
IAC-07-D3.4./D3.5/E5.5.08

LESSONS LEARNED FROM DEPLOYING AN

ANALYTICAL TASK MANAGEMENT DATABASE

Mr. Daniel A. O'Neil 1

daniel.a.oneil_nasa.gov
Ms. Clara Welch 1

Clara.Welch@nasa.gov
Mr. Joshua Arceneaux

Booz Allen Hamilton

Houston, TX 77058,United States
arceneauxjoshua@bah.com

Mr. Dennis Bulgatz 2

bulgatz@ama-inc.com
Mr. Mitch Hunt 2

mitch.hunt.007@gmail.com

Mr. Stephen Young 2

young@ama-inc.com

1National Aeronautics and Space Administration (NASA),
Huntsville, AL 35812, United States

2Analytical Mechanics Associates (AMA),
Huntsville, AL 35816, United States

ABSTRACT

Defining requirements, missions, technologies, and concepts for space exploration involves
multiple levels of organizations, teams of people with complementary skills, and analytical
models and simulations. Analytical activities range from filling a To-Be-Determined (TBD) in a
requirement to creating animations and simulations of exploration missions. In a program as
large as returning to the Moon, there are hundreds of simultaneous analysis activities. A way
to manage and integrate efforts of this magnitude is to deploy a centralized database that
provides the capability to define tasks, identify resources, describe products, schedule
deliveries, and generate a variety of reports. This paper describes a web-accessible task
management system and explains the lessons learned during the development and
deployment of the database. Through the database, managers and team leaders can define
tasks, establish review schedules, assign teams, link tasks to specific requirements, identify
products, and link the task data records to external repositories that contain the products.
Data filters and spreadsheet export utilities provide a powerful capability to create custom
reports. Import utilities provide a means to populate the database from previously filled form
files. Within a four month period, a small team analyzed requirements, developed a
prototype, conducted multiple system demonstrations, and deployed a working system
supporting hundreds of users across the aeros pace community. Open-source technologies
and agile software development techniques, applied by a skilled team enabled this
impressive achievement. Topics in the paper cover the web application technologies, agile
software develapment, an overview of the system's functions and features, dealing with
increasing scope, and deploying new versions of the system.

INTRODUCTION

Defining mission and system requirements for

large aerospace projects involve a myriad of

trade studies conducted by geographically

distributed teams. Ensuring efficient use of

resources requires a tremendous coordination

effort. Within NASA's Constellation Program,

the Architecture Trades and Analysis (ATA)

Office defines the analysis cycle goals,

objectives, and to integrate the analyses across

the Constellation Program (CxP). Before

2007, this process, known as the Integrated

Design and Analysis Cycle (IDAC), used a
Microsoft Word document form called a Task

Description Sheet (TDS) to define a study

task. Collecting, coordinating, and reporting

on the TDS forms required several people
who found it difficult to track the status and

dependencies among the studies using
Microsoft Excel. Between October 1st and

December 7 th, of 2006, a small development

team with representatives from NASA, Booz

Allen and Hamilton (BAH), and Analytical

Mechanics Associates (AMA) defined

requirements, designed, developed, and

deployed the Constellation Analysis

Integration Tool (CAIT) database. Using

CAIT, the ATA office can collect, coordinate,

integrate, and report on all of the study

activities within the program. In February of

2007, the Directorate Integration Office (DIO)

within NASA's Exploration Systems Mission

Directorate (ESMD) defined requirements to

expand the scope of the database from

managing tasks for one program to managing

and reporting tasks throughout ESMD. This

paper describes the process applied by the

development team and the lessons learned

about developing an enterprise task

management database.

Acronyms

AMA - Analytical Mechanics Associates

ATA - Architecture Trades Analysis

BAH - Booz Allen and Hamilton

CAIT - Constellation Analysis Integration
Tool

CxP - Constellation Program

DAC- Design Analysis Cycle

DIO - Directorate Integration Office

ER - Entity Relationship

ESMD - Exploration Systems Mission
Directorate

FOSS - Free Open Source Software

GNU - GNU's Not Unix

HTML - HyperText Markup Language

HTTP - HyperText Transfer Protocol

IDAC - Integrated Design and Analysis Cycle

MS&DA - Modeling, Simulation, and Data
Architecture

MVC - Model Viewer Controller

RoR Ruby on Rails

SQL - Structured Query Language

TBx - To Be Determine, Resolved, Supplied,

(TBD, TBR, TBS)

TDS - Task Description Sheet

RoR - Ruby on Rails

Process /

/ '\

Figure 1: Functions identified in the requirements document

Application Objectives

With the creation of the CxP program office in

2006, the ATA office executed the first

iteration of the IDAC for the CxP, IDAC 2.

