

November 2007

NASA/TM-2007-215083

Model Checking a Byzantine-Fault-Tolerant

Self-Stabilizing Protocol for Distributed Clock

Synchronization Systems

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

Program Office plays a key part in helping NASA

maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for NASA’s

scientific and technical information. The NASA STI

Program Office provides access to the NASA STI

Database, the largest collection of aeronautical and

space science STI in the world. The Program Office is

also NASA’s institutional mechanism for

disseminating the results of its research and

development activities. These results are published by

NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but having

less stringent limitations on manuscript length

and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services that complement the STI

Program Office’s diverse offerings include creating

custom thesauri, building customized databases,

organizing and publishing research results ... even

providing videos.

For more information about the NASA STI Program

Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7115 Standard Drive

 Hanover, MD 21076-1320

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

November 2007

NASA/TM-2007-215083

Model Checking a Byzantine-Fault-Tolerant

Self-Stabilizing Protocol for Distributed Clock

Synchronization Systems

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

Acknowledgments

 This effort was conducted under the Integrated Vehicle Health Management project of NASA’s
Aviation Safety program. The author would like to thank the following for their reviews, helpful
comments, consultations and support: Ricky Butler, Victor Carreno, Eric Cooper, Jeff Maddalon, Ben
DiVito, Paul Miner, Cesar Munoz, Radu Siminiceanu, Kristin Rozier, and Wilfredo Torres-Pomales.
The author would especially like to thank Celeste Belcastro without whose support this work would not
have been possible.

 i

Abstract

This report presents the mechanical verification of a

simplified model of a rapid Byzantine-fault-tolerant self-stabilizing

protocol for distributed clock synchronization systems. This

protocol does not rely on any assumptions about the initial state of

the system. This protocol tolerates bursts of transient failures, and

deterministically converges within a time bound that is a linear

function of the self-stabilization period. A simplified model of the

protocol is verified using the Symbolic Model Verifier (SMV)

[SMV]. The system under study consists of 4 nodes, where at most

one of the nodes is assumed to be Byzantine faulty. The model

checking effort is focused on verifying correctness of the simplified

model of the protocol in the presence of a permanent Byzantine

fault as well as confirmation of claims of determinism and linear

convergence with respect to the self-stabilization period. Although

model checking results of the simplified model of the protocol

confirm the theoretical predictions, these results do not necessarily

confirm that the protocol solves the general case of this problem.

Modeling challenges of the protocol and the system are addressed.

A number of abstractions are utilized in order to reduce the state

space. Also, additional innovative state space reduction techniques

are introduced that can be used in future verification efforts

applied to this and other protocols.

 ii

Table of Contents

1. INTRODUCTION ..1

2. THE PROTOCOL..2

2.1. TRANSITORY CONDITIONS ...4
2.2. MESSAGE VALIDITY...4
2.3. SYSTEM ASSUMPTIONS ..4
2.4. PROTOCOL FUNCTIONS ..5
2.5. THE SELF-STABILIZING CLOCK SYNCHRONIZATION PROBLEM ..6
2.6. THE BYZANTINE-FAULT-TOLERANT SELF-STABILIZING PROTOCOL FOR DISTRIBUTED CLOCK

SYNCHRONIZATION SYSTEMS ..7
2.7. SEMANTICS OF THE PSEUDO-CODE ...8

3. MECHANICAL VERIFICATION ...8

3.1. SIMULATION ..8
3.2. SMV ..8
3.3. SMART ...9
3.4. SMV REVISITED ..9

4. MODELING SIMPLIFICATIONS AND ABSTRACTIONS ..10

5. MODELING THE SYSTEM...12

6. MODELS AND DATA STRUCTURES ...13

6.1. MODELING FAULTY NODES ...13
6.2. MODELING MONITORS ...14
6.3. MODELING GOOD NODES...15
6.4. MODELING COMMUNICATION CHANNELS..16

7. PROPOSITIONS ..17

8. RESULTS..20

8.1. SYMMETRIC FAULT ..21
8.2. CRASH-SILENT FAULT, A.K.A. STUCK-AT NONE MESSAGE ...21
8.3. STUCK-AT RESYNC MESSAGE ...21
8.4. STUCK-AT AFFIRM MESSAGE ...22

9. ADDITIONAL REDUCTION TECHNIQUES ...22

10. APPLICATIONS ..24

11. SUMMARY AND FUTURE WORK ..25

REFERENCES: ...27

APPENDIX A. SYMBOLS ..29

 1

1. Introduction

The concept of self-stabilizing distributed computation was first presented in a classic

paper by Dijkstra [Dijkstra 1974]. In that paper, he speculated whether it would be possible for a

set of machines to stabilize their collective behavior in spite of unknown initial conditions and

distributed control. A fundamental criterion in the design of a robust distributed system is to

provide the capability of tolerating and potentially recovering from failures that are not

predictable in advance. Overcoming such failures is most suitably addressed by tolerating

Byzantine faults [Lamport 1982]. There are many algorithms that address permanent faults

[Srikanth 1987], where the issue of transient failures is either ignored or inadequately addressed.

There are many efficient Byzantine clock synchronization algorithms that are based on

assumptions on initial synchrony of the nodes [Srikanth 1987, Welch 1988] or existence of a

common pulse at the nodes, e.g. the first protocol in [Dolev 2004]. There are many clock

synchronization algorithms that are based on randomization and, therefore, are non-

deterministic, e.g. the second protocol in [Dolev 2004].

Solving these special cases is insufficient to claim that an algorithm is self-stabilizing.

The main challenges associated with self-stabilization are the complexity of the design and the

proof of correctness of the protocol. Another difficulty is achieving an efficient convergence

time for the proposed self-stabilizing protocol. Typically, verification of a protocol is conducted

by the composition of a paper-and-pencil proof. Verification of such proofs is another challenge

associated with self-stabilization, especially as the complexity of the protocol increases. Such

proofs are error prone. One recent work in this area is the algorithm developed by Daliot et al

[Daliot 2003] called the Byzantine self-stabilization pulse synchronization (BSS-Pulse-Synch)

protocol. A flaw in BSS-Pulse-Synch protocol was found and documented in a report by

Malekpour et al. [Malekpour 2006A]. Such flaws are harder to pinpoint in the proof argument

than finding a counterexample via simulation or model checking.

Another technique sometimes used to verify the correctness of a design is based on

extensive simulation but it too can miss significant errors when the number of possible states is

very large. Simulation of specific scenarios requires proper set up of the system for each case.

As the number of cases to be examined increases, this process becomes impractical.

Model checking is a method for mechanically verifying finite-state concurrent systems.

Specifications about the system are expressed as temporal logic formulas, and efficient symbolic

algorithms are used to traverse the model defined by the system and check if the specification

holds or not. The verification procedure is an exhaustive search of the state space of the design.

As a result, model checking is a viable means for mechanically verifying the claims of a

distributed clock synchronization protocol. Model checking also provides insight into the

behavior of the system even if it cannot fully explore the entire state space. Therefore, model

checking is a practical alternative for accessing correctness of a protocol and proving correctness

of a protocol instance.

This report presents model checking efforts in support of the claims of a rapid Byzantine-

fault-tolerant self-stabilizing protocol for distributed clock synchronization systems [Malekpour

 2

2006B, 2006C]. In particular, this effort encompasses the verification of correctness of a

simplified model of the protocol by confirming that a candidate system self-stabilizes from any

state and tolerates bursts of transient failures in the presence of permanent Byzantine faulty

nodes. A permanent Byzantine faulty node is a node with arbitrarily malicious behavior. This

effort, furthermore, includes the verification of claims of determinism and linear convergence of

the simplified model of the protocol with respect to the self-stabilization period and in the

presence of permanent Byzantine faulty nodes. Although model checking results of the

simplified model of the protocol are promising, these results do not necessarily imply that the

protocol solves the general case of this problem.

