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ABSTRACT 

A semi-analytical method for determining the strain energy release rate due to a prescribed 

interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is 

presented.  The field equations in terms of displacements within the joint are formulated by using 

first-order shear deformable, laminated plate theory together with kinematic relations and force 

equilibrium conditions.  The stress distributions for the adherends and adhesive are determined 

after the appropriate boundary and loading conditions are applied and the equations for the field 

displacements are solved.  Based on the adhesive stress distributions, the forces at the crack tip 

are obtained and the strain energy release rate of the crack is determined by using the virtual 

crack closure technique (VCCT).  Additionally, the test specimen geometry from both the ASTM 

D3165 and D1002 test standards are utilized during the derivation of the field equations in order 

to correlate analytical models with future test results.  The system of second-order differential 

field equations is solved to provide the adherend and adhesive stress response using the symbolic 

computation tool, Maple 9.  Finite element analyses using J-integral as well as VCCT were 

performed to verify the developed analytical model.  The finite element analyses were conducted 

using the commercial finite element analysis software ABAQUS™.  The results determined 

using the analytical method correlated well with the results from the finite element analyses. 

 

KEY WORDS: adhesively-bonded joint, laminated plate theory, composite joint, strain energy 

release rate, virtual crack closure technique (VCCT), fracture mechanics 
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NOMENCLATURE 
 
 

P:  applied tensile force per unit width, N/m 
uU, uL:  x-directional displacement, m 
uo, uoU, uoL:  mid-plane x-directional displacement, m 
ψ, ψU, ψL:   bending slope, radians 
w, wU, wL:  z-directional displacement, m 
Nx, Nx

U, Nx
L:  normal stress resultants per unit width, kN/m 

My, My
U, My

L:  bending moment per unit width, kN 
Qz, Qz

U, Qz
L:  transverse shear stress resultant per unit width, kN/m 

A11, A11
U, A11

L:  in-plane modulus per unit width, kN/m 
A55, A55

U, A55
L:  transverse modulus per unit width, kN/m 

B11, B11
U, B11

L:  coupling modulus per unit width, kN 
D11, D11

U, D11
L:  flexural modulus per unit width, kNm 

ks, ks
U, ks

L:  shear correction factor 
τa:  adhesive shear stress, kPa 
qa, σz:  adhesive peel stress, kPa 
hU, hL:  adherend thickness, m 
η:  adhesive thickness, m 
σx, σy:  adhesive normal stress, kPa 
εx, εy, εz, γxz:  adhesive strain 
Ea:  Young’s modulus of adhesive, kPa 
Ga:  shear modulus of adhesive, kPa 
ν a:  Poisson’s ratio of adhesive 
a:  length of prescribed crack, m 
b:  length of virtual crack extension, m 
lo:  overlap length before crack is initiated, m 
ln:  notch length of ASTM D3165 specimen, m 
NC, MC, QC:  crack tip forces 
W:  work required to close crack propagation b per unit joint width, N 
GT:  total strain energy release rate, N/m 
Fxf, Fyf, Fxg, Fyg:  crack tip forces from finite element model, N 
J:  J-integral value 
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INTRODUCTION 

Advanced composite materials have been widely used due to their high strength-to-

weight ratio and excellent corrosion resistance.  In many applications, bolted joints have been 

replaced by adhesively-bonded joints because of the weight penalty and corrosion problems 

associated with bolted joints.  However, the geometric discontinuity present at the ends of an 

adhesively-bonded joint results in peak shear and normal (peel) stresses in the adhesive layer that 

typically occur near the adhesive to adherend interface.  The stress concentration caused by the 

discontinuity often results in local yielding and further develops into crack initiation.  In a 

research study conducted by Yang et al. [1] on adhesively-bonded joints, they concluded that the 

fracture mechanics approach would be an effective method for predicting the load carrying 

capacity of a bonded joint.   

Earlier studies of adhesively-bonded joints can be found in the extensive reviews given 

by Kutscha [2], Kutscha and Hofer [3], Matthews et al. [4], and Vinson [5].  Yang and Pang [6] 

derived an analytical model that provided the stress distributions of adhesively-bonded single-lap 

composite joints subjected to axial tension.  Huang et al. [7] and Yang et al. [8] also derived an 

elastic-plastic model for adhesively-bonded single-lap composite joints.  Important capabilities 

included in their approaches were the asymmetry of the adherend laminates as well as the effects 

due to transverse shear deformation. 