The IDAC 2 process involved study team

leaders creating hundreds of TDS in Microsoft

Word and storing the files in various

directories of a web-based product data

management system. Access to the directories
where the TDS forms were archived were

limited to organizationalpersonnel;
consequently,peoplewho did not haveaccess
to the TDS archivedirectoryreliedoncopies
that weree-mailedto them.During thecourse
of astudy,aTDS authormight changethe
contentof theform andupdatethefile in the
archiveor contentthattheform "linked to"
might changewithout anyonebeingmade
awareof the changes.Personnelwho were
workingwith thecopyof theoriginal might
not receivetheupdatedversionof theTDS.
Also, giventheflexibility of theWord form,
severalTDS authorsmodifiedor addedfields
to clarify their tasks;thisactionledto
inconsistenciesamongtheTDS files.

FUNCTIONS AND FEATURES

Built upon a a MySQL database, The CAIT

application contains 89 tables, storing

everything from users to Analysis tasks and

the links between them. The Ruby On Rails

(RoR) framework makes it easy to change the

database to Oracle, SQL-SRV, or other, as the

database connection logic is largely stored in

the RoR model fries. With CAIT, study

managers create Task Description Sheet

(TDS) to define the work, resources, products,

and schedules. Table 1 presents the elements
of a TDS.

Introduction Description, Title, Points of Contact
Timeline

Links to
External
Items

Analysis
Data

Supporting
Information

Current Status, Projected Completion
Date, Priority
Requirements (system and mission)
Risks (potential problems and impact)
Models (analytical tools used)
Issues (current problems)
Review Boards
Resources (analysts, facilities, etc.)

Inputs
Outputs
Board Deliverables

Design Reference Missions
Methodologies
Mission Phases

Purpose
System Elements

Table 1: Elements of a TDS

Recognizing the issues associated with

managing so many tasks through Word

documents and Excel files, the ATA requested

the Constellation Modeling, Simulation and

Data Architecture (MS&DA) office to create a

centralized database for managing tasks

associate with the IDAC. Joshua Arceneaux,

from BAH, served as the "voice of the

customer" by writing a requirements

document that explained the database

functions and fields needed to capture

sufficient data for IDAC management. Figure

1 identifies the functions specified in the

ATA's database requirements document.

Why does a program conduct studies? Some

studies resolve problems or provide needed

detail for requirements. Other studies

determine methods for mitigating risks

associated with a design. A task within CAIT

can link to a specific TBx associated with a

requirement or a particular risk.

Linking tasks to people, products, tools,

requirements, risks, and issues provides the

most powerful function of the CAIT database.

Data produced by one task can be an input to

another task. Multiple tasks may involve the

same human resources and requirements. A

TDS record specifies dates that particular
review boards receive the results of the task.

Reports within the database identify the

dependency among the tasks.

Filters implement a search function for finding

records based on criteria ranging such as

organizations, teams, status, scope, and key-

words. Scope indicates whether the focus of a

study is a component, system, multiple

systems, or a complete exploration

architecture. Report generators use the filters

to produce status and dependency reports.

Administrative functions provide the

capability to create user accounts, assign

peopleto teams,andbaselineTDS records.A
databaseadministratorcanlock or "baseline"
records,which preventsconstanttweakingof
thetasksthroughouttheIDAC process.

DESIGN PHILOSOPHY

Benefits derived from a custom database

include process driven design and maximum

flexibility to respond to the changing needs of

an organization. When an organization

procures a commercial application for

managing a process, it is bound by the

concepts and terminology embodied in that

application. If the application is general

purpose enough to accommodate any kind of

process then the organization has to determine

how to apply the application to the business

process. Often, sophisticated general purpose

applications require extensive training. With a

custom developed application, representatives

from the organization participate in the

requirements definition and system design.

