
Source of Acquisition 
NASA Goddard Space Flight Center 

Novae as a Class of Transient X-ray Sources 

K. M ~ k a i ' ? ~ ,  M. 0rio314>5 and M. Della Valle5>6 

ABSTRACT 

Motivated by the recently discovered class of faint (i034-i035 ergs s-I ) X-ray 
transients in the Galactic Center region, we investigate the 2-10 keV properties 
of classical and recurrent novae. Existing data are consistent with the idea that 
all classical novae are transient X-ray sources with durations of months to years 
and peak luminosities in the ergs s-I range. This makes classical novae 
a viable candidate class for the faint Galactic Center transients. We estimate 
the rate of classical novae within a 15 arcmin radius region centered on the 
Galactic Center (roughly the field of view of XMM-Newton observations centered 
on Sgr A*) to be -0.1 per year. Therefore, it is plausible that some of the 
Galactic Center transients that have been announced to  date are unrecognized 
classical novae. The continuing monitoring of the Galactic Center region carried 
out by Chandra and XMM-Newton may therefore provide a new method to 
detect classical novae in this crowded and obscured region, and may test the 
completeness of the current understanding of the nova populations. 

Subject headings: stars: novae, cataclysmic variables - Galaxy: center - X- 
rays: binaries 

'CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771; 
mukai@milkyway.gsfc.nasa.gov 

2Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 
21250 

3Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706; 
orio@astro.wisc.edu 

41NAF - Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5 ,  1-35122 Padova, Italy 

'Kavli Institute of Theoretical Physics, UC Santa Barbara, California 93106 

'INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy; rnassi- 
mo@arcetri.astro.it 



1. Introduction 

Recently, several groups have reported their detections of relatively faint X-ray tran- 
sients in the Chandra and XMM-Newton observations of the Galactic Center region (Porquet 
et al. 2005; Sakano et al. 2005; Muno et al. 2005). No direct distance measurements 
are available for these objects so far, but they are presumed to be located at the distance of 
the Galactic Center, based mostly on their distributions on the sky. With this assumption, 
the inferred luminosities of these transients are in the 1034-1035 ergss-I range. The authors 
of these studies claim that such a luminosity is too high for cataclysmic variables (CVs), 
semi-detached binaries in which the accreting object is a white dwarf. Instead, they argue 
for neutron star or black hole accretors based solely on the luminosity. However, the Galactic 
Center transients are sub-luminous compared to the known transient populations of black 
hole or neutron star binaries (Sakano et al. 2005; Muno et al. 2005), requiring a new 
population (see, e.g., King & Wijnands 2006). 

The accretion driven X-ray luminosities of CVs are indeed insufficient to explain the 
Galactic Center transients. Non-magnetic CVs X-ray luminosities in the range 1030-1032 
ergs s-I , with the highest value of 3 x lo3' ergs s-I for V603 Aql (Baskill et al. 2005). 
Magnetic CVs, the intermediate polars (IPS), are more luminous in 2-10 keV X-rays, with 
estimated luminosities often exceeding ergs s-I (Sazonov et al. 2006). With the possible 
exception of the outbursts of the unusual IP, GK Per, (it reached 1 . 3 ~ 1 0 ~ ~  ergss-I during 
its 1996 outburst; Hellier et al. 2004), IPS are also not likely candidates for the Galactic 
Center X-ray transients. 

However, the above discussion is incomplete because it is limited to the accretion driven 
X-ray luminosities of CVs. In reality, CVs can generate higher X-ray luminosities through 
nuclear fusion, which is a more efficient source of energy than accretion onto a white dwarf. 
Indeed, classical novae have been known to emit 2-10 keV X-rays at luminosities exceeding 

ergs s-l. We present below a summary of X-ray properties of classical as well as recurrent 
novae. 