An existing crack is usually assumed in a joint when conducting a fracture analysis.  

Krueger [9] described the virtual crack closure technique (VCCT), including its history, 

approach, and applications, in conjunction with finite element analysis in a report published in 

2002.  Davidson et al. [10-13] published a series of papers that employed the classical plate 

theory version of the VCCT to predict the strain energy release rate of mixed-mode delamination 

 4



 

in composite laminates.  A crack-tip force method was derived by Park and Sankar [14] to 

compute the strain energy release rate in delaminated beams and plates.  Kim et al. [15] proposed 

a simplified method for determining the strain energy release rate of free edge delamination in 

composites using the classical laminated plated theory.  Finite element methods play a significant 

role in structural analysis and have been widely used to study the adhesively-bonded composite 

joint.  Wang et al. [16] applied the VCCT to calculate the strain energy release rate of cracked 

composite panels with nonlinear deformation.  Wei et al. [17] presented an improved VCCT to 

determine the energy release rate using a three-step analysis.  Yang et al. [1] developed finite 

element models using the finite element software, ABAQUS™, to estimate the J-integral of an 

adhesively-bonded joint with a crack. 

Although finite element analysis methods are capable of solving problems with varying 

material types and complicated geometrical configurations, analytical solutions offer 

performance and solution advantageous, especially when performing parametric analyses and 

optimization.  The objective of the present paper is to describe a semi-analytical fracture 

mechanics method that can be used to determine the strain energy release rate due to a prescribed 

crack in an adhesively-bonded single-lap composite joint.  The prescribed crack is assumed to be 

present at the location of peak stress in the overlap region, usually at the corners of the adhesive 

adjacent to the continuous adherend.  Additionally, the strain energy release rate calculated using 

this method can be applied to configurations with adhesive or adhesive/adherend interfaces as a 

failure criterion given the same mixed-mode critical strain energy release rate exists in the 

subject joint to account for the adhesive cohesion or adhesion failure.  Linear elastic material 

properties as well as small displacements are assumed for both the adhesive and adherends in 

order to make the analytical approach feasible.  Due to the fact that the geometric nonlinearity 
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during the joint deformation is not considered, the analytical model is more accurate when 

analyzing joints with stiffer and/or thicker adherends. 

In the remaining sections, the displacement fields and stress distributions of adhesively-

bonded single-lap composite joints with a prescribed interface crack under tension are 

determined analytically using laminated anisotropic plate theory.  After the virtual crack 

extension is applied, the crack tip forces are calculated based on the adhesive stress distributions.  

The strain energy release rate is then calculated using the VCCT.  ASTM D3165 [18] and ASTM 

D1002 [19] specimen geometries are used in the model derivations.  The semi-analytical 

solutions are determined using the symbolic computation tool Maple 9 [20].  Results from the 

analytical model are verified by finite element analysis using ABAQUS™ 6.3 [21, 22]. 

 

ANALYTICAL DEVELOPMENT OF FIELD EQUATIONS FOR THE 
CALCULATION OF ENERGY RELEASE RATES 

The details of the semi-analytical method for determining the strain energy release rate of 

adhesively-bonded single-lap composite joints with a prescribed interface crack are now given.  

Based on the laminated plate theory version of Irwin’s virtual crack method [9], the strain energy 

release rate is derived in terms of the forces and moment at the crack tip, Nc, Qc, and Mc. These 

forces and moments at the crack tip are determined from the linear elastic shear and peel stress 

distributions in the adhesive.  Therefore, a description of the stress state in the pre- and post-

cracked specimen geometry is required before an estimate of the strain energy release rate can be 

obtained. 

ASTM D3165 Stress Model 

A summary of the basic methodology used by the authors to derive the equations for 

determining the required stress and displacement fields in an adhesively-bonded joint are 

 6



 

presented in the present section.  The details of the method used to determine the displacement, 

strain, and stress fields in an adhesively bonded joint are available in the previous report by Yang 

and Pang [6].  Shown in Figure 1 is an adhesively-bonded single-lap joint with the standard 

geometry of an ASTM D3165 specimen and an applied tensile load P per unit width.  The 

specimen geometry is divided into five regions to aid in the derivation of model equations.  

Region 3 is the bonded joint overlap area where the applied mechanical loads are transferred 

from one adherend to the other, and is also the area for which the joint strength is typically based.   

