maximum available memory is used to model check this 

case. Due to the BDD construction, the memory usage is far more than the Byzantine faulty case. 

 

Table 2.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time (sec) Mem (GB) 

1 T 2573 2.0 

2 T 0.2 0.012 

3 T 0.04 - 

4 T 62 0.160 

5 T 3975 3.5
*
 

 
*
 Of  4GB available memory, maximum memory utilized by SMV is approximately 3.5GB. 

 

 

8.2.  Crash-Silent Fault, a.k.a. Stuck-at NONE Message 
 

This case is a special case of the symmetric faulty node where the faulty node is not 

transmitting any messages.  This case is modeled such that the associated message from the 

faulty node to all good nodes is a NONE message signifying lack of transmission by the faulty 

node.  This case is depicted in Figure 6. 

 

Table 3.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time (sec) Mem (GB) 

1 T 28 0.045 

2 T 0.15 - 

3 T 0.04 - 

4 T 6 0.015 

5 T 365 0.34 

 

 

8.3.  Stuck-at Resync Message 
 

This case is another special case of the symmetric faulty node where all good nodes 

receive identical messages from a single faulty node.  The faulty node transmits the same 

message to all good nodes all the same time. 
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Table 4.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time (sec) Mem (GB) 

1 T 81 0.25 

2 T 0.15 - 

3 T 0.04 - 

4 T 7 0.025 

5 T 605 0.61 

 

 

8.4.  Stuck-at Affirm Message 
 

This case is another special case of the symmetric faulty node where all good nodes 

receive identical messages from a single faulty node.  The faulty node transmits the same 

message to all good nodes all the same time. 

 

Table 5.  Results in the presence of a symmetric faulty node. 

 

Proposition Result Time (sec) Mem (GB) 

1 T 19 0.033 

2 T 0.15 - 

3 T 0.04 - 

4 T 5 0.017 

5 T 276 0.3 

 

 

9.  Additional Reduction Techniques 

 

New state space reduction techniques are presented here that can be used in mechanical 

verification of other protocols.  Although these techniques were not used in the model checking 

efforts reported here, they are intended to be used in the future efforts.  The underlying 

assumption for these state space reduction techniques is that a message from a good node will 

eventually (see requirements for message validity for this protocol) be accepted as valid.  Since 

this assumption is true for the good nodes and once true they do not violate the message timing 

requirements, the associated monitors for the corresponding good nodes can be simplified so that 

they do not have to examine proper timing of message arrival. 

 

In the SMV model reported here, the faulty node is modeled as a special node only 

capable of randomly producing any one of the three messages at any time.  Per protocol 

requirements, a good node must keep track of the incoming messages from all other nodes.  

Therefore, K-1 monitors at each good node are needed to accommodate this requirement.  

Hereafter, such straightforward model of a faulty node is referred to as explicit fault model and 

the associated monitors as explicit fault monitors.   
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Recall that the Accept() function uses the threshold value TA = G - 1 = 2F where 

potentially up to F of these messages are from as many faulty nodes.  Looking from a different 

perspective, at least F of these messages have to be from as many good nodes.  Similarly, the 

Retry() function uses the threshold value TR = F + 1 and potentially up to F of these messages are 

from as many faulty nodes.  In other words, at least one of these messages have to be from a 

good node.  Now, let’s assume that a good node receives messages only from the other good 

nodes.  In this case, for the Accept() function, unless the node receives at least F messages, no 

matter how many messages (up to F) from the faulty nodes are assumed to be present, the 

Accept() function will not return a true value.  Similarly, for the Retry() function, unless the node 

receives at least one message, no matter how many messages (up to F) from the faulty nodes are 

assumed to be present, the Retry() function will not return a true value. 