2. Novae as X-ray Transients 

A white dwarf accreting at below the critical rate will undergo a thermonuclear runaway 
and becomes a classical nova, once a sufficient amount of fresh fuel has been accumulated 
(Townsley & Bildsten 2005 and references therein). A classical nova releases enough energy 
(N  ergs) to eject a shell of up to -- lov4 Mo at a typical velocity of 1000 km s-l. Classical 
novae are seen as spectacular optical transients that brighten by over 10 magnitudes, reaching 



peak brightness as high as M, = -9. By definition, a classical nova has only been observed 
to go into an outburst once, although they are thought to repeat with a recurrence period 
of well over 1,000 years. A recurrent nova is a closely related system that has been seen to 
undergo multiple thermonuclear runaways; it is thought that a recurrent nova must have a 
high mass white dwarf accreting at a high rate. 

Novae are transient X-ray, as well as optical, sources. Imaging X-ray observations of 
classical novae weeks to months after visual peak have revealed at least two kinds of X-ray 
emissions (Orio 2004). Of these, the supersoft emission peaks in the EUV/soft X-ray range 
with little or no flux above 1 keV. We do not discuss supersoft emission further in this 
paper, since many works that focus on this aspect of novae are already in print, and because 
supersoft emission is easily absorbed by interstellar medium and is unobservable from the 
Galactic Center region. 

The other component is inferred to be from shocks within the ejected shell, although 
they are spatially unresolved within the first few years. The X-ray spectrum of the shell 
component can be modeled as optically thin thermal emission with temperatures in the 1-10 
keV range in the early stages. The line-rich emissions detected in some novae at a later stage 
are also likely to be from the shell, although they become too soft to be observable from 
the Galactic center region. We present a summary in Figure 1 compiled from literature, as 
detailed below. 

The first unambiguous detection of the shocked shell X-rays was achieved for V838 Her 
(Nova Herculis 1991) with ROSAT PSPC 5 days after visual maximum (Lloyd et al. 1992). 
Using their flux estimates and an estimated distance of 3.4 kpc (Lynch et al. 1992), we 
obtain an unabsorbed 0.2-2.4 keV luminosity of 0 . 7 - 1 0 ~ 1 0 ~ ~  ergss-I for V838 Her, the two 
numbers corresponding to the high (kT-10 keV) and low ( k T ~ 0 . 7 5  keV) temperature fits 
that Lloyd et al. (1992) obtained. The 2-10 keV luminosity of V838 Her is highly uncertain 
and requires an extrapolation of the soft X-ray spectrum, which in turn is poorly determined. 
Later ROSAT observations (1 and 1.5 year after the outburst) did not detect V838 Her. 

V1974 Cyg (Nova Cygni 1992) was observed multiple times with ROSAT; these data are 
fully described by Balman et al. (1998). To summarize, shell X-rays were detected starting 
with the first ROSAT observation on day 63 and remained detectable on day 653. The 
temperature declined from --I0 keV to below 1 keV over the first 6 months, accompanied 
by a decline in intrinsic absorption. The peak 0.2-2.4 keV luminosity was N ergs s-I on 
day 147 for an estimated distance of 1.9 kpc (Rosino et al. 1994). V1974 Cyg presumably 
peaked in the 2-10 keV earlier than on day 147, since the temperature was decreasing. 

In addition, V351 Pup (Nova Puppis 1991) was observed with ROSAT 16 months after 



the outburst (Orio et al. 1996). It was substantially brighter then V1974 Cyg a t  the same 
time after outburst, possibly exceeding ergs s-I. I t  was probably considerably fainter in 
the 2-10 keV band than in the ROSAT band, however, since the plasma temperature was 
estimated to be in the range 0.75 keV < kT  < 1.22 keV. Many more novae were observed with 
ROSAT at various times after the outburst, which are summarized in Orio et al. (2001a). 
The ROSAT 0.2-2.4 keV luminosities of V838 Her, V1974 Cyg, and V351 Pup are shown in 
red in Figure 1 and are labeled N1, N2, and N3, respectively. 

