ABSTRACT:

As part of a Constellation session at the 2007 Thermal & Fluids Analysis Workshop (TFAWS), an overview of the Crew Launch Vehicle (CLV), Crew Exploration Vehicle (CEV) and Lunar Lander systems will be given. This presentation provides a general description of the CLV (also known as Ares-I) and Ares-V vehicles portion of the session. The presentation will provide an overview of the thermal requirements, design environments, challenges and thermal modeling examples.
TFAWS
Ares Thermal Overview
Sept. 13, 2007

John Sharp
Ares-I Vehicle Integration Thermal Lead

National Aeronautics & Space Administration
George C. Marshall Space Flight Center
Topics

- Ares in CxP Hierarchy
- General Ares Description/Orientation
- Ares I Thermal Overview
 - Requirements
 - Design Environments
 - Challenges
 - Thermal Modeling
 - Status
Ares in CxP Hierarchy

- Ares I is Two-Stage Launch System for the Orion Crewed Vehicle (CEV)
 - The first test flight, Ares I-1, will be a suborbital test of the booster with an inert fifth SRB segment and a dummy second stage with mock-up engines. April 2009

- Ares V is Cargo “heavy lift” launch system for the Lunar Surface Access Module (LSAM)
Ares in CxP Schedule

- Initial Orion (CEV) Capability
- Lunar Robotic Missions
- Science Robotic Missions
- Commercial Crew/Cargo for ISS
- Space Shuttle Operations
- Orion Development
- Ares I Development
- Lunar Lander Development
- Ares V & Earth Departure Stage
- Surface Systems Development
- Lunar Outpost Buildup
- Mars Expedition
General Ares Description/Orientation

Space Shuttle
- Height: 184.2 ft
- Gross Liftoff Mass: 4.5M lb
- 55k lbm to LEO

Ares I
- Height: 328 ft
- Gross Liftoff Mass: 2.0M lb
- 52k lbm to LEO

Ares V
- Height: 362 ft
- Gross Liftoff Mass: 7.3M lb
- 133-144k lbm* to TLI in Dual-boost Mode at KSC

Saturn V
- Height: 364 ft
- Gross Liftoff Mass: 6.5M lb
- 99k lbm to TLI

Upper Stage (1 J-2X)
- 305k lb LOx/LH₂

Lunar Lander
- Earth Departure Stage (EDS) (1 J-2X)
- 493k lb LOx/LH₂

Crew Lander
- S-IVB
 - (1 J-2 engine)
 - 240k lb LOx/LH₂
- S-II
 - (5 J-2 engines)
 - 1M lb LOx/LH₂
- S-IC
 - (5 F-1 engines)
 - 3.9M lb LOx/RP
General Ares Description/Orientation

Ares-I

- **Orion**
 - 16.5 ft diameter

- **Instrument Unit**
 - 7075-AL alloy Structure
 - USPC
 - Avionics boxes
 - NASA Design / Contractor Production
 - Flight Software Development
 - NASA Design

- **Stack Integration**
 - 2M lb gross liftoff weight
 - 328 ft length
 - NASA-led

- **First Stage**
 - Derived from current Shuttle RSRM/B
 - Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
 - Recoverable
 - New forward adapter
 - Avionics upgrades
 - **ATK Launch Systems**

- **Upper Stage**
 - 305 klb LOx/LH₂ stage
 - 18 ft diameter
 - Aluminum-Lithium (Al-Li) structures
 - Instrument unit and interstage
 - Reaction Control System (RCS) / roll control for 1st stage flight
 - Primary Ares I avionics system
 - NASA Design / Contractor Production

- **Upper Stage Engine**
 - Saturn J-2 derived engine (J-2X)
 - Expendable
 - **Pratt and Whitney Rocketdyne**
General Ares Description/Orientation