The generalized field equations for the adherends and adhesive are the same for all the 

three regions with an adhesive layer.  The behavior of the adherends is described by the 

laminated anisotropic plate theory and the adhesive is assumed to behave as an elastic, isotropic 

material.  The displacement fields for the upper and lower adherends can be written as follows: 

 ( ) ( )x z + xu = u UUoUU ψ    (1) 

 ( ) ( )x z + xu = u LLoLL ψ    (2) 

 ( )xw = w UU    (3) 

( )xw = w LL    (4)  

where displacements in the axial (x) direction are given by u, displacements in the transverse (z) 

direction are given by w, the superscripts U and L denote the upper and lower adherends, 

respectively, superscript o represents the mid-plane displacement, and ψ is the corresponding 

bending slope.  The normal stress resultant per unit width, Nx, bending moment per unit width, 

My, and transverse shear stress resultant per unit width, Qz, are expressed as  
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Figure 1. ASTM D3165 specimen configuration and coordinate systems. 

 

 ( ) ( )
dx

xdB
dx

xduAN
o

x
ψ

1111 +=    (5) 

 ( ) ( )
dx

xdD
dx

xduBM
o

y
ψ

1111 +=    (6) 

 ( ) ( )
⎥⎦
⎤

⎢⎣
⎡

dx
xdw +x Ak = Q sz ψ55    (7) 

where  ks is the shear correction factor and the Aij, Bij, and Dij terms are taken from the common 

extensional, bending, and extensional-bending coupling stiffness matrices from the laminated 

plate theory [23].  In order to establish the equations of equilibrium, a free body diagram of a 

differential element from the overlap region is shown in Figure 2.  The equations for force 

equilibrium of the upper adherend are given as: 

a

U
x - = 

dx
dN τ                (8) 

a

U
U
z

U
y  h + Q = 

dx
dM τ

2
         (9) 

a

U
z q= 

dx
dQ               (10) 
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where τa and qa are the shear and peel stresses of the adhesive, respectively, and hU is the 

thickness of the upper adherend.  Three equilibrium equations can be obtained for the lower 

adherend in a similar fashion to show: 

a

L
x  = 

dx
dN τ                (11) 

a

L
L
z

L
y  h + Q = 

dx
dM τ

2
         (12) 

a

L
z q- = 

dx
dQ               (13) 

 

Figure 2. Free body diagram and sign conventions. 

Using the kinematics of the adherends and assuming a perfect bond between the adhesive 

and the adherend surfaces, the adhesive strains are related to the bottom surface of the upper 

adherend and the top surface of the lower adherend.  In terms of the displacement field of the 

two adherends, the adhesive strains in the traditional sign convention with x, y, z subscripts can 

be written as: 

( )  
dx

dw+
dx

dw +hu-u=
ULU

oLoU
xz ⎟

⎠

⎞
⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎜
⎝

⎛
−

2
1

22
1

ψψ
η

γ h L
L

U ⎞    (14)  
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 ( )  h-h+u+u 
dx
d  = U

U
L

L
oUoL

x ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
ψψε 222

1    (15) 

 ( )w-w  = LU
z ηε

1    (16) 

where η is the adhesive thickness, and hU and hL are the thickness of the upper and lower 

adherends, respectively.  Assuming a condition of plane-strain, the adhesive stresses can be 

obtained as: 

 ( )( ) ( )[ ]ενεν
νν

σ zxa
aa

a
x  + -

2-+
E = 1

11
   (17) 

 ( )( )( )εε
νν

ν
σ zx

aa

a
y  + 

2-+
E = 
11

   (18) 

 ( )[ ]ενεν
νν

σ zax
aa

a
a z - + 

2-+
E = q 1

)1)(1(
=    (19) 

 γτ xzaa G = −    (20) 

As previously noted, τa and qa are the shear and peel stresses of the adhesive, respectively, and 

their sign conventions are shown in Figure 2.  Ea is the Young’s modulus, ν a is the Poisson’s 

ratio, and Ga is the shear modulus of the adhesive. 

