Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques

Mary Pagnutti

Science Systems and Applications, Inc.
John C. Stennis Space Center, MS 39529
228-688-2135
mary.pagnutti@ssc.nasa.gov

JACIE Civil Commercial Imagery Evaluation Workshop
Laurel, Maryland, USA
March 14–16, 2006
Four selected targets of opportunity near Stennis Space Center are hundreds of meters across:

- Two gravel pit sand sites
- Large monoculture fields
- Cut grass amateur golf course
A target of opportunity was found near an Aerosol Robotic Network (AERONET) site near Park Falls
 – Large grass field

AWiFS imagery (4,3,2)
August 5, 2005

Landsat 7 imagery (7,4,2)
August 5, 2005

Target field
Ground Reflectance Measurements

- ASD FieldSpec® FR spectroradiometer measurements of Spectralon® panels and several target areas were taken
 - ~50 m x 50 m area of a grassy field/golf course
 - ~100 m x 200 m area of a rye grass field
 - ~100 m x 100 m area of two sand sites
- Measurements were taken along transects aligned with the sensor azimuth
 - Measurements were taken at nadir and satellite elevation angles to account for BRDF effects
 - All measurements were taken while walking to increase spatial averaging
 - Periodic Spectralon panel measurements were taken
- All data were acquired within 40 minutes of satellite overpass
SSC Calibration and Characterization of ASD FieldSpec Spectroradiometers

• NASA SSC maintains four ASD FieldSpec FR spectroradiometers
 – Laboratory transfer radiometers
 – Ground surface reflectance for V&V field collection activities
• Radiometric Calibration
 – NIST-calibrated integrating sphere serves as source with known spectral radiance
• Spectral Calibration
 – Laser and pen lamp illumination of integrating sphere
• Environmental Testing
 – Temperature stability tests performed in environmental chamber
• Novel hyperspectral sun photometer is capable of acquiring measurements comparable to both ASRs and MFRSRs by making use of the laboratory radiometric calibration of the FieldSpec FR spectroradiometers
 – Optical Depth/Transmission
 – Diffuse-to-Global Ratio
• Sun photometer developed with fewer limitations than current sun photometers, utilizing equipment already used in the field
 – Radiometrically calibrated FieldSpec FR spectroradiometers
 – 99% reflectance Spectralon panels
• Measurements are made only at the time of overpass, thus reducing the impact of a changing atmosphere on the calculation of optical depth

Sample Results

<table>
<thead>
<tr>
<th>Band</th>
<th>ASR 27</th>
<th>ASD</th>
<th>Difference</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>380 nm</td>
<td>0.588</td>
<td>0.5982</td>
<td>-0.010</td>
<td>-1.74%</td>
</tr>
<tr>
<td>400 nm</td>
<td>0.495</td>
<td>0.4852</td>
<td>0.010</td>
<td>1.99%</td>
</tr>
<tr>
<td>440 nm</td>
<td>0.366</td>
<td>0.3216</td>
<td>0.044</td>
<td>12.14%</td>
</tr>
<tr>
<td>520 nm</td>
<td>0.224</td>
<td>0.1988</td>
<td>0.025</td>
<td>11.25%</td>
</tr>
<tr>
<td>610 nm</td>
<td>0.161</td>
<td>0.1563</td>
<td>0.005</td>
<td>2.91%</td>
</tr>
<tr>
<td>670 nm</td>
<td>0.108</td>
<td>0.1002</td>
<td>0.008</td>
<td>7.26%</td>
</tr>
<tr>
<td>780 nm</td>
<td>0.07</td>
<td>0.0691</td>
<td>0.001</td>
<td>1.33%</td>
</tr>
<tr>
<td>870 nm</td>
<td>0.049</td>
<td>0.0508</td>
<td>-0.002</td>
<td>-3.58%</td>
</tr>
<tr>
<td>RMS 1:8</td>
<td></td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Acquisitions – Wiggins, MS

<table>
<thead>
<tr>
<th>Date</th>
<th>Camera</th>
<th>Overpass Time (UTC)</th>
<th>Satellite Elevation</th>
<th>Satellite Azimuth</th>
<th>Sun Elevation</th>
<th>Sun Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 24, 2005</td>
<td>B</td>
<td>16:59</td>
<td>71.1 deg</td>
<td>285 deg</td>
<td>57.2 deg</td>
<td>149.8 deg</td>
</tr>
<tr>
<td>Apr 27, 2005</td>
<td>B</td>
<td>16:50</td>
<td>84.5 deg</td>
<td>285 deg</td>
<td>67.7 deg</td>
<td>135.4 deg</td>
</tr>
</tbody>
</table>

Wiggins, MS, 3/24/05

Wiggins, MS, 4/27/05
Data Acquisitions – Park Falls, WI

<table>
<thead>
<tr>
<th>Date</th>
<th>Camera</th>
<th>Overpass Time (UTC)</th>
<th>Satellite Elevation</th>
<th>Satellite Azimuth</th>
<th>Sun Elevation</th>
<th>Sun Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 5, 2005</td>
<td>A</td>
<td>17:02</td>
<td>83.9 deg</td>
<td>103 deg</td>
<td>57.8 deg</td>
<td>149.7 deg</td>
</tr>
</tbody>
</table>

