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Advanced Stirling Convertor Testing at  
NASA Glenn Research Center 

Salvatore M. Oriti and Gina M. Blaze 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio, 44135 

Abstract 
The U.S. Department of Energy (DOE), Lockheed Martin Space Systems (LMSS), Sunpower Inc., and NASA 

Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use 
as a power system on space science and exploration missions. This generator will make use of the free-piston 
Stirling convertors to achieve higher conversion efficiency than currently available alternatives. The ASRG will 
utilize two Advanced Stirling Convertors (ASC) to convert thermal energy from a radioisotope heat source to 
electricity. NASA GRC has initiated several experiments to demonstrate the functionality of the ASC, including: in-
air extended operation, thermal vacuum extended operation, and ASRG simulation for mobile applications. The in-
air and thermal vacuum test articles are intended to provide convertor performance data over an extended operating 
time. These test articles mimic some features of the ASRG without the requirement of low system mass. Operation 
in thermal vacuum adds the element of simulating deep space. This test article is being used to gather convertor 
performance and thermal data in a relevant environment. The ASRG simulator was designed to incorporate a 
minimum amount of support equipment, allowing integration onto devices powered directly by the convertors, such 
as a rover. This paper discusses the design, fabrication, and implementation of these experiments. 

Nomenclature 
LMSS Lockheed Martin Space Systems 
FET Field-Effect Transistor 
DOE Department of Energy 
PWM Pulse Width Modulator 
ASC Advanced Stirling Convertor 
μF micro farad 
ASRG Advanced Stirling Radioisotope Generator 
RMS root mean square 
RTG Radioisotope Thermoelectric Generator 
We watt electric 
GPHS General Purpose Heat Source 
NASA National Aeronautics and Space Administration 
GRC Glenn Research Center 
FTB Frequency Test Bed 
TDC Technology Demonstration Convertor 
DAQ Data Acquisition 
FPC Failsafe Protection Circuit 
PID Proportional-Integral-Derivative 
Wth watt thermal 
psi pound per square inch 
FEA finite element analysis 
W/cm2 watt per square centimeter 
CTE coefficient of thermal expansion 
VAC volt, alternating current 
Hz hertz 
VDC volt, direct current 
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I. Introduction 
Lockheed Martin Space Systems (LMSS) was selected as the system integration contractor by the Department of 

Energy (DOE) to develop a radioisotope-powered generator for potential use on space science and exploration 
missions1. This generator will utilize Advanced Stirling Convertors (ASC) to convert heat from a radioisotope 
source into electricity, and thus has been named the Advanced Stirling Radioisotope Generator (ASRG). The ASCs 
were designed and fabricated by Sunpower, Inc. of Athens, Ohio. Stirling power conversion offers a four fold 
increase in efficiency over Radioisotope Thermoelectric Generators (RTGs), requiring one fourth the amount of 
radioisotope fuel for the same power output1. LMSS’s design of the ASRG engineering unit is shown in Fig. 1. The 
engineering unit will use electric heaters to simulate the Plutonium-238 General Purpose Heat Source (GPHS) 
modules that will be used in flight. One heat source is coupled to each ASC. Some candidate missions require 
continuous operation of the power system for up to 14 years, with an additional 3 years of storage prior to launch. 
Because of this long life requirement, several experiments have been initiated at NASA Glenn Research Center 
(GRC) to demonstrate life and reliability of the ASC2,3. One testing technique implemented involves continuous, 
unattended convertor operation to gather performance data over a period of thousands of hours. Continuous 
operation allows observation of convertor operating trends over a sufficient length of time to confirm or dismiss the 
presence of degradation.  
 The following sections will describe three unique test article designs. Two of these were designed for continuous 
operation, one for an in-air environment and another for a thermal vacuum environment. The third test article was 
designed to simulate the ASRG for the purposes of short-term demonstrations outside the laboratory. The 
experiments were designed to allow adjustment of operating conditions, including: hot-end and rejection 
temperatures, piston amplitude of oscillation, and mean charge pressure of the working gas. Each test article was 
instrumented to measure these parameters and all output characteristics, such as alternator voltage, alternator 
current, operating frequency, and power. Each uses electric heaters to supply thermal energy to the convertors, 
making power input measurements simple and accurate. The test articles differ primarily in their methods of cycle 
heat rejection. The in-air test article rejects heat to a coolant loop through which a temperature controlled fluid is 
circulated. The thermal vacuum test article utilizes radiator panels that dissipate the waste heat to a liquid nitrogen 
cooled shroud. The ASRG simulator rejects heat by flowing room-temperature air through fins attached to the 
rejection ends of the convertors.  
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Figure 1.—LMSS Advanced Stirling Radioisotope Generator Engineering Unit.  One electric heat source is 

coupled to each ASC. 
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 Three versions of ASC prototypes are available for these experiments, as summarized in Table 1. ASC-0 units 
have Inconel 718 (Special Metals) heater heads with a maximum hot-end temperature of 650 °C while ASC-1HS 
units have MarM-247 heater heads with a maximum hot-end temperature of 850 °C. The ASC-0 and ASC-1HS units 
were hermetically sealed by welding the flange joints. Frequency Test Bed (FTB) units are non-hermetically sealed 
development units4 with stainless steel heater heads and a maximum hot-end temperature of 550 °C. These units are 
used in the ASRG simulator.  