Substituting the stress resultants in Equations (5) - (7) for the upper and lower adherends 

along with the adhesive stresses in Equations (19) and (20) into Equations (8) - (13), six coupled 

second-order ordinary differential equations with six unknowns uoU, ψU, wU, uoL, ψL, and wL are 

obtained for each of Regions 1, 3, and 5.  In Region 2, only the upper adherend is present 

without any adhesive stresses.  Therefore, the force equilibrium conditions in Region 2 are 

similar to those in Equations (8) – (10) but without the adhesive stresses, τa and qa, 

0 = 
dx

dNU
x          (21) 
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 Q = 
dx

dM U
z

U
y          (22) 

 = 
dx

dQU
z 0          (23) 

Substituting the stress resultants in Equations (5) - (7) of the upper adherend into Equations (21) 

– (23), three coupled second-order ordinary differential equations with three variables uoU, ψU, 

and wU are obtained for Region 2.  Applying the similar approach to Region 4 yields another 

three coupled second-order ordinary differential equations with three variables uoL, ψL, and wL. 

The overall system of governing equations, including all five regions, contains twenty-

four second-order ordinary differential equations with twenty-four unknown variables.  A total of 

forty-eight boundary conditions are obtained at the two ends of each Region based on either 

continuity or applied force conditions.  The symbolic solver Maple 9 was used to solve the 

system of equations and obtain the displacement, strain, and stress fields.  

 

Strain Energy Release Rate Calculation 

Once the stress, strain, and displacement fields are known in the adhesively-bonded 

single-lap composite joints, the virtual crack closure technique (VCCT) is applied to estimate the 

strain energy release rate of the joint with a prescribed interface crack.  According to linear 

elastic fracture mechanics, the energy released from the propagation of a small crack is 

equivalent to the work needed to close that small crack propagation [16]. 

 When a crack is initiated, it usually starts at a location of high stress concentration.  For 

the ASTM D3165 specimen configuration shown in Figure 1, the critical areas are located at the 

upper left and lower right corners of the adhesive layer in Region 3.  In deriving an expression 

for the strain energy release rate, a joint is assumed to have an overlap length lo, a notch size ln, 
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and a crack of length a that is located at the lower right adhesive/adherend interface.  Due to the 

anti-symmetry of the joint, only the right half of the joint, as shown in Figure 3, is used for the 

strain energy release rate calculation.  The displacement of the crack tip C after a load is applied 

can be determined using the stress model previously described and a Region 3 length of L3 = lo – 

2a and Regions 2 and 4 lengths of L2 = L4 =ln + a.  In the stress formulation, two boundary 

conditions used for solving the field equations are that the displacements in both the x and z 

directions of the left end of the joint (x1 = 0) are zero.  Because only the right-half of the joint is 

used in the strain energy release rate calculation, the center point O of the joint, as shown in 

Figure 3, is used as the reference point to avoid double-counting the effects due to the crack.  

Both the displacements in x and z directions, u and w, in the strain energy release rate calculation 

are relative displacements to point O.  However, the absolute bending slope, ψ, is used directly 

for the strain energy release rate calculation.  According to the displacement fields for the upper 

and the lower adherends, the relative displacements of the crack tip C to the reference point O 

are obtained using the stress model and a joint with a central overlap length L3 = lo – 2a and 

notch lengths L2 = L4 = ln + a, i.e. 

 

Figure 3. A joint of central overlap length l with a prescribed interface crack of length a. 
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where uC,O and wC,O are the relative displacements of crack tip C to the reference point O in the x 

and z-directions, respectively, x3 = lo - 2a denotes the location of the crack tip C.  The 

displacements, uO and wO, of the center reference point O, are determined from the average 

displacements of the bottom surface of the upper adherend and the top surface of the lower 

adherend at x3 = (lo-2a)/2 as, 

 ⎟⎟
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++−= −=−=−=−= 2/)2(2/)2(2/)2(2/)2( 3333

|
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2

|
2
1
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alx
oL

alx
U

U

alx
oU

O oooo

huhuu ψψ     (27) 

 ( 2/)2(2/)2( 33
||

2
1

alx
L

alx
U

O oo
www −=−= += )     (28) 

If the crack propagates a small length b (virtual crack), the crack tip moves to point C’, and the 

previous crack tip C separates into points A and B, as shown in Figure 4.   

 

Figure 4. Virtual crack extension of length b. 
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 Before the crack growth, the adhesive between C’ and C adheres to the lower adherend 

where adhesive shear and peel stresses exist at the interface as shown in the left of Figure 5.  If 

the crack propagates a small length b, the adhesive shear and peel stresses vanish between C’ and 

C.  The crack tip forces corresponding to a small crack propagation b can be assumed as the 

equivalent forces, NC, MC, and QC, to the shear and peel stresses between C’ and C, as shown in 

the right of Figure 5, and can be calculated as  

 

Figure 5.  Equivalent forces at the crack tip. 