 
After receiving at least F messages from as many good nodes for the Accept() function 

and at least one message from a good node for the Retry() function, the behavior of the faulty 

nodes can either strengthen a good node’s current status or cause the good node to lose 

synchronization with other nodes.  Therefore, only at such moments does the behavior of the 

faulty nodes impact the operations of the good nodes and, thus, the behavior of the faulty nodes 

can be inferred as needed at the good nodes.  Exploiting this concept reveals that the faulty 

nodes, the associated explicit fault monitors for the corresponding faulty nodes, and the 

corresponding communication channels are no longer needed.  Hereafter, such an indirect model 

of a faulty node is referred to as an implicit fault model.  This concept is depicted in Figure 9 

where the good nodes are denoted by N1 .. Ni-1, Ni+1 .. NK-F and their associated explicit monitors 

are denoted by M1 .. Mi-1, Mi+1 .. MK-F and the monitors MK-F+1 .. MK represent the implicit fault 

models. 

 
Node i 

State 

Machine
From Nk-f

From Ni+1

From N1

To other nodes

Mi+1

Mk-f

From Ni-1
Mi-1

M1

Node i 

Mk-f+1

Mk

Explicit

Implicit

 
 

Figure 9.  Implicit fault model. 
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In the implicit fault model approach a good node receives messages only from other good 

nodes and after accumulating enough messages (F for the TA and one for TR), the good node’s 

subsequent behavior will be determined by randomly introducing up to F messages for the faulty 

nodes.  Therefore, in this approach, behaviors of faulty nodes are imitated at the good node and 

when appropriate.  Thus, the implicit fault model substantially improves the model checking 

performance.  In particular, if a node’s behavior will not be influenced by the behavior of the 

faulty nodes for a duration of time, the model checking time can advance to the end of that time 

interval.  This performance increase is more noticeable in protocols that do not require periodic 

transmissions of messages.  Also, by eliminating the explicit fault monitors and the associated 

channels, the implicit fault model results in substantial reduction in the state space. 

 

The implicit fault model can be used directly in protocols that do not require keeping 

track of a history of a node’s behavior.  Otherwise, an additional measure is required to 

compensate for the removal of the explicit fault monitors.  In particular, for the protocol 

presented in this report, elimination of an explicit fault monitor can be compensated by the 

introduction of a new implicit fault monitor at the node.  Such a monitor has to guarantee 

proper timing of any two consecutive actions associated with their corresponding messages. 

 

Alternatively, the faulty node can be modeled as a special node that is still capable of 

randomly producing any one of the three messages but its outgoing messages are regulated such 

that the message validity requirements of the protocol are not violated.  Such a well-behaved 

model of a faulty node is referred to as a semi-explicit fault model.  In this approach, the nodes 

are modeled explicitly with K-1 explicit monitors but they assume that all incoming messages 

meet their protocol requirements and, therefore, are valid.  Therefore, the model of the monitors 

can be simplified. 

 

The explicit fault model is simpler to model, easier to scale to a larger system, but 

requires more memory than the implicit fault model.  Modeling of the implicit fault model 

requires more care, but the improved performance and the reduction gained in the state space far 

outweigh its added complexity.  Because of its simplicity and direct approach and avoiding any 

assumptions regarding message validity, the explicit fault model was used in this verification 

effort.  The semi-explicit fault model and implicit fault model will be used in future work. 

 

 

10.  Applications 

 

The proposed self-stabilizing protocol is expected to have many practical applications as 

well as many theoretical implications.  Embedded systems, distributed process control, 

synchronization, inherent fault tolerance which also includes Byzantine agreement, computer 

networks, the Internet, Internet applications, security, safety, automotive, aircraft, wired and 

wireless telecommunications, graph theoretic problems, leader election, time division multiple 

access (TDMA), and the SPIDER
2
 project [Torres 2005A, 2005B] at NASA-LaRC are a few 

                                                 
2
 Scalable Processor-Independent Design for Enhanced Reliability (SPIDER). 
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examples.  These are some of the many areas of distributed systems that can use self-stabilization 

in order to design more robust distributed systems. 

 

 

11.  Summary and Future Work 

 

In this report a SMV model of a simplified model of a rapid Byzantine-fault-tolerant self-

stabilizing protocol for distributed clock synchronization systems is presented.  The simplified 

model of the protocol is model checked using SMV where the entire state space is examined and 

proven to self-stabilize in the presence of one permanent Byzantine faulty node.  Furthermore, 

the simplified model of the protocol is proven to deterministically converge with a linear 

convergence time with respect to the self-stabilization period as predicted.  This protocol does 

not rely on any assumptions about the initial state of the system and no assumptions are made 

about the internal status of the nodes, the monitors, and the system as a whole, thus making the 

weakest assumptions and, therefore, producing the strongest results.  The Byzantine faulty 

behavior modeled here is a node with arbitrarily malicious behavior.  The Byzantine faulty node 

is allowed to influence other nodes at every clock tick and at all time.  The only constraint is that 

the interactions are restricted to defined interfaces. 

