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Abstract

The transition process which takes place in the attachment-line boundary layer in the
presence of gross contamination is an issue of considerable interest to wing designers. It is well
known that this flow is very sensitive to the presence of isolated roughness and that transition
can be initiated at a very low value of the local momentum thickness Reynolds number.
Moreover, once the attachment line is turbulent, the flow over the whole wing chord - top and
bottom surface - will be turbulent and this has major implications for wing drag.

In order to investigate this phenomenon and produce a quantitative model of the
development of intermittent turbulence with both Reynolds number and spanwise position, tests
have been performed on a series of geometrically similar cylinder models. Data has been
gathered on different sized models, in different low-speed wind-tunnels over a wide range of
sweep angles (20° to 70°). A model of the transition process has been produced using Emmons’
sport theory and the data have been used to determine the models’ various unknown constants.
Brief consideration is also given to the effects of high speed compressibility and heat transfer.
The model provides a good description of the process over a very wide range of conditions.
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The work which I presented related to the transition process which can occur on the
leading edge of an infinite swept wing i.e. one in which the surface pressure field has no
spanwise variation. To be more specific the transition which can occur in the
attachment-line boundary layer. This is the boundary layer which forms on the line
which divides the upper surface flow from the lower surface flow - see figure 1. The
present study relates to two aspects of this problem.

a) The spanwise development of intermittent turbulence downstream of a large 2-D
trip

and

b) The relaminarisation of the fully developed turbulent flow as the value of the

characteristic Reynolds number, R (see figure 2) is progressively reduced.

Since item a) is a classic example of a by-pass transition process, the work is primarily
experimental. However. the experiment is not easy for the following reasons.

L. The attachment line transition is a "high Reynolds number" phenomenon. There
is no way that it can be investigated with bench top scale experiments. The
achievement of the necessary conditions requires the use of large models in
industrial scale wind tunnels. This makes the problem difficult to study in
University laboratories. However at Manchester we are fortunate in having a
large scale low speed wind tunnel (9’ x 7’ test section, maximum speed 250 ft/sec)
which is suitable for the study.

and

2. Even with the necessary facilities the attachment line boundary layers are very
thin with the turbulent flows being less than 5 mm thick. When this is coupled
with the problem of the model being a large distance (2’ to 3°) from the tunnel
wall or floor, it is apparent that conventional traversing of the boundary layer is
impossible. Therefore, we have developed a novel and simple approach involving
the use of a range of impact pressure probes mounted on the model at a fixed
height above the surface. By measuring the indicated pressure over a wide range
of tunnel speed, model leading-edge sweep-angle, probe size and probe spanwise
location, it is possible to generate a matrix of data which can be interpolated to
produce conventional velocity profile information with very high levels of
accuracy.
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Figures 1 to 16 describe in sequence the way in which the problem of describing the
attachment line transition. By combining the data with a model developed from
Emmons spot hypothesis an accurate, quantitative description of the process has been
produced. A particularly interesting conclusion from this study has been that, whilst an
infinite swept (spanwise invariant) laminar and fully turbulent attachment line boundary
layers can be set up, the transitional case always exhibits spanwise variation - there is no
physically realisable, spanwise invariant, transitional, attachment-line flow!

Figures 17 to 25 summarise our contribution to item b) - the relaminarisation of the fully
turbulent attachment line boundary layer by reducing the characteristic Reynolds
number. All the information shown corresponds to flows which are fully turbulent. This
means that, if a hot wire anemometer is placed in the flow, the signal will be turbulent
(no laminar gaps) the whole time. Nevertheless it is clear that the flow does not have
the structure of a high Reynolds number turbulent boundary layer.

It is apparent from the velocity profiles that, at the highest Reynolds number conditions,
the inner region of the boundary layer obeys the "universal law of the wall". However
as the Reynolds number (R) is reduced below 600. the profiles are shifting relative to
the universal law in a way which is consistent with a Reynolds number variation in the
additive constant (c). The shift in the inner region is monotonic with R and, at the
lowest Reynolds number, the value of the additive constant is about 7.5 compared with
5.2 at large Reynolds number. By computing the velocity profile with a full field
boundary layer code, it has been found that the observed changes in the profile are
consistent with the following turbulence mode.

1. Von Karman’s constant invariant at 0.41.
2. Van Driest’s damping factor (A™) rising rapidlv as the Reynolds number
falls.
and 3. The outer mixing length (Lo/8) rising slowly with decreasing Reynolds
number.

We have also observed that as the Reynolds number drops the shape factor H rises very
rapidly, achieving a value of about 2 and that the skin friction coefficient goes through
a maximum - all this occurring whilst the flow is still "fully turbulent".

Many (if not all) of these features have been observed in low Reynolds number
pipe and channel flow. However, they have not been observed in 2-D flat plate, zero
pressure gradient flow. This is because, at the Reynolds number which need to be
achieved, flat plate flow is invariably contaminated by the disturbances introduced by the
trip (needed to make the flow turbulent). Different tripping devices produce different
flow fields at these conditions and the underlying behaviour of the turbulence cannot be
separated out.

The most important conclusion of the work to date is that relaminarisation can
be modelled by an appropriate variation A™.
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Fig.1. Flow near the leading edge of a swept cylinder.
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LINEARISED INTERMITTENCY PLOT
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VELOCITY PROFILES FOR VARIOUS RBAR
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WAKE STRENGTH VERSUS DELTA+
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