 

II.Extended Operation Test Stations 
Capability for continuous, unattended operation of Stirling convertors was first developed at GRC in 2003 to 

support Technology Demonstration Convertor (TDC) testing during the 110 We SRG project5. The project was 
redirected in May 2006 to increase specific power of the generator by using ASC technology1. The knowledge and 
experience acquired during TDC testing was applied to ASC testing. Each test station in the GRC Stirling Research 
Lab includes an operations rack, support stand, gas management components, and test article of interest. A test 
station with an ASC-0 test article is shown in Fig. 2. The Stirling Research Lab at GRC contains four of these test 
stations. A total of eight ASCs may be operated simultaneously; three pairs in-air and a fourth pair in thermal 
vacuum. 
 All test articles described in this paper orient a pair of convertors in the dual-opposed configuration, with the 
heater heads facing outward and the pressure vessel sections rigidly attached to each other. This configuration 
permits operation at near zero net vibration because the piston motions are equal but opposite in direction to achieve 
dynamic balance. This is also the orientation of the convertor pair in the ASRG.  
 The operations rack comprises the data system, hard-wired failsafe protection devices, hot-end temperature 
control systems, transducers, and convertor controller with parasitic load. The data system was based on National 
Instruments software and hardware. The LabVIEW-based (National Instruments)  data acquisition (DAQ) software 
was developed to operate in unattended mode and is capable of controlling the support systems without user 
intervention. The user may specify upper and lower bounds for any parameter monitored by the DAQ system. The 
DAQ software will safely shut down operation of the test article when an out-of-bounds condition is sensed. 
Parameters that may trigger a shut down include: hot-end and 
rejection temperatures, convertor mean charge pressure, piston 
amplitude of oscillation, and loss of building power.  
 Hard-wired protection devices were also installed in the 
operations rack that function independent of the software-based 
protection. The hot-end temperature of each convertor is monitored 
by a limit controller. If either hot-end temperature exceeds the user-
defined limit, the limit controller removes heater power from both 
convertors via a relay. A failsafe protection circuit (FPC) was 
implemented to prevent piston over-stroke. The FPC is capable of 
monitoring up to five input signals. Each input has an associated, 
user-adjustable set-point. When any signal exceeds its set-point, an 
emergency load is applied across both alternators in less than one-
half of a cycle. Piston position sensor signals are the primary input. 
However, other signals may also be used, such as accelerometer or 
alternator voltage.  
 Hot-end temperature control is accomplished by use of 
programmable DC power supplies driven by closed-loop 
proportional-integral-derivative (PID) controllers. Each hot-end 
temperature is controlled individually. Power input and output are 
measured using voltage, current and power transducers. The 
transducers output signals ranging from zero to five volts that are 
recorded by the DAQ system.  

TABLE 1.—ADVANCED STIRLING CONVERTOR ASSETS AT GRC. 
Convertor model Heater head material Hermetic Hot-end temperature, °C Operation 
ASC-0 Inconel 718 Y 650 Extended 
ASC-1HS MarM-247 Y 850 Extended 
FTB Stainless Steel N 550 ASRG simulator 

 
Figure 2.—Extended operation test station. A 

pair of ASC-0 units setup for continuous 
unattended operation in air. 
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 Convertor control is performed by a zener-diode power electronics controller that allows user adjustment of the 
piston amplitude via a variable zener-diode. The controller’s parasitic load was situated in the operations rack and 
dissipates all the unused power produced by the test article.  
 The working gas of the hermetically sealed units (ASC-0 and ASC-1HS) is still accessible via a fill tube and 
isolation valve attached to each convertor. The isolation valve allows a convertor to be disconnected from the test 
stand without sacrificing its high purity charge. During extended operation, the convertors are connected to a helium 
management system with the isolation valves open (V7 and V8 of Fig. 3). A 0.0004 in. diameter orifice was 
installed on the inlet fitting of each isolation valve to prevent bounce space pressure wave communication to the 
manifold. The helium management system serves the functions of convertor evacuation during bakeout, evacuation 
of system tubing, charge pressure adjustment, and sampling of the working gas.  

A. In-Air ASC Operation 
The in-air ASC test article is shown Fig. 4. Two ASC’s were mounted in the dual-opposed configuration using 

the tabs on the pressure vessels. The spacing between the convertors was sized for thermal vacuum operation, which 
will be described in the next section. On the thermal vacuum test article, the space between the convertors is 
occupied by the controller and a portion of the radiator panel assemblies.  

The heat rejection system consists of a copper rejection flange attached to the convertor, aluminum coolant 
collars, and temperature controlled circulator. The rejection flange was brazed to the rejection zone of the ASC 
heater head during fabrication. The coolant collars were clamped into the circumferential groove of the rejection 
flange by 12 fasteners. Coolant lines were connected to the inlets and outlets of the collars. One circulator located 
below the support stand provides coolant to both convertors Fig. 2. The other circulator is a spare that may be used 
for pressure vessel temperature control at a later time. The heat from the rejection portion of the cycle is conducted 
away from the heater head by the copper flange and into the aluminum collars. The coolant circulated through the 
collars then absorbs the waste heat. The rejection temperature of the convertor is controlled by the coolant 
temperature. Ethylene glycol is used since the required fluid temperature ranges from 10 to 90 °C. 

 The heat rejection flange was designed in collaboration with Sunpower, Inc. The flange geometry was designed 
to adapt to the existing ASC design and satisfy the thermal requirements. The rejection hardware was designed to 
permit operation of the convertor in either air or thermal vacuum conditions. To achieve this, the flange was 
designed to accept either the collars that interface to a pumped coolant loop or radiator panels. For efficient heat 
rejection, the temperature drop across components should be minimized. The rejection flange was required to 
conduct 145 Wth with a temperature drop of 10 °C or less. This heat flow value represents a 10% margin over the 
nominal heat rejection of the ASC thermodynamic cycle. Copper was chosen for the flange material because of its 
high thermal conductivity and machinability. The flange’s circumferential groove geometry was driven by the 
requirement to supply 1400 psi of contact pressure to the cooling device. This value was based on heat transfer 
guidelines regarding copper and aluminum surfaces. The groove width was driven by the thickness of the radiator 
panels which will be discussed in the following section. Thermal finite element analysis (FEA), was used to predict 
a temperature drop of only 6.2 °C. The coolant collars were designed to occupy minimum space while permitting 
sufficient coolant flowrate to remove the cycle waste heat. The required coolant passage diameter was initially 
estimated at 0.25 in. This geometry was analyzed by modeling the passage as a straight duct with a constant wall 

V3

P2 (TMP)
V2

P1

V4

Convertor #2

V1

V5

RGA

G1

Computer

G2 V9V11

Helium 
Supply

Room Air

V6

V8

V10V12

PT2

PT1

V7
Convertor #1

BD2

UPPER 
MANIFOLD

LOWER 
MANIFOLD

Room Air

PUMPING 
STATION

OR1

OR2

V3

P2 (TMP)
V2

P1

V4

Convertor #2

V1

V5

RGA

G1

Computer

G2 V9V11

Helium 
Supply

Room Air

V6

V8

V10V12

PT2

PT1

V7
Convertor #1

BD2

UPPER 
MANIFOLD

LOWER 
MANIFOLD

Room Air

PUMPING 
STATION

OR1

OR2

   
Figure 3.—Helium management system. System schematic (left) and photograph of upper manifold on support stand 

(right). 
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temperature and underdeveloped laminar coolant flow. The analysis indicated marginally acceptable performance 
using ethylene glycol at a flowrate of 1 liter per minute. However, the rejection hardware performed adequately 
during testing, requiring only a 15 °C difference between the fluid and rejection temperatures at maximum power. 
One possible explanation is that the actual flow through the collars becomes turbulent, thereby increasing the heat 
transfer coefficient. Checkout testing of ASC-0 units in air revealed the heat rejection system was capable of 
maintaining the rejection temperature at any point between 50 and 90 °C while operating at maximum power. 
Operation at rejection temperatures below 50 °C was not explored.  