The shell X-rays from V382 Vel (Nova Velorum 1999) were detected with Beppo-SAX, 
ASCA, and RXTE (Mukai & Ishida 2001; Orio et al. 2001b). The spectra again showed 
the same softening trend seen for V1794 Cyg, requiring both kT and NH to decrease over 
the first several months. It appears to have maintained a luminosity (using a slightly revised 
distance estimate of 1.7 kpc; Della Valle et al. 2002) of over 3 x lo3* ergss-I for at  least 
40 days. The Fe Ka! complex was seen to be weak compared to the best-fit, solar abundance 
plasma model. The cause of this is a puzzle, since strong and broad Fe lines are seen in 
the optical (Della Valle et al. 2002). The measured 2-10 keV luminosities of V382 Vel are 
shown as black X's in Figure 1, along with the initial RXTE upper limit, and are labeled 
N4. 

Although many XMM-Newton and Chandra observations concentrate on the super-soft 
phase of the novae, there are some that shed light on the hard X-ray emission. Unfortunately, 
many of these data are yet to  be published in peer-reviewed journals. Among the exceptions, 
the study of Nova LhIIC 2000 (Greiner et al. 2003) deserves a special mention, since the 
distance estimate for this nova is more accurate than those for typical Galactic novae (1g 
error -20% when the maximum magnitude-rate of decline relationship is used; Della Valle 
& Livio 1995). The estimated bolometric luminosity of Nova LMC 2000 was 5 x ergs s-I 
17 days after maximum, and 2 x 1 0 ~ ~  ergss-I on day 51. These points are shown as black 
+'s in Figure 1 and are labeled N5. 

Of the other novae observed with XMM-Newton or Chandra, the XMM-Newton detec- 
tions of V2487 Oph (986 and 1187 days after outburst; Hernanz & Sala 2002) are thought to 
be of accretion driven X-rays, and hence we do not include these in Figure 1. More recently, 
V4633 Sgr has been detected with XMM-Newton (934, 1083, and 1265 days after outburst; 
Hernanz & Sala 2007). The authors favors a shell origin, although cannot completely ex- 
clude accretion origin, either. In Figure 1, we have included the first of the three detections 
(N6; the other two are at  similar levels but with larger error bars), noting, however, that we 
have used the unabsorbed 0.2-10 keV luminosity reported by Hernanz & Sala (2007). The 
spectral model consists of a soft and a hard component, so the 2-10 keV luminosity should 
be somewhat lower. In general, we believe there is potentially a great value in a systematic 



study of hard X-ray emission from novae in the XiMM-Newton and Chandra data that have 
not yet been explored. 

Although less sensitive than XMM-AJewton and Chandra observations, the Swift survey 
of classical novae (Ness et al. 2007) provides a useful check. Note that their Figure 16 
contains both the soft and hard X-ray luminosities and is intended mainly to  show the 
typical duration of the supersoft phase. To show the history of the shell X-rays, we have 
taken the observed Swift XRT count rate from Ness et al. (2007) and estimated the 2-10 
keV luminosity. Since none of the Swift observations are deep enough to enable spectroscopy 
of the shell X-rays, we have used a single conversion rate of 6 . 2 4 ~  10-l4 ergs ~ rn -~s - '  (2- 
10 keV) per 1 Swift XRT ctsks-l, appropriate for a kT=5 keV bremsstrahlung observed 
through NH = 1 x We exclude from the Ness et al. (2007) compilation novae 
that are dominated by the supersoft emission, objects observed >1 year after the outburst, 
and V1047 Cen for which no distance estimate is given. The remaining objects (LMC 2005, 
V5116 Sgr, V1663 Aql, Vll88 Sco, V477 Sct, V476 Sct, and V382 Nor) are shown in blue 
in Figure 1 (as N7, N8, N9, NA, NB, NC, and ND). 