N2

N3N4

N1

Figure 1. A 4-node system.

As shown in Figure 1, the system under study consists of 4 nodes, where 3 of the nodes

are assumed to be good and one of the nodes is Byzantine faulty. Toward this objective, a

number of abstractions and reduction techniques are devised to reduce the state space. Also, in

order to further reduce the state space to a more manageable size, system parameters are reduced

to their minimal values. The amount of memory needed for the construction of the Binary

Decision Diagram (BDD) readily reaches the 4GB available after construction of the state space.

Therefore, model checking of larger and more complex systems poses a greater challenge.

The following sections describe the model checking efforts in detail. The report begins

with a description of the protocol followed by a brief history of the model checking effort.

Modeling specifications and abstractions used in describing a basic case of this protocol are

described in the following section. The underlying topology and network models are defined,

followed by the SMV models of the individual parts. The propositions are then enumerated. A

summary of the model checking results is presented. Additional reduction techniques are also

introduced, followed by the concluding remarks.

2. The Protocol

A distributed system is defined to be self-stabilizing if, from an arbitrary state and in the

presence of bounded number of Byzantine faults, it is guaranteed to reach a legitimate state in a

finite amount of time and remain in a legitimate state as long as the number of Byzantine faults

are within a specific bound. A legitimate state is a state where all good clocks in the system are

synchronized within a given precision bound.

 3

The self-stabilization problem has two facets. First, it is inherently event-driven and,

second, it is time-driven. Most attempts at solving the self-stabilization problem have focused

only on the event-driven aspect of this problem. The protocol presented here properly merges

the time and event driven aspects of this problem in order to self-stabilize the system in a gradual

and yet timely manner. Furthermore, this protocol is based on the concept of a continual

vigilance of the state of the system in order to maintain and guarantee its stabilized status, and a

periodic reaffirmation of nodes by declaring their internal status. Finally, initialization and/or

reintegration are not treated as special cases. These scenarios are regarded as inherent parts of

this self-stabilizing protocol.

The self-stabilization events are captured at a node via a selection function that is based

on received valid messages from other nodes. When such an event occurs, it is said that a node

has accepted or an accept event has occurred. In order to achieve self-stabilization, the nodes

communicate by exchanging two self-stabilization messages labeled Resync and Affirm. The

Resync message reflects the time-driven aspect of this self-stabilization protocol, while the

Affirm message reflects the event-driven aspect of it. The Resync message is transmitted when a

node realizes that the system is no longer stabilized or as a result of a resynchronization timeout.

The Affirm message is transmitted periodically and at specific intervals primarily in response to a

legitimate self-stabilization accept event at the node.

The time difference between interdependent consecutive events is expressed in terms of

the minimum event-response delay, D, and network imprecision, d. As a result, the approach

presented here is expressed as a self-stabilization of the system as a function of the expected time

separation between the consecutive Affirm messages, ∆AA. To guarantee that a message from a

good node is received by all other good nodes before a subsequent message is transmitted, ∆AA is

constrained such that ∆AA ≥ (D + d). Unless stated otherwise, all time dependent parameters of

this protocol are measured locally and expressed as functions of ∆AA.

Three fundamental parameters characterize the self-stabilization protocol presented

here, namely K, D, and d. The number of faulty nodes, F, the number of good nodes, G, and the

remaining parameters that are subsequently enumerated are derived parameters and are based

on these three fundamental parameters. Furthermore, except for K, F, G, TA and TR, which are

integer numbers, other parameters are real numbers. In particular, ∆AA is used as a threshold

value for monitoring of proper timing of incoming and outgoing Affirm messages. The derived

parameters TA = G - 1 and TR = F + 1 are used as thresholds in conjunction with the Affirm and

Resync messages, respectively.

The assessment results of the monitored nodes are utilized by the node in the self-

stabilization process. The node consists of a state machine and a set of (K-1) monitors. The state

machine has two states, Restore state (T) and Maintain state (M), that reflect the current state of

the node in the system as shown in Figure 2, where Resync messages are represented as R and

Affirm messages are represented as A.

 4

A

MT

R

R, A A

Figure 2. The node state machine.

2.1. Transitory Conditions

The transitory conditions enable the node to migrate to the Maintain state and are

defined as:

1. The node is in the Restore state,

2. At least 2F accept events in as many ∆AA intervals have occurred after the node entered

the Restore state,

3. No valid Resync messages are received for the last accept event.

2.2. Message Validity

Starting from the last transmission of the Resync message consecutive Affirm messages

are transmitted at ∆AA intervals, where ∆AA ≥ (D + d). In [Malekpour 2006B, 2006C] ∆RR,min is

defined to be ∆RR,min = 2F∆AA + 1 clock ticks. At the receiving nodes, the following definitions

hold:

– A message (Resync or Affirm) from a given source is valid if it is the first message from

that source. A message shall remain valid for the duration of one ∆AA.

– An Affirm message from a given source is early if it arrives earlier than (∆AA - d) after

previous valid message (Resync or Affirm) from the same source.

– A Resync message from a given source is early if it arrives earlier than ∆RR,min after

previous valid Resync message from the same source.

– An Affirm message from a given source is valid if it is not early.

– A Resync message from a given source is valid if it is not early.

2.3. System Assumptions

1. The cause of transient faults has dissipated.

2. All good nodes actively participate in the self-stabilization process and correctly execute

the protocol.

3. At most F of the nodes are faulty.

4. The source of a message is distinctly identifiable by the receivers from other sources of

messages.

5. A message sent by a good node will be received and processed by all other good nodes

within ∆AA, where ∆AA ≥ (D + d).

 5

6. The initial values of the state and all variables of a node can be set to any arbitrary value

within their corresponding range (In an implementation, it is expected that some local

capabilities exist to enforce type consistency of all variables.)

2.4. Protocol Functions

The functions used in this protocol are described in this section.

Two functions InvalidAffirm() and InvalidResync() are used by the monitors. The

InvalidAffirm() function determines whether or not a received Affirm message is valid. The

InvalidResync() function determines if a received Resync message is valid. When either of these

functions returns a true value, it is indicative of an unexpected behavior by the corresponding

source node.

The Accept() function is used by the state machine of the node in conjunction with the

threshold value TA = G - 1. When at least TA valid messages (Resync or Affirm) have been

received, this function returns a true value indicating that an accept event has occurred and such

an event has also taken place in at least F other good nodes. When a node accepts, it consumes

all valid messages used in the accept process by the corresponding function. Consumption of a

message is the process by which a monitor is informed that its stored message, if it existed and

was valid, has been utilized by the state machine.

The Retry() function determines if at least TR other nodes have transitioned out of the

Maintain state, where TR = F +1. When at least TR valid Resync messages from as many nodes

have been received, this function returns a true value indicating that at least one good node has

transitioned to the Restore state. This function is used to transition from the Maintain state to the

Restore state.

The TransitoryConditionsMet() function determines proper timing of the transition from

the Restore state to the Maintain state. This function keeps track of the accept events, by

incrementing the Accept_Event_Counter, to determine if at least 2F accept events in as many ∆AA

intervals have occurred. It returns a true value when the transitory conditions are met.

