Multi-Sensor Triangulation of Multi-Source Spatial Data

Ayman Habib, Chang-Jae Kim, and Ki-In Bang
Digital Photogrammetry Research Group

http://dprg.geomatics.ucalgary.ca

Department of Geomatics Engineering
University of Calgary, Canada
Overview

• Introduction.
• Multi-sensor triangulation.
• Multi-primitive triangulation:
 – Points.
 – Linear features.
 – Aerial features.
• Experimental results.
• Conclusions and future outlook.
Introduction

• There is a tremendous increase in data acquisition systems, which are available for the mapping community:
 – Photogrammetric systems:
 • High resolution imaging satellites.
 • Metric analog frame cameras.
 • Metric digital frame cameras.
 • Metric digital line cameras.
 • Medium-format digital frame cameras.
 – LIDAR systems.
 – GPS/INS navigation units.
• These systems provide complementary information.
• We need to provide an integrating environment of these sensors: Multi-Sensor Triangulation (MST).
Photogrammetric Systems

Frame Cameras

- RC10
- DMC
- Applanix DSS
- Kodak 14n
- Canon EOS 1D
- SONY 717

Line Cameras

- ADS 40
- IKONOS
LIDAR Systems

ALS 40 (Leica Geosystems) OPTECH ALTM 3100
Point-Based Triangulation

\[
\begin{bmatrix}
 x_a - x_p - \Delta x \\
 y_a - y_p - \Delta y \\
 -c
\end{bmatrix}
= \lambda R^T
\begin{bmatrix}
 X_A - X_0 \\
 Y_A - Y_0 \\
 Z_A - Z_0
\end{bmatrix}
\]
Line-Based Triangulation

Photogrammetry:

Direct measurement of intermediate points on images
Line-Based Triangulation

LIDAR:

Plane fitting & intersection

manual identification of LIDAR patches with the aid of imagery
Line-Based Triangulation

LIDAR:
Manipulation of range and intensity images
Line-Based Triangulation

Direct incorporation of LIDAR lines as control in the photogrammetric BA

\[
(\vec{V}_1 \times \vec{V}_2) \cdot \vec{V}_3 = 0
\]

Line-Based Triangulation
Patch-Based Triangulation

Direct incorporation of LIDAR patches as constraints in the photogrammetric BA

Photogrammetric (A,B,C points) and LIDAR surface patches
Patch-Based Triangulation

Direct incorporation of LIDAR patches as constraints in the photogrammetric BA

Volume of the pyramid: i, A, B, C should $= 0$

$$\begin{vmatrix} X_i & Y_i & Z_i & 1 \\ X_A & Y_A & Z_A & 1 \\ X_B & Y_B & Z_B & 1 \\ X_C & Y_C & Z_C & 1 \end{vmatrix} \begin{vmatrix} X_i - X_A \\ Y_i - Y_A \\ Z_i - Z_A \\ X_B - X_A \\ Y_B - Y_A \\ Z_B - Z_A \\ X_C - X_A \\ Y_C - Y_A \\ Z_C - Z_A \end{vmatrix} = 0$$
Multi-Sensor Triangulation (MST)

- Developed an integrated triangulation system.
 - Multi-sensor: Satellite imagery, aerial imagery, LIDAR and GPS/INS.
 - Multi-primitive: distinct points, linear features, and aerial features.

- Advantages:
 - Takes an advantage of the extended coverage of imaging satellites.
 - Takes an advantage of the high geometric resolution of aerial imaging systems.
 - Utilizes sparse frame imagery to improve the weak geometry of imaging satellites while reducing ground control point requirements.
 - Uses LIDAR data for photogrammetric geo-referencing.
MST: Experimental Results

DSS: Expected accuracy:
planimetric: 0.25m
vertical: 0.74m
spatial: 0.78m
MST: Experimental Results

Upper Block

DSS: Upper Block

Upper LIDAR Scan
MST: Experimental Results

Middle Block

DSS: Middle Block

Middle LIDAR Scan
MST: Experimental Results

Lower Block

DSS: Lower Block

Lower LIDAR Scan
Stereo-IKONOS with GCP Layout

IKONOS scenes and GCP layout over Daejeon, Korea
MST: Experimental Results

Examples of Tie Points
MST: Experimental Results

Examples of Tie / Control Lines
MST: Experimental Results

Example of a Control Patch
No Ground Control Points

<table>
<thead>
<tr>
<th># GCP</th>
<th># Frames</th>
<th>GPS / LIN / PATCH</th>
<th>(\hat{\sigma}_0) (mm)</th>
<th>RMSE (m)</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>NONE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>0</td>
<td>18</td>
<td>NONE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIN</td>
<td>0.005</td>
<td>2.105</td>
<td>1.370</td>
<td>1.757</td>
<td>3.065</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PATCH</td>
<td>0.004</td>
<td>3.582</td>
<td>3.394</td>
<td>2.207</td>
<td>5.406</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS</td>
<td>0.006</td>
<td>2.109</td>
<td>1.048</td>
<td>1.963</td>
<td>3.066</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS + LIN</td>
<td>0.005</td>
<td>2.116</td>
<td>1.358</td>
<td>1.803</td>
<td>3.093</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS + PATCH</td>
<td>0.004</td>
<td>2.374</td>
<td>2.580</td>
<td>2.294</td>
<td>4.190</td>
<td></td>
</tr>
</tbody>
</table>