The heat input hardware consists of a heat collector, external acceptor, and cartridge heater source. The heat 
collector and external acceptor form a two-piece brazed assembly that directs thermal energy to the input zone of the 
heater head. The cartridge heater source was preloaded onto the collector and acceptor assembly by threaded rods. 
The heat collector was designed to interface to two heat sources; cartridge array and Boralectric (GE Advanced 
Ceramics). The in-air heat source consists of an array of six cartridge heaters inserted into a copper or nickel block. 
The Boralectric heat source is specific to thermal vacuum operation, and will be described in the following section. 
Both heat sources required a flat surface on the exposed end of the heat collector. The flat heater interface was also 
desirable because it emulates use of the GPHS modules in the ASRG. Thermal FEA was used to determine overall 
thickness of the collector. The final geometry, shown in Fig. 4, was driven by structural analysis. The axial length of 
collector was made large enough so that it would not yield under load from the heater attachment while operating at 
maximum temperature. The hot-end and regenerator sections were insulated by Kaowool (Thermal Ceramics). An 
aluminum can was installed over the insulation bundle to maintain its shape and position. 

Two ASC-0 units (S/N nos. 1 and 2) were received on December 20, 2006. After installation onto the test 
station, evacuation and fill was completed using the helium management system described in the previous section. 
The convertors and manifold plumbing were evacuated down to 2.8×10–7 torr, then backfilled with ultra-high purity 
helium (99.999%) to 440 psig. It was estimated that this room-temperature charge pressure would result in 515 psig 
at full temperature and power. Operation of ASC-0 nos.1 and 2 at GRC was initiated on February 2, 2007. The 
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Figure 4.—ASC in-air test article. Assembly partial section view (top) and photograph (bottom). 
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testing activities that followed included checkout of the controller and unattended operation software. Typically, the 
path to continuous, unattended mode operation includes two stages. The first is a low-temperature checkout during 
which the hot-end temperature is restricted to lower value than the full design temperature. Low-temperature 
checkout of ASC-0 nos.1 and 2 was performed at 550 °C hot-end and 50 °C rejection. These temperatures were 
chosen because 50 °C was the lowest recommended rejection temperature and 550 °C was the required hot-end 
temperature to achieve West number similitude with the full design condition. The second stage is a demonstration 
at the full temperature condition of 650 °C hot-end and 90 °C rejection. This was achieved on February 8, 2007, and 
continuous, unattended mode operation was initiated the same day. Operation continued until March 5, 2007 at 
which time operation was manually shut down after accumulating 600 hr.  

Insulation loss characterization was then performed to calculate net efficiency by quantifying the portion of total 
thermal energy input that is delivered to the heater head. The remainder may be attributed to insulation losses that 
the engine cycle has no opportunity to convert to work. The insulation losses were calculated by evacuating the 
convertors, then measuring the thermal power required to maintain various temperature ratios (Table 2). Since there 
was no working gas, no thermal power could be drawn by the thermodynamic cycle. The evacuation also eliminated 
gas conduction and convection between internal heater head components. The amount of energy conducted and 
radiated down the heater head was calculated for each step of the matrix. Following insulation loss characterization, 
the convertors began the transition to thermal vacuum operation. 

 

B. Thermal Vacuum ASC Operation 
The thermal vacuum test article is shown in Fig. 5. Two convertors were mounted in the dual opposed 

configuration using on the same support structure used for in-air test article. The convertor pair was attached to a 
support stand that locates it in the center of the vacuum chamber and liquid nitrogen shroud. The test article was 
structurally isolated by wire rope isolators between the support stand and mounting. The liquid nitrogen shroud 
surrounds 100 percent of the test article. A zener-diode controller was integrated into the test article and fastened to 
the center supports. However, the controller’s parasitic load remains outside the vacuum tank in the operations rack.  

The heat rejection system utilizes aluminum radiator panels clamped into the circumferential groove of the 
rejection flange. The panels were coated with ECP-2200 to increase their emissivity to approximately 0.9. T-gon 

(Thermagon) 805 graphite sheets were installed at all copper-aluminum interfaces to reduce thermal contact 
resistances. The radiator panel geometry was analyzed with FEA, with the model including the dual-opposed 
convertors, the heat load from the cycle, insulation containers, pressure vessels, and controller. The liquid nitrogen 
shroud was simulated by applying a radiation sink temperature enclosing 100% of the model geometry. The panel 
geometry was adjusted to maintain the rejection temperature at 90 °C while dissipating 145 Wth in this environment.  

The heat input system utilizes a Boralectirc heater instead of the cartridge heater source (Fig. 6). Boralectric 
heaters are manufactured by encapsulating a pyrolytic graphite element in pyrolytic boron nitride. The heater 
geometry was designed with guidelines provided by the manufacturer. The lowest thermal resistance occurs at the 
outer perimeter of the heat collector, which drove the heater shape to the maximum allowable inner and outer 
diameters. The outer diameter was limited by the bolt pattern that attaches the heat source and the inner diameter 
was limited by manufacturability. The chosen geometry delivers full power at a heat flux of approximately  
30 W/cm2, which is 60% of the manufacturer’s recommended maximum. The heater was preloaded onto the 
collector by a backing plate and six threaded rods. The fastener pattern is the same as that used to preload the 
cartridge heater source during in-air operation. The electrical connection was made by a threaded rod on each 
contact of the heater. These two rods function as the electrical paths that supply power to the heater. The backing 
plate and threaded rods were made of MarM-246, a nickel- based super alloy with properties very similar to MarM-
247. Previous thermal vacuum testing at GRC revealed issues related to the relatively large coefficient of thermal 
expansion (CTE) of the Boralectric heater6. To mitigate this effect, molybdenum spacers were integrated into each 
fastened joint. Molybdenum was chosen because of its low CTE and high temperature capability. The spacers were 

TABLE 2.—ASC-0 INSULATION LOSS CHARACTERIZATION 
TEMPERATURE MATRIX. 