Custom developed applications embody the

organizational process so less training is

required because the user community

understands the concepts and terminology.

Owning the source code positions the

application developers to respond quickly to

new requirements. Commercial applications
often have a number of customers who wish

for a wide variety of functions and features.

An organization might have to wait years

before a commercial product implements a

desired feature. An organization could pay the

vendor to implement a desired function but

how is that different than developing a custom

application? The vendor saves research and

development funding and releases the new

functions in the next version of the proprietary

product.

Leery project managers express concerns

about custom applications because:

• A small development team might have a

.single point of failure,

• Programmers don't have time to provide

instant help-desk support,

• Custom application tend to have

insufficient documentation,

• Quality of custom software does not

match commercial applications,

• Continued dependence on the

development team that wrote the code

Free Open Source Software (FOSS) alleviates

these concerns through standards, community,

and automation. Applications created with

F0SS benefit from standardized tools,

practices, templates, and reusable code. These

standards mitigate the risk of one programmer

becoming a single point of failure and enable

future maintenance by programmers other

than the original developers. Well established

FOSS has large communities that thoroughly

test and document the systems. Online forums

hosted by these communities provide

technical support to developers. By building

upon FOSS, the development team gains

tremendous leverage in documentation.

Websites dedicated to the FOSS provide

required documentation about the internal

structure, application programming interface,
and tutorials. This foundation allows the

development team to focus on the user's guide

and documenting the business logic portion.

Standards and automation ensures quality

through templates and code stubs.

Standardized file structures and templates

ensure that everything has a place and the

code is consistent. Automated generation code

stubs enable development of function and

regression tests. Programmers populate the

code stubs with expected inputs, calls to

functions, and error checking code to capture

potential bugs. Applying standards, receiving

assistance from the community, and gaining

leverage from automation enables a

development team to offer the technical

support, documentation, and quality that users

would expect from any commercial

application.

Accordingto theAgile SoftwareDevelopment
Manifestol,Thisdesignphilosophyvalues:

• Individualsandinteractionsover
processesandtools

• Working softwareovercomprehensive
documentation

• Customercollaborationovercontract
negotiation

• Respondingto changeover following a
plan

Initially, the CAIT developmentteam
analyzedmorethanhundredwritten
requirements.After developingaprototype
the CAIT teamdemonstratedit to key
personnelwithin theATA. Commentsabout
theprototypewerepositiveandindicatedthat
the CAIT teamunderstoodtheneedsof the
customer.ClaraWelch,whohadconducteda
thoroughanalysisof therequirements,pointed
out theprototypeimplementedonly asmall
fractionof thedocumentedrequirements.
Thoughthedocumentidentifiedeverything
thecustomercouldpossiblywant,the
prototypecapturedwhatthecustomerneeded
to getthejob donein thenearterm.After the
demonstration,theCAIT developmentteam
andtheATA office agreedto movefrom a
traditionalwater-fallapproachto anagile
softwaredevelopmentmethod.Workingwith
JoshArceneaux,thedevelopmentteam
iteratedtherefinementof theprototypeeach
weekuntil it becauseadeployableapplication.
Rapidprototypingenabledtheteamapplythe

valuesof agilesoftwaredevelopmentandto
deployaworking systemwithin threemonths.

Designphilosophiesappliedin the CAIT
developmentprocessinvolvedbuilding upon
FOSS,applyingthevaluesof agilesoftware
development,anddemonstratingearlyand
oftenthroughrapidprototyping.Building with
FOSSenabledrapidprototypingbecausethe
developmentteamgainedleveragefrom the
standardsandautomation.Agile software
developmentvaluesensuredthattheATA
organizationacceptedthedeployedsystem.
Rapidprototypingengagedthecustomerand
enabledthedevelopmentteamto deploythe
systemonatight schedule.To apply these
philosophies,thecustomerhadto acceptthat
testinganddocumentationwould comeafter
systemdeployment.Developersacceptedlong
hardhoursduringtherapidprototypingphase
andtheprojectmanagerhadto manage
customerandstake-holderexpectationsabout
deliveryschedules.

DEVELOPMENT PROCESS

Developing the CAIT database involved

requirements analysis, system design through

entity-relationship diagrams, rapid

prototyping, configuration management,

functional and regression testing, system

deployment, and meeting with the user

community to discuss future improvement.