• Ares-V

Composite Shroud

Ascent Stage

Descent Stage

{LSAM

Earth Departure Stage

• LOx/LH2
• One J2X+ Engine
• Al-Li Tanks/Structures

Interstage

Upper Stage Engine

• Saturn J-2 Derived Engine (J-2X)
• Expendable

Five Segment RSRBs

Core Stage

• LOx/LH2
• Five RS68 Engines
• Al-Li Tanks/Structures
General Ares Description/Orientation

Earth Departure Stage
Ares Thermal Requirements

Top Level Thermally-Related Ares I Requirements:

- Maintain Structural Temperatures
- Maintain Component Temperatures
 - Avionics, thrust vector control system, reaction control hypergolic thrusters, solid motors, parachutes, pyros, etc.)
- Liquid Hydrogen/Liquid Oxygen Propellant Quality
 - J-2X propellant thermodynamic "start box" & "run box"
 - Stratification in propellant tanks
 - Heat leak allowable for tanks & feedlines
- Preclude "hazardous" ice (allowable mass/locations TBD)
Top Level Thermally-Related Ares I Environments:

- KSC Natural Environments (VAB, rollout, On-Pad)
 - Design Specification for Natural Environments
 - KSC ambient air temperature range, humidity, wind, solar, sky radiation, etc.
 - Natural Environments Definition for Design
 - Operability/Logistics Goal to eliminate roll-out power/purge

- Ascent Aerothermodynamic and Plume Heating Environments
 - Ares-I Thermal Environments Data Book
Ares Thermal Challenges

- Ares I First Stage:
 - Base Heating from 5-segment Solid Rocket Booster Plume (Thermal Curtain)
 - Re-entry environments (significantly higher than STS RSRB)
 - Re-qualification of TPS materials
Ares Thermal Challenges

- **Ares I Upper Stage:**
 - Common Bulkhead between Liquid Hydrogen & Liquid Oxygen tanks
 - Liquid Hydrogen/Liquid Oxygen heat leak & stratification
 - Protuberance aero-thermal heating (various fairings, feedlines, systems tunnel)
 - Hydrazine temperatures for Reaction & Roll Control Thruster systems
 - Plume impingement from Solid Motors, RCS, J-2X
 - Passive avionics thermal control
Ares Thermal Challenges

- External Tank Separation Photo Illustrating Plume Heating Charring/Ablation

- Ogive Heating
- RSRM Joint Shocks
- SRB Shock And Bolt Catcher Area
- BSM Plume Impingement
Ares Thermal Challenges

- **Ares V**
 - Severe base heating environments for 5 RS-68 engines combined with 2 five-segment SRBs
 - Potential long duration orbital environment for EDS – maintaining cryogenic propellants
Ares Thermal Modeling

- **Ares I Thermal Modeling Tools:**
 - **First Stage (ATK)**
 - IDEAS-TMG, CMA, SINDA/G with proprietary Ablation routines
 - **J-2X (Pratt & Whitney Rocketdyne)**
 - TSS, SINDA/FLUINT, ANSYS, PATRAN
 - **Upper Stage (Marshall Space Flight Center)**
 - Thermal Desktop 5.0 (with AutoCAD 2007, SINDA/FLUINT, FloCAD)
 - PATRAN, P/Thermal
 - SINDA/G with ABL (in-house Ablation code)
 - FEMAP (as front end mesher to Thermal Desktop or SINDA/G)
 - CFD (various in-house CFD codes for compartment purge analyses)
 - CHCHVENT (in-house venting code)
 - GFSSP (in-house thermo fluid dynamics code)
 - MEIT - Momentum/Energy Integral Technique (Rocket Nozzles)
 - NAT (nozzle ablation)
 - ACE - Aerotherm Chemical Equilibrium
 - CMA - Charring Material Thermal Response and Ablation
Ares I Thermal Modeling Examples:

Integrated Upper Stage
Ares Thermal Modeling

- Ares I Thermal Modeling Examples:
 - J-2X
 - Common Bulkhead Joint