The TimeOutRestore() function uses PT as a boundary value and asserts a timeout

condition when the value of the State_Timer has reached PT. Such a timeout triggers the node to

reengage in another round of self-stabilization process. This function is used when the node is in

the Restore state.

The TimeOutMaintain() function uses PM as a boundary value and asserts a timeout

condition when the value of the State_Timer has reached PM. Such a timeout triggers the node to

reengage in another round of synchronization. This function is used when the node is in the

Maintain state.

In addition to the above functions, the state machine utilizes the TimeOutAcceptEvent()

function. This function is used to regulate the transmission time of the next Affirm message.

 6

This function maintains a DeltaAA_Timer by incrementing it once per local clock tick and once

it reaches the transmission time of the next Affirm message, ∆AA, it returns a true value. In

response to such a timeout, the node broadcasts an Affirm message.

2.5. The Self-Stabilizing Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are

with respect to a real time t0, where t0 = 0 when the system assumptions are satisfied, and for all

t > t0 the system operates within the system assumptions. Let

• C be the bound on the maximum convergence time,

• ∆Local_Timer(t), for real time t, the maximum difference of values of the local timers of any

two good nodes Ni and Nj, where Ni, Nj ∈ KG, and KG is the set of all good nodes, and

• ∆Precision, also referred to as self-stabilization precision, the guaranteed upper bound on the

maximum separation between the local timers of any two good nodes Ni and Nj in the

presence of a maximum of F faulty nodes, where Ni, Nj ∈ KG.

A good node Ni resets its variable Local_Timeri periodically but at different points in

time than other good nodes. The difference of local timers of all good nodes at time t,

∆Local_Timer(t), is determined by the following equation while recognizing the variations in the

values of the Local_Timeri across all good nodes.

∆Local_Timer(t) = min ((Local_Timermax(t) – Local_Timermin(t)),

 (Local_Timermax(t - ∆Precision) – Local_Timermin(t - ∆Precision))),
where,

Local_Timermin(x) = min ({Local_Timeri(x) | Ni ∈ KG}),

Local_Timermax(x) = max ({Local_Timeri(x) | Ni ∈ KG}), and

There exist C and ∆Precision:

Convergence: ∆Local_Timer(C) ≤ ∆Precision

Closure: ∀ t, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision

The values of C, ∆Precision, and the maximum value for Local_Timeri, Local_Timer_Max, are

determined to be:

C = (2PT + PM) ∆AA,

∆Precision = (3F - 1) ∆AA - D + ∆Drift,

Local_Timer_Max = PT + PM,

and the amount of drift from the initial precision is given by

∆Drift = ((1+ρ) - 1/(1+ρ)) PEffective ∆AA.

Note that since Local_Timer_Max > PT /2 and since the Local_Timer is reset after reaching

Local_Timer_Max (worst case wraparound), a trivial solution is not possible.

 7

2.6. The Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock

Synchronization Systems

The presented protocol is described in Figure 3 and consists of a state machine and a set

of monitors which execute once every local oscillator tick.

Figure 3. The self-stabilization protocol.

Monitor:

case (incoming message from the

corresponding node)

{Resync:
if InvalidResync() then

Invalidate the message

else

Validate and store the message,

Set state status of the source.

Affirm:
if InvalidAffirm() then

Invalidate the message

else

Validate and store the message.

Other:
Do nothing.

} // case

Node:

case (state of the node)

{Restore:
if TimeOutRestore() then

Transmit Resync message,

Reset State_Timer,

Reset DeltaAA_Timer,

Reset Accept_Event_Counter,

Stay in Restore state,

elsif TimeOutAcceptEvent() then

Transmit Affirm message,

Reset DeltaAA_Timer,

if Accept() then

Consume valid messages,

Clear state status of the sources,

Increment Accept_Event_Counter,

if TransitoryConditionsMet() then

Reset State_Timer,

Go to Maintain state,

else

Stay in Restore state.

 else

Stay in Restore state.,

else

Stay in Restore state.

Maintain:
if TimeOutMaintain() or Retry() then

Transmit Resync message,

Reset State_Timer,

Reset DeltaAA_Timer,

Reset Accept_Event_Counter,

Go to Restore state,

elsif TimeOutAcceptEvent() then

if Accept() then

Consume valid messages.,

if (State_Timer = ∆Precision)
Reset Local_Timer.,

Transmit Affirm message,

Reset DeltaAA_Timer,

Stay in Maintain state,

else

Stay in Maintain state.

} // case

 8

2.7. Semantics of the pseudo-code

• Indentation is used to show a block of sequential statements.

• ‘,’ is used to separate sequential statements.

• ‘.’ is used to end a statement.

• ‘.,’ is used to mark the end of a statement and at the same time to separate it from other

sequential statements.

3. Mechanical Verification

Several approaches were explored toward the mechanical verification of the correctness

of the initial design of this protocol. This effort started, chronologically, by simulation of the

known cases and grew into model checking of all scenarios using various model-checking tools.

Initially, verification of a self-stabilizing protocol for a 4-node system seemed deceptively trivial,

but in time its complexity became clearer.

The initial model of the 4-node system required more memory for the construction of the

state space than the available 2GB of memory. As a result, many abstractions were made and a

number of reduction techniques were devised to circumvent the state space explosion problem.

Some of the techniques used are explained in the following sections.

3.1. Simulation

The first mechanical verification was accomplished using a VHSIC Hardware

Description Language (VHDL)
1
 implementation that verified the proper operations of the

protocol for specific cases. The VHDL tools run on a PC with 1GB of memory under the

Windows 2000 operating system. The VHDL environment is primarily suited for simulation of

specific scenarios where examination of the known cases requires proper set up of the system for

each case, separately. The simulation effort provided the sanity checks needed to embark into

more complex model checking efforts. Nevertheless, within the simulation environment, proper

operation of the protocol under fault-free conditions were examined and verified. Proper

operation of the protocol in the presence of faults and for the known scenarios were also

examined and verified. As the number of cases to be examined increased, this process became

impractical. As a result, and in an effort to examine all possible scenarios, this approach was

abandoned in favor of symbolic model checkers.

3.2. SMV

The Symbolic Model Verifier (SMV) was used in the second attempt at modeling of this

protocol on a PC with 2GB of memory running Linux. SMV allows the designers to formally

verify temporal logic properties of finite state systems. Developers use SMV to verify the design

for all possible input sequences, instead of a chosen selection of sequences as in simulation.

1
 Very High Speed Integrated Circuit (VHSIC) Hardware Description Language.

 9

SMV’s language description and modeling capability provide relatively easy translation from

VHDL. SMV also provides the desired capability to introduce randomness into the initial values

of the variables. Despite many abstractions employed, the model’s large state space was beyond

SMV’s capability for the available platform. In fact, the amount of memory needed for the

construction of the Binary Decision Diagram (BDD), approximately 10
44

 initial states, readily

exceeded the 2GB available on the PC after a few steps. To further reduce the state space, only a

subset of critical scenarios was selected. Although this subset was much larger than the number

of simulation cases, it still lacked the full coverage needed to rule out unforeseen scenarios.

Clearly, more memory and computing power were needed. A new PC with 4GB of

memory running Linux was purchased. Once again, the amount of memory needed by SMV

readily exceeded the 4GB available memory.

3.3. SMART

The next modeling effort of this protocol was in Stochastic Model checking Analyzer for

Reliability and Timing (SMART) [Ciardo 2003] on a PC with 4GB of memory running Linux.