Figure 2 depicts the iterative nature of the

process.

L__i Anatyze t _Cre_eEnt_tY 1 ! Deve_° _:] H "_l 2'>Z__. N Appl_ca[ion App_ica_on
J I u_acYar!!_._jI

I Manage H Develop FunctionConfig_atioil & Regression
Tests

U

Receive]
Comments

Commun_,

t
_[DeNoy

Figure 2 System Development Process

DB Designer 4

LaMonte Dent, who works at the University

of Alabama in Huntsville, made significant

contributions to the project by developing an

Entity-Relationship (ER) diagram and a

prototype of the user interface. Working with

LaMonte's ER diagram and tool of choice,

Dennis Bulgatz and Josh Arceneaux used DB

Designer 4 to identify the data objects and
interfaces within the CAIT database.

Integrating design, modeling, creation, and

maintenance into a seamless environment,

Fabulous Force Database Tools offers DB

Designer for free. Figure 3 presents a screen-

shot of an ER diagram that derived from the

requirements document.

After several iterations of the diagram, the

development team produced a prototype of the

system. With the deployment of the system,

the emphasis shifted from the design to

system improvements so the development

team ceased work on the ER diagram. Plans

for future development will retum to the ER

diagram to document the "As-Deployed"

version of the system.

Figure 3: Sereenshot of the CAIT ER Diagram in DB Designer 4

Solution Stack

Ruby is an interpreted, object oriented,

scripting language created by Yukihiro

Matsumoto. 2 According to the Pragmatic

Programmer's Guide, Ruby follows the

principle of least surprise, meaning that things

work the way you expect with few exceptions.

Proponents claim that Ruby programmers can

write more code in one sitting, with seldom

syntax errors, no type violations, and fewer

bugs when compared to other languages.

These claims are based on language features

such as no end of line semi-colons, no type

dec larations to keep in sync, no compiler

specific words, and no framework code. 3

Rails, a development framework, enables

production of database-backed web

applications based on the Model-View-

Controller (MVC) pattern. 4 The MVC pattern

decouples the user interface, or view, from the

data, or model. Separating the model and the

view allows programmers to make changes in

the front-end or back-end of the application

without affecting the other end. Also, MVC

separatesbusinesslogic from data
presentation.Controllersrespondto events,
typically useractionsandmight involve
changesto themodel.5

Mongrel is a fastHyperTextTransferProtocol
(HTTP) library andserverfor Rubythat is
intendedfor hostingRubyweb applications.6
TheApache'web-servercanbeconfiguredto
forwardall or sometraffic to Mongrel.With
thepossibility of two or moreusershitting the
applicationserversimultaneously,it is
possibleto createmultipleMongrel instances.7
For a Ruby-on-Railsapplication,Mongrel
servestheweb-pageswith embeddedRuby
scripts.

Debianis afreeoperatingsystemthat usesa
Linux kernelandbasictoolsfrom the GNU
project.Startedin 1993,thenameDebian
derivesfrom thedeveloper'snameIan
Murdockandhiswife Debra.8Debianhasa
world-widedevelopmentcommunityready
andwilling to assistdevelopers.For example,
StephenYoungdiscoveredabugin Debian
thatpreventeda RubyGemslibrary from
working.Stephendeterminedthesourceof the
bugaprogrammerin Japanwhowaswilling
to updatethecodebase.Within two days,
Stepheninstalledthe updatedoperating
systemthatenabledtheRubyGemslibrary to
work.

CAIT

Debian 4.0 Operating

IBM

Figure 4: Solution Stack

Deployed on a virtual computer within an

IBM mainframe, the CAIT database is built

upon the previously describe systems. Figure

4 depicts this solution stack of the virtual

computer, operating system, database,

framework, application server, and web
server.

A three stage system involved a development

server, staging server, and production server.

By making the development server publicly

accessible, the development team provided a

capability for the customer to interact with

prototypes and provide comments. With the

staging server identical to the production

server, the system administrator applied

operating system patches and determined how

they affected the application without running

the risk of interrupting the production system.

After approval from the customer on code

changes and successful tests of operating

system updates, the system administrator

deployed new versions of the application on

the production server at the end of the

workday.