Point Hot-end temperature, °C Rejection temperature, °C 
1 550 
2 650 50 

3 550 
4 650 90 
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sized so that the expansion of the threaded rods during temperature increases equaled the total expansion of the 
stack-up, eliminating thermally induced stresses. 
 The hot-end and regenerator sections were insulated by rigid, microporous insulation. The outer pieces 
assembled onto the ASC along the radial direction, and are compressed by six garter springs around the 
circumference. The volume above the heater was filled by insulation compressed by an externally loaded spring. 
Because the microporous insulation is rigid, it cannot conform to the minor contours of the ASC. Volumes that 
would be left void were filled with Kaowool ceramic blanket insulation. The insulation stack was compressed along 
the axial direction by a spring-loaded aluminum can. 

Following the 600 hr of in-air operation, ASC-0 nos.1 and 2 were reconfigured with the thermal vacuum 
hardware. Operation of these units in thermal vacuum was achieved on March 30, 2007. Continuous operation was 
initiated on April 3, 2007. As of June 1, 2007, the convertors have operated for over 1000 hr in thermal vacuum. All 
thermal vacuum hardware has performed as expected up to the full design hot-end temperature of 650 °C. 
 The ASC-1HS units will follow the same sequence of testing as ASC-0 nos. 1 and 2, but will not be operated in-
air for an extended period of time. Instead, efforts will be concentrated operating them in thermal vacuum. The 
ASC-1HS units are anticipated to arrive during the summer of 2007. The use of MarM-247 as the heater head 
material will permit extended operation at a hot-end temperature of 850 °C. 
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Figure 5.—ASC thermal vacuum test article. Assembly partial section view (top) and photograph (bottom). 
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III.ASRG Simulator 
 An ASRG simulator was designed for demonstrating Stirling power conversion outside the laboratory 
environment. The setup is depicted in Fig. 7. Two FTB units were mounted in the dual-opposed configuration. Prior 
to delivery, these units were custom fit with fins on the rejection zone to permit air-cooling. The mounting structure 
serves the function of supporting the convertors and providing containment for the air flow from the cooling fans. 
The outer panels of the containment were made of clear plastic to allow observation of the convertors inside. Two 
fans located on the top of the container draw air in from the environment and discharge into the containment through 
the top panel. The cooling fins and fans were sized for operation in ambient air temperatures up to 110 °F.  
 Thermal energy is supplied to each hot end by an array of cartridge heaters inserted into a nickel heat collector. 
The hot end and regenerators sections were insulated using Kaowool ceramic blanket. An aluminum container was 
installed around the insulation package to maintain its shape. The inner insulation containment also functions to 
direct the air flow exiting the cooling fins along the radial direction.  
 A helium management system was integrated into the container for charge pressure adjustment. Included is a 
pressure gauge displaying the charge pressure of both convertors, and an isolation valve. A fill port located on the 
opposite side of the container allows connection to a helium supply.  
 The ASRG simulator system was designed to require as little support equipment as possible, with the intended 
application being integration onto a rover. Operation of the ASRG simulator requires three supporting components: 
tuning capacitor bank, control electronics, and ground support equipment (Fig. 8). The tuning capacitor bank is 
necessary for power factor correction, and is connected in series with the alternator outputs. The control electronics 
contains the linear AC controller, protection circuit, and one of the two emergency stop switches. Power is supplied 
to the user by one of the connectors on the front of the control electronics. This output is regulated to 28 VDC by a 
DC-DC convertor. The controller’s parasitic load is located on the sides of the container, and was designed to 
dissipate full power while being air-cooled by natural convection. Any power not absorbed by the user is dissipated 
in the parasitic load. The linear AC controller development will be discussed more the following section. The 
ground support equipment requires a connection to a 120 VAC, 60 Hz source. It provides heater power and 
temperature control, cooling fan power, centering and starting circuits, and the second emergency stop switch. Each 
heater array is connected to 120 VAC in series with a solid state relay. PID controllers vary the duty cycle of the solid 
state relays to maintain the hot-end temperature set-points. Over temperature protection is accomplished by using 
the alarm relay integrated into each PID controller. When either upper temperature limit is exceeded, the relay opens 
both heater circuits, removing power from the heaters.  

 
Figure 6.—Thermal vacuum heat source. Boralectric heater photograph (left) and assembly section view (right). 
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 The capacitor bank and control electronics are intended to be located on the device being powered along with the 
ASRG simulator. The ground support equipment may be located remotely and connected to the other components 
via an umbilical cable. Losses in the umbilical cable only affect the heater power, fan power, and hot-end 
temperature control thermocouples. Convertor power output is unaffected since it never travels over the umbilical 
cable, but rather directly to the nearby controller and user loads. Since the heater and fan power is provided at 

= COOLING FINS
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= CARTRIDGE HEATERS
= FANS
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Figure 7.—ASRG Simulator. Assembly section view (top) and photograph (bottom). 

 
Figure 8.—ASRG simulator support equipment. Tuning capacitor bank (top left), control electronics (top 

right), and ground support equipment (bottom). 
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relatively low current, the line losses are negligible, even over a 30 m length of 16 gauge wire. The thermocouple 
signals traveling over this cable were also proven to be accurate and reliable through experimentation. 

The ASRG simulator and support equipment buildup was completed in December 2006. In the same month, the 
convertors were operated up to a combined power level of 130 We. Use of the ASRG simulator for a rover 
demonstration is anticipated to take place during the summer of 2007.  