This brief summary (see also Orio et al. 2001a; Orio 2004) suggests the following 
regarding the X-rays from shocked shells in classical novae. These hard X-rays from the 
ejected shells appear to be a nearly universal feature of classical novae. Between -10 day 
past visual maximum t o  months or years past maximum, they are usually strong X-ray 
sources, often exceeding lo3* ergs s-l. The existing data suggest variations in the duration 
and peak luminosity from nova to nova. The case of V382 Vel suggests that there is a delay 
in hard X-ray turn-on of classical novae compared to the optical peak. The range of plasma 
temperatures in the ejecta decrease from 20-30 keV at hard X-ray turn-on, to N 1 keV in a 
few months (e.g., Lloyd et al. 1992; Mukai & Ishida 2001). Within 1-2 years the nebula 
may have a rich line spectrum, emitting mostly below 1 keV (e.g., Ness et al. 2003, 2005). 
Of the novae discussed above, the time for the hard component of the X-ray emission to cool 
was about 6 months for the two fast novae (Balman et al. 1998; Mukai & Ishida 2001): 
but was longer (over 18 months) for slow novae with massive ejecta (Orio et al. 1996; 
Greiner et al. 2003), potentially exceeding the duration of the supersoft phase. However, 
the gradual decrease in temperature means that duration of novae as >2 keV X-ray sources 
are effectively shorter than the total duration of novae as shell X-ray sources. 

Even less is known of the X-ray emission from recurrent novae. IM Nor (Rl)  was not 
detected 1 month after the outburst and was only a moderately strong (- 2 x [d/l kpcI2 
ergs s-') source 6 month past maximum (Orio et al. 2005). The hard component of CI Aql 
(R2) was detected 34 and 95 days after the outburst at about 7x1030 ergss-' (Greiner & di 
Stefano 2002) using the distance of 2.6 kpc (Lynch et al. 2004). In contrast, RS Oph (R3) 



reached a luminosity in excess of ergss-I shortly after the outburst peak (Sokoloski 
et al. 2006; Bode et al. 2006). In Figure 1, we plot only the early Swift data for RS Oph; 
RXTE measurements are similar. The fast turn-on and high luminosity of RS Oph is due to 
the existence of M giant wind, which provides an additional mechanism for X-ray production 
not available in classical novae, whose mass donors are on or near the main sequence. The 
relative paucity of X-ray data on recurrent novae reflects the fact that recurrent novae are 
much rarer than classical novae. In the rest of the paper, we will therefore concentrate on 
classical novae, but the possibility of an RS Oph-like transient near the Galactic Center 
region should be kept in mind. 

3. Novae As Galactic Center Transients? 

As our summary shows, novae are a known class of X-ray transients with peak luminosi- 
ties above ergss-I. Thus, they should be considered as a candidate class in discussing 
Galactic Center transients. In fact, novae are the only known class of transients with the 
right characteristics, as the known neutron star and black hole transients have much higher 
peak luminosities. 

Classical novae can be found both in a relatively young population (e.g., the Galactic 
disk) and in the older population (e.g., the Galactic bulge). Della Valle & Duerbeck (1993) 
have shown (their Fig. 1) that the distribution of the rates of decline of classical novae in 
the Milky Way and in M31 perfectly overlap with each other, and both are statistically dis- 
tinguishable from LMC distribution (which exhibits a predominance of fast rates of decline). 
Since it is well known from theoretical studies (e.g. Starrfield et al. 1985; Kovetz & Prialnik 
1985) that the rate of decline is a tracer of the mass of the white dwarf in the nova system, 
we can assume that the main bulk of the progenitors of novae in the Milky Way and in M31 
originates in the same type of stellar population. Capaccioli et al. (1989) and Shafter & Irby 
(2001) have demonstrated that novae in M31 are mainly produced in the bulge,therefore in 
view of what reported above, the same should occur for novae in our Galaxy. 