Configuration Management

The development team chose Subversion

(SVN) as the code repository server and
Tortoise SVN as the client. Version control

systems solve the problem of enabling users to

share information and preventing them from

overwritin_ one another's changes in the
repository." As a project, CAIT used a

development repository and a production

repository. Developers check new code into

the development repository, where it is

integrated with other new code. At the end of

a development cycle, the code is promoted to

testing- where integration testing is done, and

then when ready, the code is promoted to

production.

Experiences of the development team found

that merging code between multiple branches

to be a tedious, error prone, and time

consuming process. To make better use of

code branches, focus the code on a single task

because merging code with unrelated changes

complicates the process.

Code and Data Migration

With Ruby on Rails, developers can generate

migration scripts for changing code and

content. Benefits of migration scripts include

updating code on multiple development

systems, rolling out new baselines on a

production system, and providing a roll-back

capability for debugging.

Functional and Regression Testing

Ruby on Rails provides a capability to auto-

generate code stubs for functional and

regression tests. As the development team

discovered bugs in the code, Clara Welch

incorporated error checking code to look for

the specific bug. As the team defined work-

flows, Clara created regression tests that
executed the code based on use-cases.

Elevating the Application to the Enterprise

Initial operations of the CAIT database began
in the first week of December 2006. By

February 2007, there existed a sizable user

community and a substantial amount of

content. Within the ESMD-DIO, Nantel

Suzuki advocated the application of the

database to manage task descriptions for

studies sponsored by the enterprise. With an

operational system and on-going

implementation of Constellation requirements,

rapid prototyping proved difficult. To define

and incorporate new requirements identified

by the DIO, Daniel O'Neil and Nantel Suzuki

developed "As-Is" and "Go-To" screen-shots.

PowerPoint presentations contained current
screen-shots of the user interface and revised

images that depicted new fields and
recommended revisions to labels. After

implementing changes depicted on the go-to

screen-shots, Mitch Hunt and Dennis Bulgatz

demonstrated the system to Nantel on the

development server. Upon receiving approval

of the revisions from Nantel, the development

team deployed the new system.

LESSONS LEARNED

Experiences associated with deployment of a

web-based task management database have

taught the team valuable lessons about

requirements definition, system design,

software development, configuration

management, testing, deployment, and

continuous improvement. Generically, these

lessons sound familiar to systems engineers

and project managers with experiences in

software systems development. The project

management and programming gems among

these lessons pertain to the tools and

techniques applied on this project or their
recommended alternatives.

Requirements Definition

Originally, the development team began with

a traditional requirements document with over

100 requirements. Contents of the document

included a high level process description and

detailed data tables. While this type of

document provided a starting point for

creating ER diagrams, it did not convey the

business model, detailed work-flows or

specifications for a graphical user interface.

The development team found DB Designer 4

to be a fine ER diagramming tool but it did

not capture the system behavior and
interactions. Recommendations for

requirements definition range from using a

graphical notation like the Unified Modeling

Language 2 (UML) to writing a user's manual

complete with mock screen-shots.

Developed by the Object Management Group

(OMG) consortium, the UML offers 13

diagrams that depict the structure, behavior,
and interactions of a system.l° A user's

manual and mock screen-shots focus on the

step-by-step workflow of a user interacting

with the system. Also, it serves system testing

and verification because users can follow the

manual and determine whether the deployed

application matches the document.

System Design
Other than developing ER Diagrams in DB

Designer 4, the design of the CAIT database

evolved through rapid prototyping. The

development team produced a version of the

database and presented it to the ATA office.

Based on consolidated comments provided by

the voice of the customer, the team improved

the system and conducted another

demonstration. From October 2006 through

February 2007, the team deployed one or two

versions per week. By February, the system

had several hundred registered users so the

team was careful about making frequent major

changes to the graphical user interface. Based

on conversations with the end-users, the

development team implemented user interface

to improve clarity, navigation, searches, and

announcements. Figure 5 presents an image of

the summary screen for a TDS. Notice the

"bread-crumb" trail above the title of the TDS,

which indicates the location within the

system. Highlighting in yellow indicates the

active menu. On the left side, a vertical area

presents buttons for the active menu. As the

team implemented requested revisions, the

customer Viewed the application on the

development server instead of the production

server. This approach provided some rapid

Main Summary for: ATA-OO-OOZ

Constellation Mission Mode

=.. _ IntroducUon

IDesc_otion
IRe_ronce

IP._

Links

Ill I_ |l'llt

Recuirement

Risk

_nard lssoda_on

Resour_

_ll,l_l,t vl,.,
Id_DS TPde and O_fiption ' _al

Unks to Re aran_ Do.merits 0 mfamn_s
OCs, sponsoring and Perfo_ n_ Orgs vatld

status and Timeline value_ Ivalid

LJnks to R_u_rements lg reQu reh_en_, :

