Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

W.C. Gaul, Ph. D., CHP, CHMM
Chesapeake Nuclear Services

B. Davis, MS, CIH, CSP, CAC,
NASA Dryden Research Flight Center
Limits and Guidelines

• OSHA
 – From 10 MHz to 100 GHz 10 mW/cm² - 0.1 hr

• FCC
 – Varies with frequency range
 – For occupational worker and general public

• IEEE

• ACGIH
 – Both also vary with frequency
Typical Variable Standard (IEEE)
Frequency Dependent

- Controlled Environments
- Uncontrolled Environments

$kH\Omega$, MHz, GHz

V/m, A/m
FCC Standard 47 CFR 1.1310

Limits for Maximum Permissible Exposure (MPE)
Occupational Exposure

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Electric field strength (V/m)</th>
<th>Magnetic field strength (A/m)</th>
<th>Power density (mW/cm²)</th>
<th>Averaging time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3-3.0</td>
<td>614</td>
<td>1.63</td>
<td>*(100)</td>
<td>6</td>
</tr>
<tr>
<td>3.0-30</td>
<td>1842/f</td>
<td>4.89/f</td>
<td>*(900/f²)</td>
<td>6</td>
</tr>
<tr>
<td>30-300</td>
<td>61.4</td>
<td>0.163</td>
<td>1.0</td>
<td>6</td>
</tr>
<tr>
<td>300-1500</td>
<td></td>
<td></td>
<td>f/300</td>
<td>6</td>
</tr>
<tr>
<td>1500-100,000</td>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

*f = frequency in MHz
* = Plane-wave equivalent power density
Compliance Follows Unity Rule

\[E_T = \sum_{i=1}^{n} \frac{pp_i}{rr_{123}} + ... 1^n < \]

Where \(E \)

\(E_{total} \) is

\(p \) power measured

\(s \) source

\(r \) regulatory requirement at power \(i \)
Multiple Sources Contribute
Types of RF Signals

- Continuous output
 - Signal emitted at all times

- Pulsed output
 - Can be at regular intervals
 - Weather radar

- Irregular output
 - Police, ambulance, etc.
Interfering Radiations

- Wireless LAN
- Wi-Fi Hotspots
- Cell phones, towers
- Radio towers
- Security radios
- Ambulance, Fire, Police
- HDTV – high power

- Hospitals
- HVAC systems
- Elevator controls
- Cleaning equipment
- Light ballasts
- Paper shredders
Different Frequencies Different Powers

<table>
<thead>
<tr>
<th>Device</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless LAN</td>
<td>1 – 5 W</td>
</tr>
<tr>
<td>Wi-Fi Hotspots</td>
<td>2 – 10 W</td>
</tr>
<tr>
<td>Cell phones, towers</td>
<td>10 W</td>
</tr>
<tr>
<td>Radio towers</td>
<td>100 kW</td>
</tr>
<tr>
<td>Security radios</td>
<td>5 W</td>
</tr>
<tr>
<td>Ambulance, Fire, Police</td>
<td>100 – 1000 W</td>
</tr>
<tr>
<td>HDTV</td>
<td>1 million watt transmitters</td>
</tr>
</tbody>
</table>
Power Summing - Peak Power

• Typical instruments are set for peak power
 – Irregardless of frequency
 – Sums over a broad range
 – Different correction factors for each frequency
 – Orientation affects reading
 – Irregardless of time averaging
 – Irregardless of spatial averaging

• Good if you never go over 1 mW/cm²
Contribution from Various Single Sources

![Diagram showing single RF source powers in mW/cm².](attachment:diagram.png)
Total Power from Multiple Sources

![Graph showing multiple contributions to total power with single peak measurement.](attachment:graph.png)
Are You Out of Compliance?

- Measured Power in mW/cm²
 - 25 mW/cm² @ 2.5 MHz
 - 0.75 mW/cm² @ 125 MHz
 - 0.5 mW/cm² @ 900 MHz

- Standard -- % limit
 - 100 mW/cm² -- 25%
 - 1 mW/cm² -- 75%
 - 3 mW/cm² -- 17%

Out of compliance IF:
Sources all radiating at once - in a broad field
For six minutes continuously - over whole body
In Compliance

- Know the generating frequency
- Know the pulse frequency
- Know the human exposure potential
Conclusion

• Monitor all sources
• Consider multiple sources
• Know frequency distribution
• Work with your radiofrequency and microwave equipment owners
• Trust their knowledge