Emerging Techniques for Vicarious Calibration of Visible Through Short Wave Infrared Remote Sensing Systems

Authors: Robert E. Ryan, Gary Harrington, Kara Holekamp, Mary Pagnutti, Jeffrey Russell, Troy Frisbie, Thomas Stanley

Background
- Over the next several years, more than 50 optical remote sensing systems with 39-nm or better resolution will be in orbit.
- 13 countries presently have imaging satellites in orbit; 20 countries will have imaging satellites in orbit by 2010.
- 30 imaging systems are in orbit; 25 imaging systems are planned by 2010.
- These figures do not include the large number of advanced airborne multispectral imaging systems.

Issues
- The scientific community needs geodetically and radiometrically accurate products from the present and future "constellation" of spacecraft and airborne systems.
- Insight into the system construction, calibration, and performance will be limited in many cases.
- Most systems will not have any onboard radiometric calibration.
- Cal/Val (calibration and validation) will be essential.
- Multiple approaches are available.
- Ground-based radiometric calibration has the greatest utility because all systems image the ground.

Typical Radiometric Vicarious Calibration

Radiative Transfer Validation
- Verify parameters used to generate MODTRAN radiative transfer estimates.
- Measure the radiance of a Spectran solar panel with a well-calibrated spectroradiometer.
- Use ground-truth data and geometry that models an ASD FieldSpec FR (full range) spectroradiometer measuring a 99% reflectance Spectran panel as input to MODTRAN to predict the radiance.
- Compare MODTRAN-calculated radiance to actual radiance measured from Spectran panel to verify the atmospheric model.
- After panel Bi-directional Reflectance Distribution Function (BRDF) correction and radiometric calibration with NIST calibrated integrating sphere, the expected panel radiance measurement uncertainty is <2%.

Shadowband Sun Photometer Measurements
- The radiance difference is the sum of the direct component and the diffuse component:
- \[E_{direct} = E_{diffuse} + E_{direct} \]
- The direct component of radiance can be written in the following terms:
- \[E_{direct} = E_{atm} c sin(\theta) \]
- Solving for \(\tau \):
- \[\tau = \frac{\ln(1 - E_{total})}{E_{atm} c sin(\theta)} \]
- Diffuse-to-global ratio (D2G) used to determine molecular scattering can be defined as:
- \[D2G = \frac{E_{diffuse}}{E_{total}} \]

Alternative Sun Photometer Implementation
- Spectran can be considered an in-situ-vicarious container for the spectroradiometer to calibrate a sun photometer.
- Knowing the reflectance factor \(\rho \) as a function of zenith angle and azimuth angle:
- \[E_{atm} = E_{atm} c sin(\theta) \]
- \[\tau = \frac{\ln(1 - E_{total})}{E_{atm} c sin(\theta)} \]
- Diffuse-to-global ratio (D2G) used to determine molecular scattering can be defined as:
- \[D2G = \frac{E_{diffuse}}{E_{total}} \]

Test Case Evaluations
- TCA radiance values for selected targets on two days. Radiance values generated with alternative sun photometer method are compared to radiance values generated with the traditional method.

Alternative Sun Photometer Summary
- Differences between the alternative and traditional sun photometer data (tau, D2G) are relatively small in most cases (<10%).
- Additional analysis shows that in certain cases, the prototype may produce more accurate measurements than the traditional method in a Sierra-like environment for lack of sufficient langley standards.
- Improved techniques in all sun photometer calibrations.
- Utilizes existing commonly used vicarious calibration equipment.
- Spectral drift and calibrated spectroradiometer for the need to be deployed to catch many sunrises and sunsets can be minimized.
- Spectral range for hyperspectral measurements.
- Current processing uses spectral signatures to generate bands for either MFRSR or ASD.
- Spectroradiometer calibration critical to success.
- High-quality, in-situ calibration can be extremely beneficial.

Desired In-field Radiometric Calibration Source
- Radiance level comparable to sea-level solar radiation values off terrestrial targets at the polar regions.
- Radiometric stability equal to or better than 1%.
- Capability of operating over a wide temperature range (10-40°C).
- Spatially uniform light field over at least a 25 mm diameter aperture.
- Stability better than 0.1%.
- Capability of operating for a continuous period of 8 hours without a fine source.
- Single-pen aerosol portable.

Typical Laboratory Radiometric Sources
- 1) Integrating sphere (not field deployable or reliable)
- 2) Spectroradiometers with traditional tungsten-Halon lamps (relatively source)

Illumination Sources
- **LED-based Source**
 - Exploit recent developments in high-power LED sources.
 - Utilize integrating sphere to create uniform light field.
 - Use high-stability control to achieve radiometric stability.
 - Test and characterize system with environmental chamber and independent spectroradiometer.

- **LED-based Radiance Source Characteristics**
 - Temperature-stabilized white LED.
 - Spectral range: 420-780 nm.
 - Other LEDs would increase the spectral range.
 - Temperature-stabilized photodetectors.
 - Feedback loop stabilizes integrating sphere radiance level.
 - Short-term drift <0.2%.
 - Short-term drift <0.5% over temperature range 10-40°C and over large spectral range.

- **LED-based Radiance Source Calibration Spheres**
 - Spectralon panel and calibrated spectroradiometer.
 - Environmental conditions can be controlled.

- **POC:** Robert E. Ryan, rryan@ssc.nasa.gov; Mary Pagnutti, mpagnutti@ssc.nasa.gov