L_nks to Ris_s 0 dsk_

Modesrequ ed o theTOS_aly_s 2motJels '

l_sues issue

_oards Ass_dated w_ the TO_ i_ 0 board_ •

Resour_ required for the T_S _,nalysis 1 resource

Supporting Informat_on

If,]_llq'l_ 1[iiii

wtem Elemen Fo_ _s_em ELements Selec_ons invalid

H _ion Phase go_ Nission Phase _eledoons val'd

Pumose purgose, com_let:lon Cdt_fia and PJsk_ invaf_ erJ_etJa _and inwlid _u_Jose

Figure 5: Sereenshot of a TDS summarv naffe

prototyping capability without stopping

service on the production system.

Rapid prototyping involves fast and furious

programming. This approach can lead to a

Mad Hatter's Tea Party where "there is never

time to do the dishes." Automated document

generation enables a team back-out a design
from the code so documentation is not

sacrificed for rapid prototyping. For MySQL

and other databases, DB Designer 4 provides a
.... 11

reverse engineering capablhty. For Ruby on

Rails, there exists RDoc and RailRoad. With

RDoc, programmers can generate HyperText

Markup Language (HTML) documentation

from Ruby source code. 12 With RailRoad,

programmers can generate class diagrams

from Ruby on Rails source code. 13

Software Development
Between October 15 th and December 7 t_,

2006, the CAIT development team learned

RoR and developed several versions of the

database and application. After deployment,

the team continued improving the product and

the associated development process. To

update the database and roll the baseline code,

the team learned a powerful technique known

as migration scripts. As mentioned in an

earlier section, migration scripts provide a

capability to change schema and content of a

database.

Code written for the CAIT database was

developed without an Integrated Design

Environment (IDE). Benefits of an IDE

include text color coding, code completion,

debugging, and statistics. The Rails IDE

Minus Eclipse (RIDE-ME) is an open source,

windows based environment designed

specifically for RoR development. 14A

CodeSnippet manager in RIDE-ME support

software reusability.

When this project started, roles and

responsibilities were not assigned, which
served as a source of frustration and

overlapping effort. Eventually, everyone

memberdiscoveredareaswherethey could
contribute.Early in a project,it is a goodidea
to identify tools,techniques,andtalents.For
example,to useRDoc,developersmustto
embedformattedcommentssothetool can
generateHTML documents.

Configuration Management

A release manager merges of source code

from multiple programmers. Responsibilities

of this person involve establishing a process

for receiving, accepting, integrating, and

releasing code. A team should use one

centralized configuration management system

such as Subversion to check-in their code.

Everyone on the team should understand and

adhere to acceptance criteria such as formatted

comments for document generation, results of

functional tests, and comments about the

changes. Integration or regression tests enable

the release manager to determine whether the

new baseline works and if any old bugs have

crept back into the system. A release manager

can set a cadence by developing a schedule for

accepting code and delivering the baseline

system to the deployment team.

Testing

A code generator, provided by RoR, enables

development of functional tests. With

functional tests, developers can determine

how code will react over the range of inputs

and check for previously discovered errors.

Integration tests focus on the performance of

the system to ensure robustness against any

combination of user inputs. Applying the

system requirement's use-case scenarios,

integration tests can step through the user

workflows. Writing test code requires the

developers to think through inputs that are out

of range or wrong type as well as the

combinations of input data.

Deployment

Working with FOSS provided flexibility in

deployment of the production sever and

solution stack. At the beginning of the project,

the team did not know that the production

system would be a virtual machine within an

IBM Mainframe. The Debian operating

system worked well on both the desktop

development server and the mainframe. As

mentioned earlier, a bug discovered in the

Debian operating system was corrected within

two days. A significant change in the solution

stack was switching from Apache's FastCGI

to a Mongrel cluster. In both cases, the FOSS

community provided technical support and

needed documentation.