IV.  ASRG Simulator Controller Development 
Free-piston Stirling convertors require controllers to maintain stable operation. During each cycle, the load must 

be modulated to precisely dissipate all the power being produced. If the controller did not dissipate all the power, the 
excess would flow into the resonating piston motion, increasing amplitude, and ultimately resulting in damage to 
internal convertor components. Similarly, if the controller dissipated more power than that being produced, the 
balance would be extracted from the resonating piston motion, ultimately causing a stall of the engine cycle. The 
controller also provides a regulated user voltage at its output. The majority of powered devices require direct 
current. Typically, to provide DC, the controller rectifies the alternator output, and then modulates the applied load 
to maintain a specified output voltage. Most controllers have a feature that allows the operator to change the piston 
amplitude of oscillation.  

An in-house controller development effort was initiated in March 2006. The goal of this task was to design and 
build a small, efficient, and reliable controller for use on the ASRG simulator. This effort was entirely separate from 
the power factor correcting controller work performed previously at GRC. Each of the methods considered was 
analog and utilized tuning capacitors for passive power factor correction. No active power factor correcting control 
methods were investigated. The tuning capacitors passively correct the power factor by nullifying the effect of the 
alternator inductance. One important consequence of this technique is that the tuning capacitor will only cancel the 
effect of the alternator inductance at a single frequency. If the operating frequency deviates from this value, the 
power factor correction will be reduced.  

Originally, each control concept was designed for TDC operation. The designs required modification to 
accommodate the lower alternator voltage and higher power output of the ASCs and FTB convertors. Each 
controller was designed for both single convertor and dual-opposed pair operation. The circuit simulation software 
PSpice (Cadence Design Systems) was used to simulate operation of an ASC convertor pair on each of the 
controllers. A model of each controller circuit connected to the ASC linear alternators was constructed. The linear 
alternator was modeled as an AC voltage source using its nominal values for resistance, inductance, frequency, and 
output voltage. The following control methods were considered: 

1. Zener-Diode (Fig. 9) 
 The AC from both alternators is converted to DC by a diode bridge and an energy storage capacitor. The loads 
are then applied in stages to the DC bus. The DC voltage is connected to the operational amplifiers only after it 
exceeds the breakdown voltage of the zener-diode. The output of each operational amplifier controls the state of a 
field effect transistor (FET), which functions to switch a resistance onto the DC bus. The voltage level at which each 
operational amplifier turns on is controlled by sensing resistors, which are sized so that the trip point of each 
operational amplifier is slightly higher than the previous one. As the DC voltage rises above the first trip point, the 
first operational amplifier will turn on, applying its associated resistance to the DC bus. If the DC voltage continues 
to increase, the next operational amplifier in sequence will turn on, applying more load. This process continues until 
the DC voltage stops increasing or until all stages are on. As the DC voltage drops, the stages turn off one at a time 
in the reverse sequence. Because the DC voltage is produced by a rectified sine wave, the cycle of applying loads 
occurs at twice the convertor operating frequency. The load resistors are sized so that there is sufficient load 
available to maintain piston amplitude control at maximum convertor power output. The user may change the piston 
amplitude by adjusting the breakdown voltage of the zener-diode. Increasing the breakdown voltage of the zener-
diode increases the ‘floor’ which the DC voltage must reach before any of the loads are activated. Therefore, the 
piston amplitudes can be increased by increasing the DC voltage. This control method was considered the baseline 
for the evaluation effort. The zener-diode controller has been used to operate several convertor designs and has 
heritage in the GRC Stirling Research Lab. 

2. Linear DC Regulator (Fig. 10) 
 The linear DC regulator method functions much the same way as the zener-diode method, but applies load in a 
directly proportional manner, rather than in discrete steps. As with the zener-diode controller, the AC from both 
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alternators is converted to DC. However, the DC voltage is sensed by a voltage divider connected to a single 
operational amplifier configured as a proportional-integral controller. It generates a voltage proportional to the 
difference between the divided voltage and the reference voltage. This output is used to drive FETs in their linear 
range, rather than discrete on-off states. The output of the operational amplifier controls the percentage activation of 
the FETs. The FETs connect load resistors onto the DC bus, but also dissipate power themselves. The user may 
change piston amplitude by adjusting the voltage divider that controls the input to the operational amplifier.  

3. Digital Hybrid (Fig. 11) 
The digital hybrid controller is similar to the zener-diode. The load can be adjusted in discrete steps, but not all 

steps are identical. Instead, the resistors are sized to provide a linear change in load. Also, the load is only updated 
once every half cycle of operation when the AC voltage crosses zero. The DC bus voltage is sensed by a voltage 
divider connected to an operational amplifier acting as a PID controller. The output of the PID loop is converted to a 
binary value by an analog-to-digital converter. The analog-to-digital converter is controlled by a zero crossing 
detector which generates a pulse each time the AC voltage crosses zero. The binary value controls FETs that switch 
resistors onto the DC bus. Any bit with a value of one will switch on the FET occupying the same position in the 
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sequence as the bit. The resistors are sized so that each provides twice the load as the previous one. As the DC 
voltage increases, the binary value increases, which applies more load to the DC bus. The user may change piston 
amplitude by adjusting the voltage divider that controls the input to the PID loop. 

4. Buck Circuit With Zener-Diode (Fig. 12) 
The AC from the alternators is rectified by a diode bridge. However, the energy storage capacitor for DC 

conversion is not connected directly to the diode bridge. Instead, an inductor, diode, and FET are inserted between 
the diode bridge and energy storage capacitor. These components, along with a pulse width modulator (PWM) 
comprise a buck circuit. The rectified AC voltage is sensed by a voltage divider connected to a PWM that switches 
the FET at 50 kHz. As the sensed voltage rises, the duty cycle of the PWM, and thus the FET, increases. When the 
FET is on, the AC is switched onto the buck circuit. The power flowing through the buck circuit must be dissipated 
and virtually any dissipative regulator will suffice. In this example, a zener-diode controller is used. The zener-diode 
controller functions the same as described above, but is used only to dissipate power. Coupling a buck circuit to a 
dissipative controller allows the load to be adjusted at a higher frequency than that of the alternator voltage. In this 
example, the load is adjusted 50,000 times each second. This allows the controller to respond more quickly to 
changes in convertor operation. One important consequence of this method is that the buck circuit reduces the output 
voltage below the desired range. 