SMART is a software package that integrates various high-level logical and stochastic modeling

formalisms (e.g., stochastic Petri nets) in a single modeling study. For model checking, SMART

uses Multi Decision Diagram (MDD) to store large sets of states, a Kronecker matrix encoding

of transition relation between state, and the saturation algorithm for state space construction

[Siminiceanu 2004]. This symbolic approach can manage the memory consumption problem in

a more efficient manner. Unlike SMV, SMART lacks an intuitive interface, thus, using it

requires greater level of expertise. Unfortunately, due to the complexity of the protocol, the

analysis of the model in SMART also exceeded the 4GB available memory and could not fully

examine all possible cases in a reasonable amount of time. Nevertheless, using SMART, more

scenarios were examined than with SMV and the protocol was demonstrated to be self-

stabilizing as expected. Many attempts were made to get around the limitations, but at the end

this effort was also abandoned.

3.4. SMV Revisited

The intuitive solution to this problem is to provide more memory. There is a hardware

limitation on the amount of memory that can be added to a given system. Furthermore, although

additional memory would ease the state space construction, it may not eliminate the problem.

Another solution, if there is one, is to redesign the protocol. What is presented in

[Malekpour 2006B and 2006C] and model checked here is the redesigned version of the

protocol. The amount of memory needed to fully model check the general case of this protocol

far exceeds the available 4GB of memory. Nevertheless, the protocol can now be exhaustively

model checked for a 4-node system.

 10

4. Modeling Simplifications and Abstractions

The local measures within each node are used to keep track of timing of the self-

stabilization events. Although the derived parameters are defined with respect to the real time,

ultimately, in implementations they have to be translated into discrete values. Discretization of

the derived parameters is performed using the ceiling operation. In this protocol, all local

variables and watchdog timers are discretized and represented by integer values. These local

variables are, therefore, measured with respect to the local clock.

The state space for modeling of the general case of this protocol far exceeds the available

4GB memory. Thus, in a bottom-up approach, a basic case is modeled such that the number of

parameters needed are minimal and the range of each parameter is at its minimum. A distributed

system tolerating as many as F Byzantine faults requires a network size of more than 3F nodes

[Lamport 1982, Lamport 1985] to maintain synchrony. In other words, to guarantee the closure

property a minimum of 3F+1 nodes are needed. Therefore, the basic case is defined as the

minimum number of nodes that can self-stabilize in the presence of at least one Byzantine faulty

node and with all other parameters at their minimum. Thus, for the basic case, the number of

nodes in the system K = 4, the upper bound on the number of faulty nodes F = 1, and the

minimum number of good nodes, G, is determined to be G = K - F = 3 nodes.

Other aspects of the basic case are topological issues. The logical topology is a fully

connected graph of a 4-node system, where each node is directly connected to another node via a

dedicated bi-directional channel. As shown in Figure 4, each node and the source of a message

is distinctly identifiable by other nodes. The physical topology can be either a fully connected

graph, similar to the logical topology, or equivalently, a graph where a message from a source is

broadcast to all other nodes at the same time. For the basic case, broadcast is modeled using a

single variable.

N2

N3N4

N1

Figure 4. A 4-node system.

Recall that all parameters are defined as integers. The event response delay, D, and the

network imprecision, d, are chosen to be at their minimum values of 1 and 0 clock ticks,

respectively. As a result, ∆AA is at its minimum of one clock tick. This simplification,

consequently, implies that the logical timers of the good nodes are in phase with each other.

Note that this simplification does not imply that the nodes are synchronized with each other. To

further minimize the state space, the clock drift rate, ρ, is chosen to be zero. This simplification

guarantees that the nodes’ State_Timer will remain in phase with each other. Model checking of

 11

the system with ∆AA > 1 where the logical timers of the good nodes are in phase with respect to

each other, is equivalent to model checking for ∆AA = 1 and the basic case. However, model

checking of the system with ∆AA > 1, where the logical timers of the good nodes are out-of-phase

with respect to each other, poses a greater challenge.

We recognize that the choice of the value for network imprecision, d = 0, is a nonrealistic

assumption. Nonetheless, these simplifications are necessary in order to reduce the state space to

a manageable size. Furthermore, we believe that the basic case specifies the set of necessary

conditions that all candidate solutions to this problem should satisfy. As an example, the flaw in

[Daliot 2003] was discovered as a direct result of applying that protocol to the basic case as

documented in [Malekpour 2006A]. We also acknowledge that satisfying the basic case does

not necessarily imply that the candidate solution solves the general case of this problem.

In order to expedite the self-stabilization process, in general, and in order to minimize the

state space for model checking purposes, in particular, the convergence time has to be

minimized. It was argued in [Malekpour 2006B] that PT,min = 10 and PM ≥ PT. Although the

maximum duration of the Restore state, PT, can be any value larger than the required minimum,

PT is chosen to be PT,min. In order to minimize the state space, PM is chosen to be equal to PT.

Therefore, synchronization period, P, for the basic case is chosen to be P = PM = PT = 10. For

the basic case, the parameters d and ρ are chosen to be zeros. In other words, there are no

variations in the communication delay and the nodes do not drift with respect to each other.

Model checking of the system with larger values for PM and PT is equivalent to model checking

for P = PM = PT = 10.

A system clock, SCLK, is introduced to keep track of passage of time from the global

perspective. The SCLK is managed at the system level and is incremented per SMV cycle. Each

node has a logical clock, Local_Timer, that locally keeps track of time. This logical clock is

used to measure the convergence time, C, as well as the self-stabilization precision, ∆Precision,

across good nodes (i.e. external view of the system). Since for the basic case the logical timers

(State_Timer and Local_Timer) of the good nodes are in phase with each other and since ∆AA = 1

and ρ = 0, a single SCLK suffices to drive timers of all nodes. The use of a single SCLK also

eliminates redundancies at the node level for replicating behavior of local oscillators and, thus,

reduces the state space substantially. The SCLK, therefore, binds the whole system together,

providing a means for advancing the State_Timer and Local_Timer at the node and an external

view of the system at any time. Although the use of a single clock does not imply synchrony at

the nodes, it does imply that the nodes are in phase with each other at the State_Timer and

Local_Timer levels. However, due to the inherent randomness of the operation of the model

checkers, the order of execution of the nodes is not predetermined. Since there is no control over

the order of transmission of messages and the start of execution of the nodes at each model

checker cycle, the nodes potentially broadcast and receive messages out of order of issuance.

 12

5. Modeling the System

To accommodate for proper timing of operations of the system, variables are needed to

keep track of passage of time in each monitor and node. Introduction of such variables

exponentially increases the state space beyond the 4GB available memory. For the general case

of modeling this protocol, a Transmit_Timer is needed at every node to regulate proper timing of

outgoing messages. A Receive_Timer is needed at each monitor to keep track of proper timing

of incoming messages from its corresponding source [Malekpour 2006B]. As ∆AA increases

linearly, the state space associated with Transmit_Timer and Receive_Timer increases

exponentially.

There are two different ways of modeling this protocol, either all operations are done

sequentially in one big module, or the operations are partitioned between the node and its

monitors. In a sequential model, all activities take place within the same scope and during one

clock tick. Such a model is not readily scalable. A modular model is readily scalable, but

requires coordinated interactions between the node and its monitors. Either the monitors have to

inform the node of the changes in their current status or the node has to poll the status of the

monitors to stay current with the changes in the system. In turn, the monitors have to be

informed by the node to take certain actions at the appropriate time. Since the node and its

monitors operate with respect to a local clock, there will be a delay in a monitor’s response to the

node’s commands. The interactions between the node and its monitors can be coordinated either

based on time or by passing a control token in a master-target fashion.