 

     (29) 3
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2
xdN

al
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o
∫

−
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= τ

   (30) ( )∫
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o dxxalqM

2

332

∫
−
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−=
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bal aC
o

o

dxqQ
2

2 3

balo 2

    (31) 

where the adhesive shear stress τa and peel stress qa are obtained from the stress model with the 

overlap length L3 = lo – 2a.  Note that only the upper adherend and adhesive layer with point A 

are shown in Figure 5 and that the positive directions of NC, MC, and QC are defined to be 

consistent with the positive directions of displacements u, ψ, and w, respectively.  The same 

approach is applied to point B to obtain the crack tip forces at the lower adherend.  It can be seen 

that the crack tip forces at point A have the same magnitude but opposite directions as those at 

 14



 

point B because the adhesive stresses acting on the upper adherend are in the opposite directions 

as those acting on the lower adherend. 

 After the crack propagates a small length b, the previous crack tip C separates into two 

points A and B, as shown in Figure 4.  To determine the relative displacements of point A and B 

to the reference point O, a subsequent stress analysis is performed using a joint with a central 

overlap length L3 = lo – 2a – 2b, which simulates the overlap up to the new crack tip C’, 

including the two notch lengths L2 = L4 = ln + a + b.  Extension of the upper adherend from C’ to 

A with a free end at A generates the displacements at point A.  Therefore, the relative 

displacements of point A to the reference point O are 

 '|
2

| 2222, 33 Obalx
U

U

balx
oU

OA uhuu
oo

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= −−=−−= ψη    (32) 

    (33) balx
U

A o 223
| −−==ψψ

 '|| 22
3

22, 33 Obalx

U

balx
U

OA w
dx
dwbww

oo
−+= −−=−−=    (34) 

The relative displacements of point B to point O are  

', O

L

OB uu −=

bx
L

B ==
4

|ψ

|
2

|
44 bx

L
bx

oL hu + == ψ    (35)  

 ψ    (36) 

    (37) '|
4, Obx

L
OB www −= =

The subscripts A and B denote points A and B.  All the other superscripts and subscripts are the 

same as previously noted.  Because of the different joint configuration in the stress model before 

and after the crack propagates, the displacements of the reference point O used in Equations (29) 

– (34) are obtained again from a stress analysis with a central overlap length L3 = lo – 2a – 2b as 
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The central point displacements, uo and wo, as shown in Equations (27) and (28) are before the 

crack propagates and the central point displacements, uo' and wo', as in Equations (38) and (39) 

are after the crack propagates.  In order to close the virtual crack propagation, of length b, the 

crack tip forces are applied on points A and B to move them back to the location of the original 

crack tip C.  Therefore, the total work required to close the small crack propagation b is 

 
( ) ( ) ( )[ ]

( ) ( ) ( )[ ]OBOCCBCCOBOCC

OAOCCACCOAOCC

wwQMuuN

wwQMuuNW

,,,,

,,,,

2
1

2
1

−+−+−−

−+−+−=

ψψ

ψψ
    (40)  

After simplification, the work becomes 

 ( ) ( ) ( )[ ]OAOBCABCOAOBC wwQMuuNW ,,,,2
1

−+−+−= ψψ     (41) 

For joints with a unit width, the strain energy release rate is defined as the derivative of energy 

released from the crack propagation with respect to the length of the crack propagation   

 dU    (42) GT =
da

where U is the strain energy stored in the body.  Based on the VCCT, the total energy released 

from the crack propagation is equivalent to the work needed to close the same crack propagation.  

With a virtual crack propagation of length b, the total strain energy release rate GT, which is a 

summation of the Mode I strain energy release rate GI and the Mode II strain energy release rate 

GII, can be calculated as 

 16
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FINITE ELEMENT MODEL DESCRIPTIONS USING 
VCCT AND J-INTEGRAL METHODS 

Finite Element Models using VCCT 

The strain energy release rate due to a small increase in crack length is equivalent to the 

energy required to close that small crack increment.  Therefore, the strain energy release rate can 

be computed by finite element models using the VCCT [15].  As shown in Figure 6, the tip of a 

crack with an original length a is located at C.  Assuming a virtual crack propagation of length b, 

the new crack tip becomes C’ and the original crack tip becomes two separate nodes f and g.  If 

nodes f and g are restrained at the original crack tip location, this virtual crack with length b is 

closed and the work to close this virtual crack can be calculated by multiplying the reaction 

forces at nodes f and g by the relative displacements of these two separate nodes to the original 

crack tip C.   