[Diagram of Sun and AWiFS positions]
Green Band Calibration Summary

NASA Radiance = DN \times (0.60 \pm 0.02) + (-5.49 \pm 5.36)

AW Radiance = DN \times 0.51

- AW Cal Curve
- SSC Cal Curve
- SSC Cal Curve \pm 1\sigma
Red Band Calibration Summary

NASA Radiance = DN \cdot (0.46 \pm 0.01) + (2.60 \pm 3.89)

AW Radiance = DN \cdot 0.40

March 16, 2006
NIR Band Calibration Summary

NASA Radiance = DN \times (0.31 \pm 0.02) + (-3.11 \pm 6.69)

AW Radiance = DN \times 0.28

AW Cal Curve

SSC Cal Curve

SSC Cal Curve ± 1σ
<table>
<thead>
<tr>
<th></th>
<th>Green</th>
<th>Red</th>
<th>NIR</th>
<th>SWIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal Coeff (W/m² sr μm DN)</td>
<td>0.60 ± 0.02</td>
<td>0.46 ± 0.01</td>
<td>0.31 ± 0.02</td>
<td>0.056 ± 0.004</td>
</tr>
<tr>
<td>Offset</td>
<td>-5.49 ± 5.36</td>
<td>2.60 ± 3.89</td>
<td>-3.11 ± 6.69</td>
<td>-2.82 ± 2.15</td>
</tr>
<tr>
<td>AWiFS Provided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cal Coeff (W/m² sr μm DN)</td>
<td>0.51</td>
<td>0.40</td>
<td>0.28</td>
<td>0.045</td>
</tr>
<tr>
<td>Offset</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Green Band Calibration Summary

(Zero-Offset)

NASA Radiance = DN ^ 0.58 ± 0.06

AW Radiance = DN ^ 0.51

Graph showing the calibration summary with data points and lines representing different radiance values.
Red Band Calibration Summary

(Zero-Offset)

NASA Radiance = DN \times 0.47 \pm 0.05

AW Radiance = DN \times 0.40
NIR Band Calibration Summary

(Zero-Offset)

NASA Radiance = DN × 0.30 ± 0.02

AW Radiance = DN × 0.28
SWIR Band Calibration Summary

(Zero-Offset)

NASA Radiance = DN * 0.052 ± 0.005
AW Radiance = DN * 0.045

Radiance [W/(m²·sr·µm)]

SWIR Band Calibration Summary

- Wiggins, grass, 3/24/05
- Wiggins, ryegrass, 3/24/05
- Wiggins, gravel(p), 3/24/05
- Wiggins, gravel(d), 4/27/05
- Wiggins, ryegrass, 4/27/05
- Wiggins, gravel(p), 4/27/05
- Park Falls, Field A, 8/5/05
- UofA, Ivanpah, 6/18/05
- UofA, RRV, 6/18/05
- UofA, Ivanpah, 6/23/05
- UofA, RRV, 8/10/05
- SDSU, mowed grass, 6/22/05
- SDSU, unmowed grass, 6/22/05

AW Cal Curve
SSC Cal Curve
SSC Cal Curve ± 1σ

March 16, 2006
Initial Radiometric Calibration Coefficients (Zero-Offset)

<table>
<thead>
<tr>
<th>Band</th>
<th>NASA Team Estimate [W/m² sr μm DN]</th>
<th>AWiFS Provided [W/m² sr μm DN]</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>0.58 ± 0.06</td>
<td>0.51</td>
<td>12.1%</td>
</tr>
<tr>
<td>Red</td>
<td>0.47 ± 0.05</td>
<td>0.40</td>
<td>14.9%</td>
</tr>
<tr>
<td>NIR</td>
<td>0.30 ± 0.02</td>
<td>0.28</td>
<td>6.7%</td>
</tr>
<tr>
<td>SWIR</td>
<td>0.052 ± 0.005</td>
<td>0.045</td>
<td>13.5%</td>
</tr>
</tbody>
</table>

Percent difference is calculated by \(1 - \frac{\text{AWiFS}}{\text{NASA Mean}}\)
AWiFS Results Summary

• The NASA team of University of Arizona, South Dakota State University, and NASA SSC produce consistent results

• The AWiFS calibration coefficients agree reasonably well with the NASA team estimate

• The NASA team will continue to assess AWiFS radiometric accuracy
Contributors

John C. Stennis Space Center, MS

National Aeronautics and Space Administration
Thomas Stanley

Science Systems and Applications, Inc.
Slawomir Blonski Kelly Knowlton Robert E. Ryan
Brennan Grant Kenton Ross Steve Tate
Kara Holekamp

Computer Sciences Corporation
Ronald Vaughan

Participation in this work by Science Systems and Applications, Inc., and by Computer Sciences Corporation was supported by NASA at the John C. Stennis Space Center, Mississippi, under Task Order NNS04AB54T.