In this SMV model, a modular approach is employed where the interactions between a

node and its monitors are coordinated based on time. Also, to minimize the state space both

positive and negative edges of the SCLK are used. In particular, the nodes operate at the positive

edge of the SCLK while the monitors operate at the negative edge of the SCLK. For ∆AA = 1,

operating at the positive edge of the SCLK, the nodes are guaranteed not to violate the minimum

transmission time requirement for their consecutive output messages. Therefore, for the basic

case there is no need for the Transmit_Timer variable and, consequently, no need for the

Receive_Timer variable. Thus, further reduction in memory and computation requirements is

achieved. Since ∆AA = D = 1 and ∆Drift = 0,

∆Precision = (3F - 1) ∆AA - D + ∆Drift = 2∆AA - D + 0 = ∆AA, and

∆Precision = ∆AA = 1.

Since ∆AA = 1 and PT = PM = P = 10,

C = (2PT + PM) ∆AA = 3P = 30∆AA = 30.

 13

6. Models and Data Structures

In this section, the system components are modeled and subsequently their data structures

are defined.

6.1. Modeling Faulty Nodes

The fault tolerant requirement of K ≥ 3F+1 implies that the system of 4 nodes can tolerate

up to one Byzantine faulty node. Therefore, the system is devised to consist of 3 good nodes and

one faulty node. In Figure 5 the faulty node, N4, is shown in gray.

N2

N3N4

N1

Figure 5. A 4-node system with a faulty node.

To properly portray the behavior of the faulty node, Figure 5 needs to be redrawn. Figure

6 portrays a symmetric faulty node and a crash-silent node that is a special case of a symmetric

faulty node where every good node, N1 through N3, have the same view of the faulty node, N4.

N2

N3N4

N1

N2

N3

N1

Symmetric faulty Crash-silent

Figure 6. A 4-node system with a symmetric faulty node.

Modeling of an asymmetric (Byzantine) faulty node is more complex than the symmetric

faulty node. The malicious nature of the Byzantine faulty node is such that as if each good node

is affected independently by the Byzantine faulty node. Such behavior of the Byzantine faulty

node is depicted in Figure 7 by replicating the effects of the Byzantine faulty node, N4, for each

good node N1 through N3. Furthermore, the Byzantine faulty behavior modeled here is a node

 14

with arbitrarily malicious behavior. Defined earlier as permanent Byzantine faulty, the

Byzantine faulty node is allowed to influence other nodes at every clock tick and at all time.

N2

N3N4,3

N1N4,1 N4,2

Figure 7. A 4-node system with an asymmetric (Byzantine) faulty node.

Since the behavior of a faulty node is not the same as a good node, modeling of a faulty

node requires rethinking. Proper modeling of faulty nodes can potentially result in considerable

state space reduction. It particular, a Byzantine faulty node may transmit any one of the three

possible messages, namely, NONE, Resync, or Affirm at any time. Additionally, unlike the good

nodes, local state of a faulty node does not play a role in the operation of this protocol.

Therefore, the faulty node is modeled as a special node only capable of randomly producing any

one of the three messages at any clock tick and without any internal state. Consequently, the

faulty node’s data structure has only one parameter, Message_Out. The range of values that this

element can hold is enumerated as follows.

Message_Out = {NONE, Resync, Affirm}

6.2. Modeling Monitors

The assessment results of the monitored nodes are utilized by the node in the self-

stabilization process. The node consists of a state machine and a set of (K -1) monitors. The

state machine describes the collective behavior of the node, Ni, utilizing assessment results from

its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in Figure 8, where Mj is the monitor for the

corresponding node Nj.

 15

Node i

State

Machine

From Nk

From Ni+1

From N1

To other nodes

Mi+1

Mk

From Ni-1
Mi-1

M1

Node i

Figure 8. Interaction of the node’s state machine and its monitors.

A monitor keeps track of activities of its corresponding source node. A monitor detects

proper sequence and timeliness of the received messages from its corresponding source node. A

monitor reads, evaluates, time stamps, validates, and stores only the last message it received

from that node. A monitor also keeps track of the state of the source node by keeping track of

received Resync messages, separately. The monitor’s data structure consists of Last_Message,

Receive_Timer, Message_Valid, Delta_RR_Timer, and Received_Resync. The Last_Message

element represents the last valid message received from the corresponding source node. The

Receive_Timer element represents the time interval between arrival of the last two messages

from the corresponding source node. As discussed in the previous section, there is no need to

model this element for the basic case. The Message_Valid element indicates whether or not the

last message received was valid. The Delta_RR_Timer element represents the duration of time

between any two consecutive valid Resync messages from the corresponding source. The

Received_Resync element indicates whether the last valid message received was a Resync

message. The range of values that these elements can hold is enumerated as follows.

Last_Message = {Resync, Affirm}

Receive_Timer = {0 .. (∆AA+1)}

Message_Valid = {0, 1}

Delta_RR_Timer = {0 .. (PT + PM)}

Received_Resync = {0, 1}

6.3. Modeling Good Nodes

The state machine describes the collective behavior of the node, Ni, utilizing assessment

results from its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in Figure 8. The good node’s data

structure consists of State, Accept_Events, State_Timer, Local_Timer, Transmit_Timer, and

Message_Out. The State element represents the current state of the node. The Accept_Events

element is the count of accept events since the node entered the Restore state. The State_Timer

 16

element represents the duration of current state of the node. The Local_Timer element represents

the duration of time since the node has been synchronized with other good nodes. The

Transmit_Timer element represents the passage of time since the transmission of the last

message by the node. As discussed in the previous section, there is no need to model this

element for the basic case. The Message_Out element represents the out going message of the

node. The range of values that these elements can hold is enumerated as follows.

State = {Restore, Maintain}

Accept_Events = {0 .. (F+1)}

State_Timer = {0 .. PM}

Local_Timer = {0 .. (PT + PM)}

Transmit_Timer = {0 .. (∆AA+1)}

Message_Out = {NONE, Resync, Affirm}

6.4. Modeling Communication Channels

The communication channel’s data structure consists of Message_In, Comm_Delay, and

Message_Out. The Message_In element represents the message deposited by the transmitting

node. The Comm_Delay represents the amount of delay associated with the channel. The

Message_Out element represents the delayed message being delivered to the destination nodes.

The range of values that these elements can hold is enumerated as follows.

Message_In = {NONE, Resync, Affirm}

Comm_Delay = {1 .. ∆AA}

Message_Out = {NONE, Resync, Affirm}

Since for the basic case ∆AA is one clock tick, a deposited message on a communication

channel is available to the destination nodes at the next clock tick. Therefore, a channel of depth

one suffices. Also since a message is broadcast to other nodes, a single variable suffices to

represent the communication channel from a node to all other nodes. Therefore, in order to

reduce the state space, the communication channel is modeled implicitly and as part of the

node’s out going message instead of introducing a new SMV module for the channels.

 17

7. Propositions

Computational tree logic (CTL), a temporal logic, is used to express properties of a

system in this context. CTL uses atomic propositions as its building blocks to make statements

about the states of a system. CTL then combines these propositions into formulas using logical

and temporal operators with quantification over runs. The CTL operators have the following

format.

Q T

there exists an execution E X next

for all executions A F finally (eventually)

G globally

U until

In this section the claims of convergence and closure properties as well as the claims of

maximum convergence time and determinism of the protocol for the basic case are examined.