 

In this report, modeling challenges are addressed and abstraction techniques are 

illustrated.  A number of innovative state space reduction techniques, in particular the implicit 

fault model of the faulty nodes and their corresponding monitors, are introduced that can be used 

in a verification process of other protocols.  In addition, the basic case is introduced that 

specifies the set of necessary conditions that all candidate solutions to this problem should 

satisfy.  The flaw in [Daliot 2003] was discovered as a direct result of applying that protocol to 

the basic case [Malekpour 2006A].  Although model checking results of the basic case of the 

protocol are promising, these results are not sufficient to confirm that the protocol solves the 

general case of this problem. 

 

Having mechanically verified a simplified model of the protocol, new hypothesis and 

conjectures are now practical for examination.  The current modeling approach is a very 

powerful tool for asking “What if?" questions that are difficult to answer either by manual 

analysis or by testing real hardware.   

 

In our ongoing efforts toward the verification of this protocol for the general case, the 

SMV model of the simplified version of this protocol has been redesigned and restructured.  

Also, the protocol has been redesigned and further simplified.  As a result, the current model 

requires less memory, making exploration of more complex and larger configurations easier.  

Consequently, instances of the protocol representing the out-of-phase scenario where D > 1 and 

d = 0, and hence, ∆AA > 1, have been explored.  Thus far, the analyses indicate that the protocol 

solves the out-of-phase scenario.  Instances of the protocol representing a more complex system 

where D ≥ 1 and 0 ≤ d ≤ 1 have also been examined.  Thus far, the analyses indicate that the 

protocol is applicable to realizable systems and practical applications.  In addition, some 

instances of the protocol representing larger systems, where F > 1, have also been studied.  Thus 

far, the  analyses  indicate  that the protocol does not solve the general case of this  problem  
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where F > 1.  A detailed explanation of the analyses is beyond the scope of this report.  

Nevertheless, so far this model checking effort proved that, at a minimum, a deterministic 

solution for specific cases of this problem exists.  We expect that this protocol serves as the 

starting point toward finding a comprehensive solution for the general case.  In-depth analyses of 

the simplified version of this protocol for more complex and larger systems will be the subject of 

a subsequent report.  This analysis will include pitfalls, relevant counterexamples, an argument 

toward impossibility results, as well as scenarios where this protocol can be used as a basis for 

larger systems and, thus, for realizable systems and practical applications. 
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Appendix A.  Symbols 

 

The symbols used in the protocol are described in detail in [Malekpour 2006B] and are 

listed here for reference. 

 

Symbols Descriptions       

ρ  bounded drift rate with respect to real time 

d  network imprecision 

D  event-response delay 

F  maximum number of faulty nodes 

G  minimum number of good nodes 

K  sum of all nodes 

KG  set of all good nodes 

Resync  self-stabilization message 

Affirm  self-stabilization message 

R  abbreviation for Resync message 

A  abbreviation for Affirm message 

TA  threshold for Accept() function 

TR  threshold for Retry() function 

Restore self-stabilization state 

Maintain self-stabilization state 

T  abbreviation for Restore state 

M  abbreviation for Maintain state 

PT,min  minimum duration while in the Restore state 

PT  duration while in the Restore state 

PM  duration while in the Maintain state 

PEffective  the effective self-stabilization period 

∆AA  time difference between the last consecutive Affirm messages 

∆RR  time difference between the last consecutive Resync messages 

C  convergence time 

∆Local_Timer(t) maximum time difference of Local_Timers of all good nodes at real time t 

∆Precision self-stabilization precision 

∆Drift  maximum deviation from the initial synchrony 

Ni  the i
th

 node 

Mi  the i
th

 monitor of a node 
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