5. Boost Circuit With Pulse Width Modulation Regulator (Fig. 13) 
This method operates similar to the buck circuit with zener-diode, but utilizes a boost circuit. The PWM still 

switches a FET at 50 kHz, but the FET connects a boost circuit. Again, power must be dissipated after the boost 
circuit. In this example, another PWM, FET, and resistor are used to provide load. The duty cycle of the FET is 
adjusted by the PWM to control the amount of load applied to the DC bus. This method also permits quicker 
adjustment of the load. One important consequence of this method is that the boost circuit increases the output 
voltage above the desired range.  

 

 
 

6.2k

0

1k

0

7.8125

S5

0

DB5
DB4
DB3
DB2
DB1
DB0

IN

REF

CNVRT
STAT
OVR

G
N

D

0

-
+

+
-

E1

E

5Vdc

0

1k

1k

S0

S1

S2

S3
1k

1k

0

Out

1k

Drivers

Tuning Capacitor

0

62.5

S2

1k

0

Vac

0

250

0

PID Circuit

125 31.25

OC1
1D

3 2D
4 3D7 4D
8 5D

13 6D
14 7D17 8D
18

1Q
22Q
53Q 64Q
95Q
126Q
157Q 168Q
19

CLK
11

1

2

S4

S0

DC

S1

S5

S3

1

2

0

10000uF

0

S6

0

3.9062515.625

S4

Vac
1k

1 2

25k

0

S6

Tuning Capacitor

Zero Crossing Detector

 
Figure 11.—Circuit model of digital hybrid controller 

Energy 
storage 

capacitance 



NASA/TM—2007-215010 13

 

 

 

6. Linear AC Regulator (Fig. 14) 
 This method operates in a manner similar to the linear DC voltage regulator method, except that the rectified 
alternator voltage is used to control the load instead of the DC voltage. The AC voltage is passed through a separate 
diode bridge with no energy storage capacitor that would convert it to DC. The remainder of operation is identical to the 
linear DC voltage regulator method. However, in this example, four FETs and load resistor sets are used instead of two. 

10uF

8k

0

0

0

0

0

0
VCC

1 2
VRef

+3

-2

V+8

V-4

OUT
1

0

VCC

499

499

499

100

Out

15000uF

0 4 4 4 4
0

Tuning Capacitor

Tuning Capacitor

50K

MC7812C

IN1 OUT 2

G
N

D
3

1k

10k

1meg

1 2

0

499

1nF

0

100

0.1nF

1uF

0

 
Figure 14.—Circuit model of linear AC regulator controller 

0

1uF

0

0

1 2

1
2

1 2

1
2

0

Pulse Width Modulator

100

0

499k

Pulse Width Modulator

10k

0

1 2

1 2

0

33k

1k

150uH
1 2

360uF

Out
Tuning Capacitor

Tuning Capacitor

 
Figure 13.—Circuit model of boost circuit with pulse width modulator controller 

Out

0

0

0

0

10k

50k

1uF

0

0

0

Tuning Capacitor

Tuning Capacitor

0

Op-Amps

10

Pulse Width Modulator

10

10

1k

1 2

1 2

2 2 2 2

0

80k

10k

41uH

1 2

10000uF

100

 
Figure 12.—Circuit model of buck circuit with zener-diode controller 

Energy 
storage 

capacitance 

Energy 
storage 

capacitance 

Voltage sensing 
bridge rectifier 

Energy 
storage 

capacitance 



NASA/TM—2007-215010 14

C. Initial Evaluation 
The initial controller option evaluation was based on results of PSpice modeling and general characteristics of 

each design. The circuit models were used to observe power dissipation in the loads, switching voltage, output 
voltage, and power flows. Observation of these items provided a first level indication of the performance of each 
option. Evaluation was also based on the criteria that follow.  

The load can be controlled by monitoring either the AC or DC voltage. At a given frequency, the AC voltage is 
directly proportional to the piston amplitude. Therefore, the AC voltage is an accurate, real-time indicator of the 
piston motion. When the AC voltage is passed through the diode bridge rectifier, its full amplitude is still 
observable, but the waveform is altered so it occupies the positive region only. However, if the AC voltage is 
converted to DC by passing it through an energy storage capacitor, this amplitude is attenuated. The energy storage 
capacitor also has the effect of buffering changes in the alternator voltage output. Sudden changes in the AC voltage 
will be delayed because of the time constant of the capacitor. Therefore, AC bus voltage monitoring was considered 
desirable because it allows finer control of the load. The linear AC regulator, buck converter with zener-diode, and 
boost converter with PWM use AC bus monitoring. The zener-diode baseline, linear DC regulator, and digital 
hybrid use DC bus monitoring.  

Staging refers to application of load by multiple circuits. Staging was considered desirable because it adds 
redundancy to the controller. Controllers can be designed to permit failure of at least one of the load connections 
while still maintaining stable operation full power. An example of load staging can be seen in the zener-diode based 
controller. As the DC bus voltage increases, each operational amplifier is activated in succession. If one of these 
loads loses connectivity, the duty cycle of the remaining circuits will be increased to compensate. The linear 
regulator options also use staging, but the load circuits are all activated the same percentage at a given time. If one 
of these loads loses connectivity, the percentage activation of the remaining circuits will be increased to compensate. 
The digital hybrid controller has multiple load circuits, but it cannot compensate for a loss of one of them. This is 
due to the fact that the loads are controlled by the binary number. If a connection to one load resistor were lost, the 
controller would attempt to compensate by increasing the binary number, but this would activate a larger load than 
necessary since each load is twice the magnitude of the previous one. 

Power can be dissipated in either resistors or transistors. The reliability of a transistor is reduced when used to 
dissipate power. For example, the power dissipating capacity of a transistor is typically derated by 50 % for long-
term, reliable operation. Because of this, use of resistors was considered desirable.  

Some of the controller options required a DC-DC converter to return their output voltage to the desired range. 
The boost converter with PWM would normally output twice the linear alternator voltage. Similarly, the buck 
converter with zener-diode would normally output half the linear alternator voltage. A DC-DC converter is required 
on these two options to return the output voltage to 28 VDC. The digital hybrid controller also requires a DC-DC 
converter to compensate for the relatively large overshoot in its output voltage due to the time constant of the PID 
loop. Use of a DC-DC converter was considered undesirable because it adds a relatively large component to the 
controller. Furthermore, the boost circuit with PWM was designed with power factor controller chip that operates 
directly off the rectified line voltage. No PSpice model was available for this chip, so this option could not be 
evaluated further. 