Although in the description of the protocol these properties are stated separately, nevertheless,

they are examined via one CTL proposition. Validation of this general CTL proposition requires

examination of a number of underlying propositions. In particular, since ∆Local_Timer(t) is defined

in terms of the Local_Timer of the good nodes and the Local_Timer is defined in terms of the

State_Timer, examination of the properties that described proper behavior of the State_Timer

take precedence. As a result, in this section, the four underlying propositions are examined

followed by the general proposition that validates the convergence and closure properties of the

protocol as well as the claims of maximum convergence time and determinism.

The following properties are described with respect to only one good node, namely

Good_Node_1. Since all good nodes are identical, due to the symmetry, the result of the

propositions equally similarly applies to other good nodes.

Proposition 1: This property specifies whether or not the State_Timer of a good node takes on a

given value in its range infinitely often, for instance, its maximum value of P. The expected

result for this proposition is a true value.

Examining the negation of this property is expected to produce a false value. This proposition

verifies that the State_Timer of a good node cannot never reach a given value.

Similar properties apply to the Local_Timer, but within its expected range.

AF (Good_Node_1.State_Timer = P)

EG !(Good_Node_1.State_Timer = P)

 18

Proposition 2: This property specifies whether or not the State_Timer of a good node takes on

all values in its range infinitely often. In other words, it verifies that the model does not

deadlock. Furthermore, the value of the State_Timer of a good node at the next clock tick is

different from its current value and is its expected next value in the sequence of 0 to P. The

expected result for this proposition is a true value.

Examining the negation of this property is expected to produce a false value. This proposition

verifies that the next value of the State_Timer of a good node cannot be the same as its current

value. In other words, its value always advances within the expected range.

Similar properties apply to the Local_Timer, but within its expected range.

Proposition 3: This property specifies whether or not time advances and the amount of time

elapsed, Elapsed_Time, has advanced beyond the predicted convergence time,

Convergence_Time. The expected result for this proposition is a true value.

The Global_Clock is a measure of elapsed time from the beginning of the operation and with

respect to the real time, i.e. external view. The Elapsed_Time is indicative of the Global_Clock

reaching its target maximum value of Convergence_Time.

AG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->

AX ((SCLK=0) & ((Good_Node_1.State_Timer= i) | (Good_Node_1.State_Timer = i+1)))) &

AG (((SCLK = 1) & (Good_Node_1.State_Timer = P)) ->

AX ((SCLK = 0) & (Good_Node_1.State_Timer = 0)))

For all i = 0 .. (P-1)

EG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->

EX ((SCLK = 0) & (Good_Node_1.State_Timer = i))) |

For all i = 0 .. (P-1)

Elapsed_Time := (Global_Clock >= Convergence_Time) ;

AF (Elapsed_Time)

init (Global_Clock) := 0 ;

next (Global_Clock) :=

case

(SCLK = 1) & (Global_Clock < Convergence_Time) : Global_Clock + 1 ;

1 : Global_Clock ;

esac ;

Elapsed_Time := (Global_Clock >= Convergence_Time) ;

 19

Proposition 4: Similar to Proposition 2, this property specifies whether or not the State_Timer

of a good node takes on all values in its range infinitely often but beyond the convergence time,

i.e. after Elapsed_Time has become true. The expected result for this proposition is a true value.

Examining the negation of this property is expected to produce a false value. Similar properties

apply to the Local_Timer, but within its expected range.

Proposition 5: The convergence and closure properties are described in Section 2.5. This

proposition encompasses the criteria for the convergence and the closure properties as well as the

claims of maximum convergence time and determinism. This proposition specifies whether or

not the system will converge to the predicted precision after the elapse of convergence time,

Elapsed_Time, and whether or not it will remain within that precision thereafter. The expected

result for this property is a true value.

The proper value of the All_Within_Precision is determined by measuring the difference of

maximum and minimum values of the Local_Timers of all good nodes for the current SCLK tick

and in conjunction with the result from the previous SCLK tick. The expected difference of

Local_Timers is the predicted precision bound.

The negation of the above proposition is listed below and the expected result is a false value.

This property specifies that after the elapse of convergence time, Elapsed_Time, whether or not

the system will not converge or if it converges, whether or not it drifts apart beyond the expected

precision bound.

AF (Elapsed_Time) &

AG (((SCLK = 1) & (Elapsed_Time) & (Good_Node_1.State_Timer = i)) ->

AX ((SCLK=0) & ((Good_Node_1.State_Timer= i) | (Good_Node_1.State_Timer = i+1)))) &

AG (((SCLK = 1) & (Elapsed_Time) & (Good_Node_1.State_Timer = j)) ->

AX ((SCLK = 0) & (Good_Node_1.State_Timer = j+1))) &

AG (((SCLK = 1) & (Elapsed_Time) & (Good_Node_1.State_Timer = P)) ->

AX ((SCLK = 0) & (Good_Node_1.State_Timer = 0)))

For all i = 0 .. 4

For all j = 5 .. (P-1)

AF (Elapsed_Time) & -- Determinism Property

AG (Elapsed_Time -> All_Within_Precision) & -- Convergence Property

AG ((Elapsed_Time & All_Within_Precision) ->

AX (Elapsed_Time & All_Within_Precision)) -- Closure Property

AF (Elapsed_Time) &

AG (Elapsed_Time -> All_Within_Precision) &

AG ((Elapsed_Time & All_Within_Precision) -> EX (! All_Within_Precision))

 20

8. Results

This SMV model checking effort was performed on a PC with 4GB of memory running

Linux. SMV was able to examine all possible scenarios and the basic case of the protocol was

model checked. The model checking results are listed in the following tables. The negation of a

property is denoted by using the unary operator ‘!’.

The Byzantine faulty behavior modeled here is a node with arbitrarily malicious

behavior. The Byzantine faulty node is allowed to influence other nodes at every clock tick and

at all time as depicted in Figure 7. Regardless of the nature of the faulty node, no assumptions

are made about the initial internal status of the nodes, the monitors, and the system. For

instance, a node can wake up in the Maintain state and transmit a Resync, message. Although

such behavior from a good node is not exhibited during normal operation, nevertheless, it is

allowed for the random start up. Such a model is for the weakest assumptions about the behavior

of the faulty nodes, the internal state of data structures of the nodes, the monitors, and the system

as a whole, and thus produces the strongest results.

Table 1. Results in the presence of a Byzantine faulty node.

Proposition Result Time (sec) Mem (GB)

1 T 1311 1.2

1! F 1318 1.2

2 T 0.2 0.012

2! F 8866 1.2

3 T 0.04 -

4 T 19 0.056

4! F 4702 1.2

5 T 2313 2

5! F 3413 2.1

Table 1 lists the results of model checking of the basic case for the stated propositions 1

through 5, where the duration of the Maintain and Restore states, PM and PT, are chosen to be

PM = PT = Period = 10 and the maximum convergence time, Convergence_Time, is 30. As

shown in Table 1, the maximum memory usage is about 2GB after applying the state space

reduction techniques. The amount of memory used and processing time needed depend on the

BDD construction and the nature of the query. Although verification of the stated propositions

suffices to validate the claims of correctness and determinism of the protocol and in the presence

of a Byzantine fault, the propositions are further examined for other, and hence less severe, types

of faults. For the following scenarios, the values for the Period and Convergence_Time are the

same as for Table 1.

 21

8.1. Symmetric Fault

In this case, all good nodes receive identical messages from a single faulty node as

depicted in Figure 6. The faulty node still behaves randomly, but its effect at the receiving nodes

is identical. As shown in Table 2, the maximum available memory is used to model check this

case. Due to the BDD construction, the memory usage is far more than the Byzantine faulty case.

