Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Introduction:
An integral component of an x-ray calorimeter is an x-ray absorber. In order to achieve optimal calorimeter performance, the absorber must possess low heat capacity, high thermal conductance, and high quantum efficiency. These three parameters can be tuned by judicious selection of absorber materials and design.

In this study, we have developed a generic methodology for fabricating 8x8 cantilevered absorber arrays that can be integrated into our Mo/Au transition edge sensors and is compatible with physical vapor deposition and electrochemical deposition. Thus, this methodology allows us to employ a wide variety of absorber materials so that we may freely probe parameter space, and, ultimately, optimize detector performance.

Here, we examine the morphology and mechanical robustness of evaporated Bi/Au, Bi/Cu, and electroplated Au cantilevered absorbers and discuss their utility in terms of calorimeter performance.

Absorber Fabrication Methodology:

1. Start with TES and Au bars grown atop Si$_3$N$_4$, coated Si wafer.
2. Pattern absorber stem with photoresist.
3. Deposit absorber metal.
4. Pattern absorber pixels with photoresist.
5. Ion mill to separate pixels.
6. Dissolve photoresist.

Our absorber stems, highlighted in green, were grown atop Au "landing pads", in blue, and cantilevered over the TES, in grey, so as to circumvent problems associated with interface chemistry between the absorber and TES.

We fabricated absorbers possessing different stem designs, as illustrated in this SEM micrograph, in order to study the effect of different thermal and electronic pathways between the absorber and TES.

Different stem designs will also allow us to compare detector performance to different absorber strains. Confocal microscope images illustrate that symmetric (H's and J's) stems have a tendency of being less strained than asymmetric (T's) stems at sites 1 and 3.

We have been able to fabricate mechanically robust absorber arrays possessing a filling fraction of 95-97%. Cross section SEM images show the absence of cantilevered-absorber bending, which assures that our absorber will not short out the TES.

Electroplated Absorbers:
Initial analysis suggests that, when integrated into our detectors, all Au electroplated absorbers perform much better than evaporated Bi/Au or Bi/Cu absorbers.

Ep Au:
I$_{EP}$ = 6.5 microns, RRR = 46.85, 1 mA/cm2, Bath temperature = 50°C

Electroplated Au possesses a very low resistivity as compared to evaporated metals (Au, Bi, Cu), and, consequently, should possess a very high thermal conductivity.

We observe excessive broadening of the energy curve at the lower edge of the spectrum if our detectors possess evaporated Bi/Au absorbers; however, this spurious effect is not observed when electroplated Au absorbers are used.

Future Work:

- Optimizing absorber stem design
- Further characterization of detectors possessing EP Au absorbers.
- Employing EP Bi absorbers in our detectors**