CONCLUSIONS

A summary of the lessons learned from

deploying a web-based task management

system include:

1) Define use cases and illustrate

requirements with structural, behavior, and

interaction diagrams

2) Apply open source systems such as

Debian, Ruby on Rails, MySQL, Mongrel

and Apache'

3) Ask for help from the open source

community if problems arise in the

solution stack

4) Assign roles and responsibilities for

development, release management, and

deployment

5) Document procedures for comments,

migrations, testing, and configuration

management

6) Write with an Integrated Development

Environment and build a library of

reusable code

7) Evolve the system design through rapid

prototyping on a development server

8) Engage customers in the system design by

asking for screen layouts and prototype

critiques

9) Capture the system design with automated

document and diagram generators

10) Develop functional tests along with the

code and integration tests based on the

use-cases

References

1. Manifesto for Agile Software Development, http://www.agilemanifesto.org/

2. Ruby Programming, http://en.wikibooks.org/wiki/Ruby_rogramminglanguage

3. Programming Ruby, http://www.mby-doc.org/docs/ProgrammingRuby/

4. Ruby on Rails, http://www.rubyonrails.com/

5. Model-Viewer-Controller, http://en.wikipedia.or_/wiki/MVC Design Pattern

6. Mongrel, http://mon_el.rubyforge.org/

7. Apache Best Practice Deployment, Charles Brian Quinn,

http://mongrel.rubyforge.org/docs/apache.html

8. About Debian, http://www.debian.org/intro/about
9. Version Control with Subversion, Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael

Pilato, http://svnbook.red-bean.com/ni ghtly/en/svn-book.html#svn.basic

10. Introduction to OMG's Unified Modeling Language,

http://www.omg.org/gettingstarted/what is uml.htm# 12DiagramTypes

11. DBDesigner 4 Features, http://www.fabforce.net/dbdesigner4/features.php

12. RDoc Documentation from Ruby Source Files, http://rdoc.sourceforge.net/

13. RailRoad Ruby on Rails diagrams generator, http://railroad.mbyforge.org/

14. Riding Rails on Windows!, http://www.projectrideme.com/

"Lessons Learned from Deploying an Analytical Task Management Database."

Mr. Daniel A. O'Neil
NASA

Mr. Joshua Arceneaux
Booz Allen and Hamilton

Presentation Abstract

Large space exploration development programs involve geographically

distributed teams conducting a wide variety of studies to mitigate risks and

eliminate "To Be Determined" (TBD) from requirements. A web-accessible
database to manage the task plans saves time and effort because everyone can

contribute information about data products, analysis expertise, reviews, and task

descriptions. Developing and deploying such a database involves integration of

requirements from multiple offices at different layers of the organization, design

of a schema and user interface that accommodates those requirements, and

applying web-technologies. This presentation explains lessons learned from

deploying a web-accessible task management database.

Lessons Learned from Deploying an
Analytical Task Management Database

58 th

A Presentation to the
International Astronautical Congress

Mr. Daniel A. O'Neil
NASA

Mr. Joshua Arceneaux
Booz Allen and Hamilton

September 26 th, 2007

Overview of the

Constellation Analysis Integration
Database

Objectives

Tool (CAIT)

- Report the status of studies sponsored by NASA's Exploration Systems Mission
Directorate (ESMD) via a password protected web-accessible database.

- Integrate Design and Analysis Cycles (DAC) conducted by projects sponsored by the
Constellation program.

- Generate schedules from the data and relationships defined by the contents of the
database.