138 Control Lines & 139 Control Patches

Scan line direction
Configuration of 5 GCP

Scan line direction
5 Ground Control Points

<table>
<thead>
<tr>
<th># GCP</th>
<th># Frames</th>
<th>GPS / LIN / PATCH</th>
<th>$\hat{\sigma}_0$ (mm)</th>
<th>RMSE (m)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>NONE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>NONE</td>
<td>0.006</td>
<td>1.907</td>
<td>1.084</td>
<td>3.747</td>
</tr>
<tr>
<td></td>
<td>LIN</td>
<td>0.005</td>
<td>1.786</td>
<td>1.115</td>
<td>1.717</td>
</tr>
<tr>
<td>5</td>
<td>PATCH</td>
<td>0.004</td>
<td>1.670</td>
<td>1.009</td>
<td>1.759</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
<td>0.007</td>
<td>1.805</td>
<td>1.024</td>
<td>1.770</td>
</tr>
<tr>
<td></td>
<td>GPS + LIN</td>
<td>0.005</td>
<td>1.733</td>
<td>1.112</td>
<td>1.717</td>
</tr>
<tr>
<td></td>
<td>GPS + PATCH</td>
<td>0.004</td>
<td>1.647</td>
<td>1.008</td>
<td>1.786</td>
</tr>
</tbody>
</table>

138 Control Lines & 139 Control Patches

Scan line direction
Configuration of 7 GCP
7 Ground Control Points

<table>
<thead>
<tr>
<th># GCP</th>
<th># Frames</th>
<th>GPS / LIN / PATCH</th>
<th>$\hat{\sigma}_0$ (mm)</th>
<th>RMSE (m)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>NONE</td>
<td>0.005</td>
<td>1.442</td>
<td>1.608</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>NONE</td>
<td>0.006</td>
<td>1.568</td>
<td>1.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIN</td>
<td>0.005</td>
<td>1.738</td>
<td>1.130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PATCH</td>
<td>0.004</td>
<td>1.516</td>
<td>1.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS</td>
<td>0.007</td>
<td>1.657</td>
<td>1.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS + LIN</td>
<td>0.005</td>
<td>1.783</td>
<td>1.132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS + PATCH</td>
<td>0.004</td>
<td>1.578</td>
<td>1.024</td>
</tr>
</tbody>
</table>

138 Control Lines & 139 Control Patches
Configuration of 40 GCP
40 Ground Control Points

<table>
<thead>
<tr>
<th># GCP</th>
<th># Frames</th>
<th>GPS / LIN / PATCH</th>
<th>(\hat{\sigma}_0) (mm)</th>
<th>RMSE (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
<td>NONE</td>
<td>0.011</td>
<td>1.092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NONE</td>
<td>0.008</td>
<td>1.129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIN</td>
<td>0.006</td>
<td>1.173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PATCH</td>
<td>0.004</td>
<td>1.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS</td>
<td>0.008</td>
<td>1.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS + LIN</td>
<td>0.006</td>
<td>1.143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS + PATCH</td>
<td>0.004</td>
<td>1.095</td>
</tr>
</tbody>
</table>

138 Control Lines & 139 Control Patches

Scan line direction
MST: Experimental Results

![Graph showing experimental results for MST. The graph plots Number of Control Points on the x-axis and RMSE, m on the y-axis. Different lines represent different conditions: NO Frames, Frame, LIN, PATCH, GPS, GPS + LIN, GPS + PATCH. The graph illustrates how the RMSE changes with the number of control points for each condition.](image-url)
MST: Experimental Results

DSS / IKONOS Ortho-photos
MST: Experimental Results

DSS / IKONOS Ortho-photos
Ortho-Photo Generation
True Ortho-Photo Generation
MST: Experimental Results

Generated Ortho-photo

Differential Rectification
MST: Experimental Results

Generated Ortho-photo

True Ortho-photo
Concluding Remarks

• The introduced methodologies are successful in:
 – Using LIDAR features for photogrammetric geo-referencing.
 • Line-based and patch-based photogrammetric geo-referencing using control derived from LIDAR data.
 – Delivering a geo-referenced imagery of the same quality as point-based geo-referencing procedures.
 – Taking advantage of the synergistic characteristics of spatial data acquisition systems.
• The triangulation output can be used for the generation of 3-D perspective views.
Recommendations for Future Work

- Automated segmentation of LIDAR data to extract the patches and linear features.
- More investigation into using the outcome from the geo-referencing procedure for the verification of the system calibration.
- Utilize the raw LIDAR measurements in the patch-based photogrammetric geo-referencing.
 - Such a utilization will allow for LIDAR system calibration.
- Quality assurance and quality control procedures for LIDAR data.
3-D Perspective View