 

Figure 6.  Demonstration of finite element method with VCCT. 

 

The virtual crack closure technique originally developed by Rybicki and Kanninen [24] as well 

as Raju [25] and further developed by Wei [17] is applied in the current study.  For 2-D 

conditions, the following steps are required: 
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1. Build the finite element model with an original crack of length a and determine the 

displacements of crack tip C, uc and wc in the x and z directions, respectively. 

2.  Propagate the crack with a small length b (usually one element size); the original crack 

tip C becomes two separate nodes.  Record the displacements of both nodes, uf, wf, ug and 

wg.  

3.  Constrain the two separate nodes so that they have the same displacements as the original 

crack tip C and obtain the reaction forces Fxf, Fyf, Fxg, and Fyg.   

4. The work needed to close the virtual crack is 

 [ ] [ ])()(
2
1)()(

2
1

gcyggcxgfcyffcxf wwFuuFwwFuuFW −+−+−+−=   (43) 

 The total strain energy release rate is then obtained by  

b
WGT =      (44)  

In the present study, two-dimensional 4-node linear plane-strain quadrilateral elements 

are utilized in the finite element model for VCCT application.  There are 12 elements through the 

adherend thickness corresponding to 12 plies of T300/5208 with orientation and sequence of 

[03/903]S and 6 elements are used in the finite element mesh through adhesive thickness. 

 

Finite Element Model Description using the J-Integral 

Finite element models with the J-integral calculation were constructed using ABAQUS™ 

[21, 22] to verify the present analytical model.  The J-integral is usually used in quasi-static 

fracture analysis to characterize the energy release associated with crack propagation.  It is 

equivalent to the strain energy release rate if the material response is linear elastic.  Considering 
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an arbitrary counter-clockwise path (Γ) around the crack tip, as illustrated in Figure 7, the J-

integral is defined as 

 ∫ ∑
Γ =

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

−= ds
x
u

TwdyJ
i

i
i

3

1
  (45) 

where w is the strain energy density, u1, u2, and u3 are the components of the displacement vector, 

ds is the incremental length along the contour Γ, and T1, T2, and T3 are components of the 

traction vector.  The traction is a stress vector normal to the contour.  In other words, T1, T2, and 

T3 are the normal stresses acting at the boundary if a free-body diagram on the material inside of 

the contour is constructed.   

 

dsΓ

x

y

 

Figure 7. An arbitrary contour around crack tip. 

 Several contour integral evaluations are possible at each location along the crack front.  

In a finite element model each evaluation can be thought of as the virtual motion of a block of 

material surrounding the crack tip.  Each such block is defined by contours and each contour is a 

ring of elements completely surrounding the crack tip or crack front from one crack face to the 

opposite crack face.  These rings of elements are defined recursively to surround all previous 

contours.  ABAQUS/Standard automatically finds the elements that form each ring from the 

node sets given as the crack-tip or crack-front definition.  Each contour provides an evaluation of 

the contour integral [22]. 
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Theoretically, the J-integral should be independent of the domain used, but J-integral 

estimated from different rings may vary because of the approximate nature of the finite element 

solution.  Strong variation in these estimates, commonly called domain dependence or contour 

dependence, indicates a need for mesh refinement (provided that the problem is suitable for 

contour integrals).  Numerical tests suggest that the estimate from the first ring of elements 

abutting the crack front does not provide a high accuracy result so at least two contours are 

recommended.  In the present study, five contours were calculated and the average was taken as 

the final J-integral value.  The method is quite robust in the sense that accurate contour integral 

estimates are usually obtained even with quite coarse meshes. 

Sharp cracks, where the crack faces lie on top of one another in the undeformed 

configuration, are usually modeled using small-strain assumptions.  Focused meshes for J-

integral calculation, as shown in Figure 8, should normally be used for small-strain fracture 

mechanics evaluations. 