Tuning refers to the process of customizing the controller for operation with a certain convertor design. This 
process is necessary to ensure stable output, proper power dissipation, and efficient switching of the FETs. Since 
each option was originally designed for TDCs, they required tuning for operation with ASCs and FTB convertors. 
Components that required customization during the tuning process include: load resistors and transistors, gate 
resistors, hysteresis resistor, voltage dividers, and energy storage capacitance. The buck and boost circuits made 
those controller options the most difficult to tune. The digital hybrid controller required extra tuning attention to the 
load resistors since they are not all the same like the other options. The zener-diode controller only required 
additional tuning of the hysteresis resistor on the operational amplifiers. The linear AC and linear DC regulator 
controllers did not require additional tuning.  
 Three of the six controllers were eliminated based on the advantages and disadvantages summarized in Table 3. 
The linear DC regulator method was eliminated because a design for linear AC regulation exists, and AC voltage 
monitoring was considered desirable. The boost circuit with PWM requires many more components than the other 
options, particularly a DC-DC converter. Also, the boost circuit with PWM couldn’t be completely modeled in 
PSpice because of the use of the power factor controller. Therefore, the boost circuit option was not considered for 
evaluation any further. The baseline zener-diode and buck converter with zener-diode options both utilize load 
staging and dissipate power through resistors. However, the buck converter with zener-diode provides AC voltage 
control, making it more desirable, so the baseline zener-diode option was eliminated from further evaluation. 



NASA/TM—2007-215010 15

TABLE 3.—CONTROLLER OPTION QUALITATIVE EVALUATION SUMMARY. 
Controller option Advantages Disadvantages Eliminated 

Zener-diode (baseline) Resistor power dissipation 
Load staging DC voltage monitoring X 

Linear DC regulator Load staging Transistor power dissipation 
DC voltage monitoring X 

Digital hybrid Resistor power dissipation 
Transistor power dissipation 

DC voltage monitoring 
DC-DC converter required 

 

Buck circuit with zener-diode 
Resistor power dissipation 

AC voltage monitoring 
Load staging 

DC-DC converter required 
Complex tuning  

Boost circuit with PWM AC voltage monitoring 
DC-DC converter required 

Complex tuning 
Lack of modeling capability 

X 

Linear AC regulator AC voltage monitoring 
Load staging Transistor power dissipation  

D. Further Evaluation 
 The three remaining controllers, linear AC regulator, buck circuit with zener-diode, and the digital hybrid were 
re-evaluated based on efficiency, parts count, sensitivity, and stability. 

The power required to operate the controller is supplied by the convertors, which reduces the net usable power. 
Internal losses may be attributed primarily to housekeeping and inefficiencies of rectifier diodes. Housekeeping 
refers to the power required to operate the controller’s voltage dividers, operational amplifiers, and reference voltage 
supplies. Another significant source of power loss may occur in the diode bridge during rectification. For example, 
the baseline zener-diode controller discussed previously dissipates 26 W in the diodes when supplied 179 W (the 
maximum design power level). However, this can be reduced to 8 W by using Schottky diodes instead of silicone 
diodes. The full power efficiencies of the three remaining options, and the baseline zener-diode option, were 
calculated using the circuit models. The linear AC regulator, buck circuit with zener-diode, and digital hybrid 
efficiencies were calculated with a Schottky diode bridge. The zener-diode controller efficiency was calculated with 
a baseline silicon diode bridge. These values are summarized in Table 4.  

Options with a larger number of components were considered less desirable. A higher part count decreases 
reliability, increases troubleshooting complexity, and may increase overall controller size. Identifying a failure is 
more difficult in a controller with a higher number of components. The buck circuit with zener-diode in particular 
required two potentiometers that must be set by the user, whereas the other options had only a single user 
adjustment. The overall controller volume can easily be dominated by the DC-DC converter and heat sinks. Options 
that do not require a DC-DC converter and fewer heat sinks were considered more desirable. 

Since every electronic component has an associated tolerance, the sensitivity of each controller option to changes 
in component values was evaluated using the circuit models. It was found that the majority of sensitivity issues were 
caused by changes in the energy storage capacitor and load resistors. The energy storage capacitor had a rated 
tolerance of ±20%, so in the circuit model the energy storage capacitance was varied between 8,000 and 12,000 μF. 
The results indicated that only the buck circuit with zener-diode was sensitive to changes in the energy storage 
capacitance. Modeling also revealed that only the digital hybrid controller was sensitive to changes in load 
resistance. This can be attributed to the fact that the load resistances of the digital hybrid controller must arranged in 
an ascending pattern. Each resistance is half the size of the previous one. In contrast, the load resistances of the other 
controller options may be identical.  

Stability refers to the ability of the controller to maintain its output voltage at a fixed value when the convertor 
operating conditions change. A steady output voltage indicates the controller is able to maintain tight control of the 
piston amplitude. The circuit models were used to quantify the stability of each option by observing the ripple and 
overshoot of the output voltage.  

Table 4 summarizes these criteria for each of the three remaining controllers and the baseline zener-diode 
controller. The values for voltage stability, and efficiency were calculated using the circuit models. The linear AC 
regulator was selected because of its favorable characteristics in almost every category. It exhibits the best voltage 
stability, requires the fewest components, and has the highest efficiency. The sole disadvantage of the linear AC 
regulator is its use of transistors for power dissipation. However, the risk associated with this was mitigated by 
designing the loads so the transistors would dissipate less than 50 % of their rated power capacity. 
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TABLE 4.—CONTROLLER OPTION QUANTITATIVE EVALUATION SUMMARY. 
 Zener-diode 

(baseline) 
Linear AC 
regulator 

Digital  
hybrid 

Buck converter  
with zener-diode 

DC ripple (V) 0.3 0.08 0.5 0.4 
DC overshoot (V) 1 1 11.2 0 
Number of components 46 42 56 62 
Heat sinks required 4 4 4 5 
Sensitivity None None Load resistance Energy storage capacitance 
Efficiency (%) 85.1 95.4 93.4 84.7 

E. Linear AC regulator testing 
Buildup of the linear AC regulator controller was completed in August 2006. Following this, a series of tests 

were conducted to check for functionality and characterize performance. 
A checkout test was first conducted in August 2006. The controller was supplied power by an AC source to 

simulate single convertor input. A resistor was placed in series with the AC source to emulate the alternator 
resistance. This test confirmed the ability of the controller to dissipate 88 W. Measurements of output and 
operational amplifier voltages agreed well with model predictions, suggesting the PSpice models were valid. 