Elements of a Task Description Sheet (TDS)

Planning

Functional Requirements

Publish Analysis
Execution

Monitor Issue
Process Resolution

Introduction

Timeline

Links to

External

Items

Analysis Data

Supporting

Informati

on

Database

• Description, Title, Points of Contact

Current Status, Projected

Completion

Rl_eqate_Priority.
mtemefit_'fsystem and mission)

Risks (potential problems and

impact)

Models (analytical tools used)

Issues (current problems)

Review Boards •

Resources (analysts, tacilities, etc.)
Ifi_uts

Outputs
Board Deliverables

Design Reference Missions

Methodologies

Mission Phases

Purpose

System Elements

Overview of a T==sk Management
Supported Process

Database

• Analysts

• Sys. Engineers

• Designers

• Specialists

• Trade Study Managers

• Line Managers

° Project Managers

• Working Groups
• Review Boards

_r

Database

Functions

Search _ "
Existing Tasks t Workflow 1

_w_2_ [.................... Manager _

Review &

Comment

5

N(

Review &Comment

6

--_ InputFoq"" 4_ E-Mail l

_ Save 1 I | N°tifier i
Version

Capture L

Comments

I
Team(s)

Produce Data _--

Approve
& Concur

8

Record Approval 1

& Update Status i

9
, r

I Store
kinks to

,_10

Create t

i Presentatio n i

t2

Update t
Status &
Archive l

Development Philosophy and Process

Agile Software Development Manifesto

Individuals and interactions over

processes and tools documentation

Rapid Prototyping

• Discussed requirements with "voice of the customer" and stake-holder representatives

• Quickly developed and demonstrated code via the Web and teleconferences

• Iterated the design of the graphical user interface and database reports based on comments
• Created "As-Is" and "Go-To" screen shots as designs to implement later requirements

il

I - ' |lCreateEntity _-_ Devel°p _ Dem°nstrate U ReceiveIPl_ "_ "1 ommntyAnalyze _ Relationship cCOmmuenits
Kequ!remems! l, Diagram .

Manage LI Develop Function I .I
Configuration & Regression _ Deploy

Software

Development Tools

• Notepad ++ 4.1.1 code editor

• Ruby on Rails language and
development framework

• MySQL 5 for the database
• Debian 4 for the operating

system
• Apache' 2 for the web server
• Railroad 0.4 to generate Entity

Relationship (ER) Diagrams

• Graphviz 2.1.2 to generate a
printable image of the ER

diagram
_ I'_,1

=-_.., _'==_*_

.& "_;" i_"==*=_.._, 'i_'7 ; _..... i'..,'

./
/

/

Railroad and Graphviz were used

to generate an Entity Relationship

Application Architecture

• The NASA Data Center (NDC) hosts an

IBM Z Series Mainframe computer

• Two virtual computers within the
mainframe serve as a test environment

and a production environment /
Current operating system is Debian 4.0 J

I

Planned migration to Suse Linux so we I
can access external data storage.

I

• MySQL 5 is the open source database

--1

IBM V al r

• Ruby on Rails is a free computing language and library for developing web

applications

• Mongrel provides the capability to serve dynamically generated web pages.

• Apache' is the open source web-server that manages the application web site.

• The Constellation Analysis Integration Tool (CAIT) application is the Ruby-on-

Rails, Javascript, and HyperText Markup Language (HTML) code.

Screenshot of TDS Status Page

Design Features

• Navigation bar with high-

lighted text to indicate
the current menu.

• A menu on the left side

• A "bread-crumb" trail to

indicate the path to this
screen

_= _:_TDS_A'rA_o0_O0! > Edit

Main Summary for: ATA-OO-OO1

Constellation Mission _lodel

Introduction

Reference

Timeline

• A heading that identifies

the type of information
and the record number

Links

• Links to "drill-down" to

lower levels of detail

• Descriptions of attributes identified

on the page.

• Status column with numerical metrics

that indicate the completeness of
the record

Oata

Supporting Information

I Svsten" Elements, I Form System Elements Selections l invalid I

Lessons Learned
A summary of the lessons learned from deploying a web-based task management

system include

Define use cases and illustrate requirements with structural, behavior, and
interaction diagrams

Apply open source systems such as Debian, Ruby on Rails, MySQL, Mongrel
and Apache'

Ask for help from the open source community if problems arise in the solution
stack

Assign roles and responsibilities for development, release management, and
deployment

Document procedures for comments, migrations, testing, and configuration
management

Write with an Integrated Development Environment and build a library of
reusable code

Evolve the system design through rapid prototyping on a development server

Engage customers in the system design by asking for screen layouts and
prototype critiques

Capture the system design with automated document and diagram generators

Develop functional tests along with the code and integration tests based on the
use-cases