For linear elastic materials, the linear elastic fracture mechanics (LEFM) approach 

predicts an r singularity near the crack tip where r is the distance from the crack tip.  In finite 

element analyses, forcing the elements at the crack tip to exhibit an r  strain singularity greatly 

improves accuracy and reduces the need for a high degree of mesh refinement at the crack tip 

[26].  This r singularity can be produced using an eight-node quadrilateral element by moving 

the mid-side nodes to the quarter-points, as noted by Barsoum [27] and Henshell and Shaw [28].  

The needed triangular shape of the elements at the crack tip can be achieved by further 

collapsing nodes a, b, and c, as shown in Figure 9, while maintaining the r  strain singularity 

[26].  In the present study, the crack tip was modeled with a ring of collapsed quadrilateral 

0.5−

0.5−

0.5−

0.5−
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elements as shown in Figure 9.  The procedure used in the finite element analysis is described as 

follows:  

1. Collapse one side of an 8-node element so that all three nodes, a, b, and c, have the same 

geometric location (on the crack tip). 

2. Move the mid-side nodes on the sides connected to the crack tip to the 1/4 point nearest 

the crack tip. 

This procedure will create the strain singularity of  so it is sufficient for linear elastic 

fracture analysis. 

0.5r−
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Figure 8. Typical focused mesh for fracture mechanics evaluation [22]. 

h

g

r

r
a
b

c

a, b, c-1

-1

1

1
a

b

c

Isoparamet r ic space Phys ical space
 

Figure 9. Collapsed two-dimensional element. 
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In the current study, eight-node two-dimensional plane strain elements are used.  The 

crack-tip is meshed using the technique described above to evaluate the J-integral.  The 

undeformed and deformed meshes for the ASTM D3165 model are shown in Figure 10.  ASTM 

D3165 and ASTM D1002 configurations are followed to model geometry in the finite element 

models.  Specifically, twelve elements are used through the thickness of the adherends 

corresponding to twelve plies of T300/5208 with orientation and sequence of [03/903]S, while 

five elements are used in the finite element mesh to model the adhesive layer in the thickness 

direction.  The J-integral for five different crack lengths and six different loading conditions is 

evaluated using ABAQUS™ and compared with other models described previously. 

 

  a) Before deformation 

 

  b) After deformation 

Figure 10. Mesh description for the ASTM D3165 model at the singularity interface (for J-

integral calculation). 
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ASTM D1002 Stress Model 

Figure 11 shows the configuration of the ASTM D1002 specimen which is more similar 

to most field applications.  The model derivations of ASTM D1002 specimen configuration are 

very similar to those for ASTM D3165 specimens.  Details can be found in the literature [6].  

The general first-order laminated plate equations, Equations (1) – (7), are applied to both the 

upper and lower adherends.  The field equations for Region 1, which is outside of the overlap 

area, are 

 

Figure 11. Configuration of ASTM D1002 specimen. 

 

    (46) P= NU
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y wxP = M +− 1θ    (47) 
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and the governing equations for Region 3 are 

    (49) P= N L
x

( )[ ]LL
y wxLP = M −− 33θ    (50)  
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⎜⎜
⎝
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3dx
dwP = Q

L
L
z θ    (51)  

The oblique angle θ in Equations (47) – (50) is: 
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The field equations for Region 2 are the same six second-order ordinary differential equations for 

ASTM D3165 as shown in Equations (8) – (13).  Therefore, the stress model of the ASTM 

D1002 specimen includes six first-order ordinary differential equations and six second-order 

ordinary differential equations with 12 variables.  A total of 18 boundary conditions are obtained 

at the two ends of each region from either continuity or applied force conditions [6].  The 

symbolic solver Maple 9 is used to solve the system of equations.  The strain energy release rate 

is calculated with the similar VCCT procedures as described in previous section regarding 

ASTM D3165 specimens. 

 

 

RESULTS AND DISCUSSION 

In the present study, both ASTM D3165 and ASTM D1002 were modeled analytically to 

determine the strain energy release rate using the methods described previously.  The symbolic 

solver Maple 9 was utilized as the mathematical tool.  The finite element models for VCCT and 

J-integral were conducted using ABAQUS™ to verify the analytical results. 

In order to demonstrate the application of the developed model, T300/5208 

(Graphite/Epoxy) with ply thickness of 0.25 mm was used for both upper and lower adherends.  