Table 2. Results in the presence of a symmetric faulty node.

Proposition Result Time (sec) Mem (GB)

1 T 2573 2.0

2 T 0.2 0.012

3 T 0.04 -

4 T 62 0.160

5 T 3975 3.5
*

*
 Of 4GB available memory, maximum memory utilized by SMV is approximately 3.5GB.

8.2. Crash-Silent Fault, a.k.a. Stuck-at NONE Message

This case is a special case of the symmetric faulty node where the faulty node is not

transmitting any messages. This case is modeled such that the associated message from the

faulty node to all good nodes is a NONE message signifying lack of transmission by the faulty

node. This case is depicted in Figure 6.

Table 3. Results in the presence of a symmetric faulty node.

Proposition Result Time (sec) Mem (GB)

1 T 28 0.045

2 T 0.15 -

3 T 0.04 -

4 T 6 0.015

5 T 365 0.34

8.3. Stuck-at Resync Message

This case is another special case of the symmetric faulty node where all good nodes

receive identical messages from a single faulty node. The faulty node transmits the same

message to all good nodes all the same time.

 22

Table 4. Results in the presence of a symmetric faulty node.

Proposition Result Time (sec) Mem (GB)

1 T 81 0.25

2 T 0.15 -

3 T 0.04 -

4 T 7 0.025

5 T 605 0.61

8.4. Stuck-at Affirm Message

This case is another special case of the symmetric faulty node where all good nodes

receive identical messages from a single faulty node. The faulty node transmits the same

message to all good nodes all the same time.

Table 5. Results in the presence of a symmetric faulty node.

Proposition Result Time (sec) Mem (GB)

1 T 19 0.033

2 T 0.15 -

3 T 0.04 -

4 T 5 0.017

5 T 276 0.3

9. Additional Reduction Techniques

New state space reduction techniques are presented here that can be used in mechanical

verification of other protocols. Although these techniques were not used in the model checking

efforts reported here, they are intended to be used in the future efforts. The underlying

assumption for these state space reduction techniques is that a message from a good node will

eventually (see requirements for message validity for this protocol) be accepted as valid. Since

this assumption is true for the good nodes and once true they do not violate the message timing

requirements, the associated monitors for the corresponding good nodes can be simplified so that

they do not have to examine proper timing of message arrival.

In the SMV model reported here, the faulty node is modeled as a special node only

capable of randomly producing any one of the three messages at any time. Per protocol

requirements, a good node must keep track of the incoming messages from all other nodes.

Therefore, K-1 monitors at each good node are needed to accommodate this requirement.

Hereafter, such straightforward model of a faulty node is referred to as explicit fault model and

the associated monitors as explicit fault monitors.

 23

Recall that the Accept() function uses the threshold value TA = G - 1 = 2F where

potentially up to F of these messages are from as many faulty nodes. Looking from a different

perspective, at least F of these messages have to be from as many good nodes. Similarly, the

Retry() function uses the threshold value TR = F + 1 and potentially up to F of these messages are

from as many faulty nodes. In other words, at least one of these messages have to be from a

good node. Now, let’s assume that a good node receives messages only from the other good

nodes. In this case, for the Accept() function, unless the node receives at least F messages, no

matter how many messages (up to F) from the faulty nodes are assumed to be present, the

Accept() function will not return a true value. Similarly, for the Retry() function, unless the node

receives at least one message, no matter how many messages (up to F) from the faulty nodes are

assumed to be present, the Retry() function will not return a true value.

After receiving at least F messages from as many good nodes for the Accept() function

and at least one message from a good node for the Retry() function, the behavior of the faulty

nodes can either strengthen a good node’s current status or cause the good node to lose

synchronization with other nodes. Therefore, only at such moments does the behavior of the

faulty nodes impact the operations of the good nodes and, thus, the behavior of the faulty nodes

can be inferred as needed at the good nodes. Exploiting this concept reveals that the faulty

nodes, the associated explicit fault monitors for the corresponding faulty nodes, and the

corresponding communication channels are no longer needed. Hereafter, such an indirect model

of a faulty node is referred to as an implicit fault model. This concept is depicted in Figure 9

where the good nodes are denoted by N1 .. Ni-1, Ni+1 .. NK-F and their associated explicit monitors

are denoted by M1 .. Mi-1, Mi+1 .. MK-F and the monitors MK-F+1 .. MK represent the implicit fault

models.

Node i

State

Machine
From Nk-f

From Ni+1

From N1

To other nodes

Mi+1

Mk-f

From Ni-1
Mi-1

M1

Node i

Mk-f+1

Mk

Explicit

Implicit

Figure 9. Implicit fault model.

 24

In the implicit fault model approach a good node receives messages only from other good

nodes and after accumulating enough messages (F for the TA and one for TR), the good node’s

subsequent behavior will be determined by randomly introducing up to F messages for the faulty

nodes. Therefore, in this approach, behaviors of faulty nodes are imitated at the good node and

when appropriate. Thus, the implicit fault model substantially improves the model checking

performance. In particular, if a node’s behavior will not be influenced by the behavior of the

faulty nodes for a duration of time, the model checking time can advance to the end of that time

interval. This performance increase is more noticeable in protocols that do not require periodic

transmissions of messages. Also, by eliminating the explicit fault monitors and the associated

channels, the implicit fault model results in substantial reduction in the state space.

The implicit fault model can be used directly in protocols that do not require keeping

track of a history of a node’s behavior. Otherwise, an additional measure is required to

compensate for the removal of the explicit fault monitors. In particular, for the protocol

presented in this report, elimination of an explicit fault monitor can be compensated by the

introduction of a new implicit fault monitor at the node. Such a monitor has to guarantee

proper timing of any two consecutive actions associated with their corresponding messages.

Alternatively, the faulty node can be modeled as a special node that is still capable of

randomly producing any one of the three messages but its outgoing messages are regulated such

that the message validity requirements of the protocol are not violated. Such a well-behaved

model of a faulty node is referred to as a semi-explicit fault model. In this approach, the nodes

are modeled explicitly with K-1 explicit monitors but they assume that all incoming messages

meet their protocol requirements and, therefore, are valid. Therefore, the model of the monitors

can be simplified.

The explicit fault model is simpler to model, easier to scale to a larger system, but

requires more memory than the implicit fault model. Modeling of the implicit fault model

requires more care, but the improved performance and the reduction gained in the state space far

outweigh its added complexity. Because of its simplicity and direct approach and avoiding any

assumptions regarding message validity, the explicit fault model was used in this verification

effort. The semi-explicit fault model and implicit fault model will be used in future work.

10. Applications

The proposed self-stabilizing protocol is expected to have many practical applications as

well as many theoretical implications. Embedded systems, distributed process control,

synchronization, inherent fault tolerance which also includes Byzantine agreement, computer

networks, the Internet, Internet applications, security, safety, automotive, aircraft, wired and

wireless telecommunications, graph theoretic problems, leader election, time division multiple

access (TDMA), and the SPIDER
2
 project [Torres 2005A, 2005B] at NASA-LaRC are a few

2
 Scalable Processor-Independent Design for Enhanced Reliability (SPIDER).

 25

examples. These are some of the many areas of distributed systems that can use self-stabilization

in order to design more robust distributed systems.