A global Milky Way rate of -24 novae yr-l has been measured by Della Valle & Livio 
(1994) by scaling from extragalactic nova surveys (Della Valle et al. 1994). An estimate 
somewhat larger of -35 novae yr-l has been obtained by Shafter (1997) by extrapolating 
from the current rate of nova discovery in the Galaxy (about 4-5 novae yr-I) and by Darnley 
et al. (2006) based on microlensing survey of M31. In the following we will adopt as an 
"educated" guess a global rate of 30 novae yr-l, and estimate the rate of novae in a region 
of the sky within 15 arcmin of the Galactic Center. This is roughly the field of view of 
XMM-Newton EPIC observations centered on Sgr A*. 



Recent estimates of the ratio novarate(disk)/nova-rate(bu1ge) range between 0.25 up 
to 0.40 (Capaccioli et al. 1989; Della Valle et al. 1992, 1994; Shafter & Irby 2001). By 
assuming from Ratnatunga & van den Berg (1989) a surface for the Galactic disk of 850 
kpc2 and a typical scale height of 100 pc for disk novae (Della Valle & Livio 1998), the 
density of nova outburst in the Milky Way disk is p,mdiskr=0.4-0.7 x10-'' novaepc-3yr-1. 
Assuming the distance from the Sun to the Galactic Center of 8 kpc, one can find that the 
rate of disk novae within 15 arcmin of the Galactic center is only 5 x novae yr-l. That 
is, we can exclude a disk nova identification for any Galactic Center X-ray transients as 
highly unlikely. 

More uncertain is the estimate of the nova density in the bulge. Let us assume (from 
Figure 1 of Della Valle & Livio 1998) that most bulge novae are located within 400 pc from 
the Galactic plane. From Figure 2 of Shafter (1997) we can assume (rather optimistically) 
that most bulge novae occur within the first kpc from the Galactic center. Under these 
assumptions, we find that bulge novae are distributed within a prolated ellipsoid with a 
density of - 3 x lo-' novae p ~ - ~ y r - l .  The line of sight region within 15 arcmin of the 
Galactic center encompasses a volume of - 352 pc2 x n x  1000 pc = 3.8 x lo6 pc3. The 
expected number of bulge nova in this volume is therefore of order -0.1 novae yr-l. 

The majority of these novae go undiscovered. During the 1978-1993, the average rate 
of discovery was 3.3 yr-I (Liller & Mayer 1987). Even though the rate of discovery may 
have increased in recent years (about 6 yr-I are reported in IAU Circulars since 2001): this 
still leaves of order 25 classical novae every year that are undiscovered. We expect that 
the undiscovered novae are preferentially located in crowded regions and/or behind high 
interstellar extinction. Both problems are extreme in the Galactic Center region. Therefore, 
optical observations are unlikely to yield a complete census of the novae in the Galactic 
Center region, although a wide area IR monitoring should be able to do so. 

There have been observations of the Galactic Center region roughly every 6 months 
with XMM-Newton for roughly 2 years between 2000 Sep and 2002 Oct, out of which three 
transients were discovered (Porquet et al. 2005; Sakano et al. 2005). To this, we add 1 
year as a representative duration of novae as a Galactic Center X-ray transients (i.e., bright 
enough and hard enough to be detectable if they were placed at the Galactic Center; the 
precise value one adopts affects the following numbers only slightly). With this assumption, 
these XMM-Newton observations should have been sensitive , to novae that peaked optically 
between 1999 Sep and 2002 Oct, or a period of 3 years. Combined with the above estimate 
of 0.1 novae per year within 15 arcmin of the Galactic center, roughly the field-of-view of 
XMM-Newton EPIC cameras, we predict these observations should have detected 0.3 novae 
as X-ray transients. If this is the true expectation value, there is a 26% chance that at least 



one of the Galactic Center transient is a nova according to Poisson distribution (4% chance 
that two or more were novae). 