Each adherends consist of 12 plies with orientation and sequence of [03/903]S.  The engineering 

constants of T300/5208 are E11 = 181 GPa, E22 = 10.3 GPa, G12 = 7.17 GPa, and v12 = 0.28.  For 

convenience, other mechanical properties of the adherends are assumed as  

E33 = E22 , G13 = G12,  v13 = v12, v23 = 0.35, and G23  = E22/(2+ 2v23) = 3.815 GPa 
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The adhesive is Metbond 408 with the following properties: 

Ea = 0.96 GPa        Ga = 0.34 GPa       va = 0.41 

The joint dimensions of the ASTM D3165 specimen include the central overlap length lo = 30 

mm, notch size ln = 1.6 mm, and adherend lengths outside the central overlap L1 = L5 = 78.4 mm, 

and adhesive thickness η = 0.2 mm.  The joint dimensions of the ASTM D1002 specimen include 

an overlap length of lo = 30 mm and adherend lengths outside the overlap L1 = L3 = 80 mm, 

which includes the gripped portion of the specimen. 

When a load P = 1,000 N/m was applied, the adhesive peel and shear stresses obtained 

from both the semi-analytical model and finite element model are shown in Figures 12 and 13 for 

ASTM D3165 specimens and in Figures 14 and 15 for ASTM D1002 specimens, respectively.  

Because of symmetry, only half of the overlap region is shown in the figures.  It can be seen 

from the figures that the semi-analytical solutions and finite element results are very close, 

except in the vicinity of the edge (x3 = 30 mm).  This is because the adhesive is assumed to 

behave as an elastic material and the adhesive stress distributions are defined as being uniform 

through the thickness in the derivation.  In a real joint, the adhesive would undergo plastic 

deformations and the stress at the joint ends would be reduced. 
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Figure 12. Adhesive shear stress distribution in Region 3 for the ASTM D3165 specimen. 
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Figure 13. Adhesive peel stress distribution in Region 3 for the ASTM D3165 specimen. 
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Figure 14. Adhesive shear stress distribution in Region 2 for the ASTM D1002 specimen. 
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Figure 15. Adhesive peel stress distribution in Region 2 for the ASTM D1002 specimen. 
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Once the stress, strain, and displacement fields were obtained, the strain energy release rates of 

the joints were estimated and the solutions from the semi-analytical models using the VCCT 

were compared with finite element models using the VCCT and finite element models using the  

J-integral.  The strain energy release rates for five different crack lengths (a = 0.15 mm, 1.5 mm, 

3 mm, 6 mm, and 9 mm) under tensile load P = 200 kN/m are shown in Figures 16 and 17 for 

ASTM D3165 and D1002 specimen geometries, respectively.  It can be seen that results from 

finite element models with the VCCT and J-integral are almost identical while the developed 

semi-analytical model deviates about 10% from the finite element models for the ASTM D3165 

specimen.  For the ASTM D1002 geometry, all three models provided almost identical strain 

energy release rates except for a very short pre-crack.  The strain energy release rates with crack 

length a = 3 mm under various loads are shown in Figures 18 and 19 for ASTM D3165 and 

D1002 specimen geometries, respectively.  As expected, the strain energy release rates from all 

three models appear to be quadratic functions of the applied load.  The semi-analytical results 

correlate very well for the models with the ASTM D1002 specimen geometry. 
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Figure 16. Strain energy release rate of an ASTM D3165 specimen as a function of initial 
crack length. 
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Figure 17. Strain energy release rate of an ASTM D1002 specimen as a function of initial crack 
length. 
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Figure 18. Strain energy release rate of an ASTM D3165 specimen as a function of load. 
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Figure 19. Strain energy release rate of an ASTM D1002 specimen as a function of load. 
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CONCLUSION 

 A semi-analytical method was developed to calculate the strain energy release rate based 

on ASTM D3165 and D1002 specimen geometries with a prescribed interface crack.  The stress 

and displacement fields for the adhesively-bonded single-lap composite joint were determined 

based on laminated anisotropic plate theory.  The virtual crack closure technique (VCCT) was 

applied effectively in conjunction with the analytical stress and displacement models in 

determining the strain energy release rate.  Results obtained from the developed semi-analytical 

method correlated well with results from finite element models using both the VCCT and J-

integral.  Therefore, the present study has given a description of a reasonably accurate, rapid-

solution method for calculating the strain energy release rate of an adhesively-bonded single-lap 

composite joint.  Strength predictions of representative joints are anticipated by using the critical 

strain energy release rate of the adhesive/adherend interface from the developed method.   
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