11. Summary and Future Work

In this report a SMV model of a simplified model of a rapid Byzantine-fault-tolerant self-

stabilizing protocol for distributed clock synchronization systems is presented. The simplified

model of the protocol is model checked using SMV where the entire state space is examined and

proven to self-stabilize in the presence of one permanent Byzantine faulty node. Furthermore,

the simplified model of the protocol is proven to deterministically converge with a linear

convergence time with respect to the self-stabilization period as predicted. This protocol does

not rely on any assumptions about the initial state of the system and no assumptions are made

about the internal status of the nodes, the monitors, and the system as a whole, thus making the

weakest assumptions and, therefore, producing the strongest results. The Byzantine faulty

behavior modeled here is a node with arbitrarily malicious behavior. The Byzantine faulty node

is allowed to influence other nodes at every clock tick and at all time. The only constraint is that

the interactions are restricted to defined interfaces.

In this report, modeling challenges are addressed and abstraction techniques are

illustrated. A number of innovative state space reduction techniques, in particular the implicit

fault model of the faulty nodes and their corresponding monitors, are introduced that can be used

in a verification process of other protocols. In addition, the basic case is introduced that

specifies the set of necessary conditions that all candidate solutions to this problem should

satisfy. The flaw in [Daliot 2003] was discovered as a direct result of applying that protocol to

the basic case [Malekpour 2006A]. Although model checking results of the basic case of the

protocol are promising, these results are not sufficient to confirm that the protocol solves the

general case of this problem.

Having mechanically verified a simplified model of the protocol, new hypothesis and

conjectures are now practical for examination. The current modeling approach is a very

powerful tool for asking “What if?" questions that are difficult to answer either by manual

analysis or by testing real hardware.

In our ongoing efforts toward the verification of this protocol for the general case, the

SMV model of the simplified version of this protocol has been redesigned and restructured.

Also, the protocol has been redesigned and further simplified. As a result, the current model

requires less memory, making exploration of more complex and larger configurations easier.

Consequently, instances of the protocol representing the out-of-phase scenario where D > 1 and

d = 0, and hence, ∆AA > 1, have been explored. Thus far, the analyses indicate that the protocol

solves the out-of-phase scenario. Instances of the protocol representing a more complex system

where D ≥ 1 and 0 ≤ d ≤ 1 have also been examined. Thus far, the analyses indicate that the

protocol is applicable to realizable systems and practical applications. In addition, some

instances of the protocol representing larger systems, where F > 1, have also been studied. Thus

far, the analyses indicate that the protocol does not solve the general case of this problem

 26

where F > 1. A detailed explanation of the analyses is beyond the scope of this report.

Nevertheless, so far this model checking effort proved that, at a minimum, a deterministic

solution for specific cases of this problem exists. We expect that this protocol serves as the

starting point toward finding a comprehensive solution for the general case. In-depth analyses of

the simplified version of this protocol for more complex and larger systems will be the subject of

a subsequent report. This analysis will include pitfalls, relevant counterexamples, an argument

toward impossibility results, as well as scenarios where this protocol can be used as a basis for

larger systems and, thus, for realizable systems and practical applications.

 27

References:

[Ciardo 2003] Ciardo, G.; Siminiceanu, R.: Structural Symbolic CTL Model Checking,

CAV 2003, Boulder, Colorado, LNCS 2725, pp.40-53, July 2003.

[Daliot 2003] Daliot, A.; Dolev, D.; Parnas, H.: Linear Time Byzantine Self-Stabilizing

Clock Synchronization, Proceedings of 7th International Conference on

Principles of Distributed Systems (OPODIS-2003), La Martinique, France,

December 2003.

[Dijkstra 1974] Dijkstra, E.W.: Self stabilizing systems in spite of distributed control,

Commun. ACM 17,643-644, 1974.

[Dolev 2004] Dolev, S.; Welch, J.L.: Self-Stabilizing Clock Synchronization in the

Presence of Byzantine Faults. Journal of the ACM, Vol.51, No. 5, pp.

780-799, September 2004.

[Lamport 1982] Lamport, L.; Shostak, R.; Pease, M.: The Byzantine General Problem,

ACM Transactions on Programming Languages and Systems, 4(3), pp.

382-401, July 1982.

[Lamport 1985] Lamport, L; Melliar-Smith, P.M.: Synchronizing clocks in the presence of

faults, J. ACM, vol. 32, no. 1, pp. 52-78, 1985.

[Malekpour 2006A] Malekpour, M.R.; Siminiceanu, R.: Comments on the “Byzantine Self-

Stabilizing Pulse Synchronization” Protocol: Counterexamples.

NASA/TM-2006-213951, pp. 12, February 2006.

[Malekpour 2006B] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol

for Distributed Clock Synchronization Systems. NASA/TM-2006-214322,

pp. 37, August 2006.

[Malekpour 2006C] Malekpour, M.R.: A Byzantine-Fault Tolerant Self-Stabilizing Protocol

for Distributed Clock Synchronization Systems. Eighth International

Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS06), November 2006.

[Siminiceanu 2004] Siminiceanu, R.: Structural Model Checking, Ph.D. Thesis, College of

William and Mary, 2004.

[SMV] http://www-2.cs.cmu.edu/~modelcheck/smv.html

[Srikanth 1987] Srikanth, T.K.; Toueg, S.: Optimal clock synchronization. Journal of the

ACM, 34(3), pp. 626–645, July 1987.

 28

[Torres 2005A] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: ROBUS-2: A fault-

tolerant broadcast communication system. NASA/TM-2005-213540, pp.

201, March 2005.

[Torres 2005B] Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: Design of the Protocol

Processor for the ROBUS-2 Communication System. NASA/TM-2005-

213934, pp. 252, November 2005.

[Welch 1988] Welch, J.L.; Lynch, N.: A New Fault-Tolerant Algorithm for Clock

Synchronization. Information and Computation volume 77, number 1,

pp.1-36, April 1988.

 29

Appendix A. Symbols

The symbols used in the protocol are described in detail in [Malekpour 2006B] and are

listed here for reference.

Symbols Descriptions

ρ bounded drift rate with respect to real time

d network imprecision

D event-response delay

F maximum number of faulty nodes

G minimum number of good nodes

K sum of all nodes

KG set of all good nodes

Resync self-stabilization message

Affirm self-stabilization message

R abbreviation for Resync message

A abbreviation for Affirm message

TA threshold for Accept() function

TR threshold for Retry() function

Restore self-stabilization state

Maintain self-stabilization state

T abbreviation for Restore state

M abbreviation for Maintain state

PT,min minimum duration while in the Restore state

PT duration while in the Restore state

PM duration while in the Maintain state

PEffective the effective self-stabilization period

∆AA time difference between the last consecutive Affirm messages

∆RR time difference between the last consecutive Resync messages

C convergence time

∆Local_Timer(t) maximum time difference of Local_Timers of all good nodes at real time t

∆Precision self-stabilization precision

∆Drift maximum deviation from the initial synchrony

Ni the i
th

 node

Mi the i
th

 monitor of a node

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
Model Checking a Byzantine-Fault-Tolerant Self-Stabilizing Protocol for
Distributed Clock Synchronization Systems

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19408

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT
This report presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock
synchronization systems. This protocol does not rely on any assumptions about the initial state of the system. This protocol tolerates bursts of transient failures,
and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using
the Symbolic Model Verifier (SMV) [SMV]. The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty.
The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as
confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified
model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem.
Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space. Also, additional
innovative state space reduction techniques are introduced that can be used in future verification efforts applied to this and other protocols.

15. SUBJECT TERMS
Byzantine-Fault-Tolerant; Clock Synchronization; Model Checking; Self-Stabilization

18. NUMBER
 OF
 PAGES

36
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

645846.02.07.07.06

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2007-215083

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
11 - 200701-