A test was conducted to measure controller efficiency. Power was applied to the input of the controller using an 
AC voltage source to simulate convertor power. The voltage and current delivered to the input were measured to 
calculate power input. The voltage and current delivered to the loads were also measured to calculate power output. 
True-RMS meters were used for all measurements because the output voltage and current were non-sinusoidal. The 
output current meter was capable of measuring only up to 3 amps, which limited the maximum power input to 44 
We for this test. At this power level, the efficiency was measured at 98.6%. This value agreed well with the model 
predictions, as summarized in Table 5. The circuit model predicted a controller efficiency of 95.5% at approximately 
130 We, which is the maximum output of the ASRG simulator. 

TABLE 5.—LINEAR AC REGULATOR EFFICIENCY SUMMARY 
 Experimental Theoretical (low power) Theoretical (full power) 

Power Input (W) 44.33 40.00 129.41 
Power Output (W) 43.72 38.27 123.88 
Efficiency (%) 98.64 95.68 95.49 

 

       
Figure 15.—Linear AC regulator controller integrated into ASRG simulator support electronics. 
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To verify functionality on operating convertors, the controller was tested on a pair of Sunpower, Inc. EE-35 
units. Stable operation of the EE-35 units was demonstrated up to their maximum combined power output of 60 We. 
Voltage measurements agreed well with the model predictions. 

Following successful checkout on the EE-35B convertors, the linear AC controller was integrated into the ASRG 
simulator electronics support, as discussed in section III. Stable operation of the FTB convertors was demonstrated 
up to their maximum combined power output of 130 We. However, the efficiency and stability at this condition 
remain to be measured. Stability was qualitatively evaluated by observing the linear alternator voltage. While 
operating at full power, the alternator voltage did not deviate more than 1 mV. A photograph of the controller 
integrated into the support electronics can be seen in Fig. 15. The controller occupies the left half of the container. 
The loads and their heat sinks are located on the outer surfaces of the container. 

Plans have been made to replace the sensing diode bridge in the linear AC regulator with a true RMS-to-DC 
converter. This component computes the true root-mean-square value of a non-sinusoidal AC input signal and gives 
an equivalent DC output level. The true RMS value of a waveform is a more useful quantity than the average 
rectified value since it relates directly to the power of the signal. This modification theoretically eliminates the need 
for the user to constantly adjust the potentiometer. 

V. Conclusion 
A discussion of ASC testing at NASA GRC has been presented. The Stirling Research Lab has the capability to 

support simultaneous operation of up to eight ASC’s in continuous, unattended mode. Three different testing 
configurations have been designed and implemented. ASC’s may be operated continuously in an air or thermal 
vacuum environment. An ASRG simulator is also available for demonstration outside the research lab environment. 
A controller was designed and fabricated in-house after evaluation of six different options. This controller was 
functionally demonstrated on operating convertors, and then integrated into the ASRG simulator support equipment. 
ASC-0 nos.1 and 2 successfully operated in-air at full design conditions for 600 hr. The units were then transferred 
to thermal vacuum operation and have operated there for over 1000 hr as of June 2007. Beginning the summer of 
2007, a pair of ASC-1HS units with a hot-end operating temperature of 850 °C will begin extended operation as 
well. 
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such as a rover. This paper discusses the design, fabrication, and implementation of these experiments. 
15. SUBJECT TERMS 
Stirling; Radioisotope 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
      ABSTRACT 
 
UU 

18. NUMBER 
      OF 
      PAGES 

23 

19a. NAME OF RESPONSIBLE PERSON 
STI Help Desk (email:help@sti.nasa.gov) 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
301-621-0390 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Generic CMYK Profile)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AbadiMT-CondensedExtraBold
    /AbadiMT-CondensedLight
    /AndaleMono
    /Apple-Chancery
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BernardMT-Condensed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /Braggadocio
    /BritannicBold
    /BrushScriptMT
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /CapitalsRegular
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Charcoal
    /Chicago
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Courier
    /Courier-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /Desdemona
    /EdwardianScriptITC
    /EngraversMT
    /EngraversMT-Bold
    /EurostileBold
    /EurostileRegular
    /FootlightMTLight
    /GadgetRegular
    /Garamond
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-Italic
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Garamond-UltraCondensed
    /Garamond-UltraCondensedItalic
    /Geneva
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GillSans-UltraBold
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /Gulim
    /Haettenschweiler
    /Harrington
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HelveticaNeue-Heavy
    /HelveticaNeue-HeavyItalic
    /HelveticaNeue-Light
    /HelveticaNeue-LightItalic
    /HelveticaNeue-Medium
    /HelveticaNeue-MediumItalic
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /Impact
    /ImprintMT-Shadow
    /KinoMT
    /LatinWide
    /LucidaBlackletter
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /MS-Gothic
    /MS-Mincho
    /MS-PGothic
    /MS-PMincho
    /MathematicalPi-Five
    /MathematicalPi-Four
    /MathematicalPi-One
    /MathematicalPi-Six
    /MathematicalPi-Three
    /MathematicalPi-Two
    /MaturaMTScriptCapitals
    /Mistral
    /Modern-Regular
    /Monaco
    /MonotypeCorsiva
    /MonotypeSorts
    /NewYork
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /NuptialScript
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /Onyx
    /PMingLiU
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /Palatino-Roman
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /SandRegular
    /SimSun
    /Skia-Regular
    /Stencil
    /Symbol
    /Tahoma
    /Tahoma-Bold
    /TechnoRegular
    /TextileRegular
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings
    /Wingdings2
    /Wingdings3
    /WoodtypeOrnaments-One
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 250
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.48800
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 250
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.48800
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [400 400]
  /PageSize [612.000 792.000]
>> setpagedevice