Most optimistically, then, one or two of the XMM-Newton discovered could have been 
unrecognized novae. On the other hand, it may well be the case that none of these tran- 
sients are novae. Novae are poorer candidates for the Chandra transients, given the strong 
concentration of Chandra transients near Sgr A* (Muno et al. 2005). However, given the 
uncertainties involved both in the nova rate and the transient rate, we consider it advis- 
able to keep novae in mind, particularly as regular monitoring of the Galactic Center region 
continues (Wijnands et al. 2006). 

In fact, we can turn this argument around. There is a possibility that the present esti- 
mate of the Milky Way nova rate (-30 yr-l) is underestimated, because optical monitoring 
is ineffective in the crowded, high extinction regions around the Galactic Center. The degree 
of central concentration of bulge novae is unknown; if there is an additional population of 
novae found preferentially near the Galactic Center, we would not know it from optical data. 
The continuing search for faint X-ray transients in the Galactic Center region can therefore 
be considered an important complementary method for discovering classical novae that are 
otherwise not recognized. Since the Galactic Center region is already regularly monitored 
with sensitive X-ray observatories for other purposes, it makes sense to utilize the existing 
data for this purpose. 

4. Conclusions 

Classical and recurrent novae are a known class of transient X-ray sources that reach 
luminosities in the - ergss-I range. The shell X-ray phase of novae may last 
months to several years, although they probably soften as they age, gradually making them 
less conspicuous above 2 keV. 

Novae have the right spectral and temporal characteristics to explain a subset of the faint 
Galactic Center transients that have been detected with Chandra and with XMM-Newton in 
recent years. If the existing literature accurately reflects the rate of X-ray transient near the 
Galactic Center, then the known population of classical (and recurrent) novae are probably 
a small, but not negligible, contributor to the overall transient population. 

Muno et al. (2005) have argued that dynamical processes may lead to a high space 
density of X-ray binaries within 1 pc of the Galactic Center. That is, the concentration of 
X-ray emitters is forcing considerations of a new population of objects not seen elsewhere in 
the Galaxy. We propose that any such studies include white dwarf binaries, since Galactic 



Center specific processes could produce an additional population of novae beyond disk and 
bulge novae that are currently known. 

Chandra and XMM-Newton have been monitoring the Galactic Center region more 
or less regularly over the last -8 years. Even at 0.1 novae per year within 15 arcmin of 
the Galactic Center, it is probable that a nova will be detected as 2-10 keV X-ray transient 
soon, if one hasn't been already. A concurrent infrared monitoring campaign will be required, 
however, to prove beyond a reasonable doubt that a particular X-ray transient is due to a 
classical nova. 
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Fig. 1.- Hard X-ray light curves of classical novae, all shown against days since the vi- 
sual maxima. Black points are generally inferred 2-10 keV luminosities. Blue points are 
the same estimated from Swift XRT count rates, while red points are inferred 0.2-2.4 keV 
luminosities from ROSAT data. Points for any given objects are connected, except that the 
11 points for V1974 Cyg are left unconnected for clarity. Upper limits are shown as upside 
down carets; measurements are shown using a variety of symbols to allow those for different 
objects (indicated by the object keys, see below) to be distinguished. In 6 cases, object keys 
themselves, enclosed in boxes, are used to plot measurments. Classical novae plotted are: 
N1: V838 Her; N2: V1974 Cyg; N3: V351 Per; N4: V382 Vel; N5: Nova LMC 2000; N6: 
V4633 Sgr; N7: Nova LMC 2005; N8: V5116 Sgr; N9: V1663 AqI; NA: Vll88 Sco; NB: 
V477 Sct; NC: V476 Sct; ND: V382 Nor. Recurrent novae plotted are: R1: IM Nor; R2: 
CI Aql; R3: RS Oph. See text for details. 




