Heat Transfer in Boundary Layer Transition

Ting Wang
Clemson University
Mechanical Engineering
109 Riggs Hall
Clemson, SC 29634

Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4 % and the streamwise acceleration ranges from \( K = 0 \) to \( 0.8 \times 10^{-6} \). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of the streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented. The eddy viscosity, turbulent thermal diffusivity and the turbulent Prandtl number are calculated. Different distributions of eddy viscosity and turbulent thermal diffusivity across the boundary layer reflect the apparent disparity between the momentum and thermal transports in the transitional boundary layer. Very mild acceleration \( (K=0.07 \times 10^{-6}) \) can significantly delay the onset and length of transition, while a further increase of acceleration to \( K=0.25 \times 10^{-6} \) only slightly changes the onset of transition. In comparison with the acceleration, elevated free-stream turbulence is dominant in advancing the onset of transition. Acceleration only slightly delays the transition but significantly extends the length of transition at highly elevated free-stream turbulence levels. In terms of conditional sampling techniques, nine separate criterion functions are investigated. The results indicate that using a criterion function based on Reynolds shear stress for turbulent/nonturbulent discrimination in a heated transitional boundary layer is superior to a single velocity or temperature scheme. To match the universal intermittency distribution of Dhawan and Narasimha, the minimum values of intermittency at about \( y/\delta = 0.1 \) should be used as the representative "near-wall" value.
FLUID MECHANICS AND HEAT TRANSFER IN TRANSITIONAL BOUNDARY LAYERS

TING WANG

Department of Mechanical Engineering
Clemson University
Clemson, SC 29634-0921

Phone: (803) 656-5630
Fax: (803) 656-4435

Presentation at the
End-Stage Boundary Layer Transition Workshop

15-18 August, 1993

Blue Mountain Lake, New York
On-going projects related to boundary layer transition at Clemson University

1. Baseline: Natural transition

2. Effects of favorable streamwise pressure gradients

3. Effects of Free-stream turbulence intensity (FSTI)

4. Combined effects of favorable gradients and FSTI.

5. Effects of roughness

6. Effects of adverse pressure gradients
Figure 4.4 Mean velocity profiles for the baseline case in wall coordinates measured by the three-wire probe.
Figure 4.10: Reynolds analogy factor, $2S/C_p$, for the baseline case.
Figure 4.7 Centerline Stanton number and skin friction coefficient distributions for the baseline case.
3-WIRE BOUNDARY LAYER SENSOR

DIMENSIONS IN mm
Figure 4.13 Streamwise Reynolds normal stress distribution for the baseline case in wall units.
Figure 4.22 Mean temperature profiles for the baseline case in wall coordinates measured by the three-wire probe.
Figure 4.15 Ratio of streamwise gradient of Reynolds normal stress to cross-stream gradient of Reynolds shear stress for the baseline case.
Figure 4.25 Reynolds cross-stream heat flux distribution for the baseline case in wall units.
Figure 4.16 Reynolds cross-stream stress distribution for the baseline case in wall units.
Figure 4.23 RMS temperature distribution for the baseline case in wall units.
Figure 4.19 Reynolds shear stress distribution for the baseline case in wall units.
Distribution of maximum Reynolds normal stress and the corresponding y-position in the streamwise direction.
Figure 5.4 Centerline stanton number distribution for all cases.
\[ St = 0.453 \, Re_x^{1/2} \, Pr^{-2/3} \left(1 - \left(\frac{X_0}{X}\right)^{3/4}\right)^{-1/3} \]
Figure 4.26 (a) Scenario of statistical transport correlation between $v'$ and $t'$ and (b) Scenario of instantaneous view of cross-stream Reynolds heat flux distribution.
Figure 4.31 Distribution of eddy viscosity, turbulent thermal diffusivity and turbulent Prandtl number for baseline case (stations 9-11, 13).
Figure 4.28 Reynolds streamwise heat flux distribution for the baseline case in wall units.
Figure 4.29 Ratio of gradient of Reynolds streamwise heat flux to gradient of Reynolds cross-stream heat flux for the baseline case.
CORRESPONDING CRITERION FUNCTIONS
FOR $\Gamma = 0.5$, $y/\delta^* = 1.1$ (BASELINE CASE)

| CF1          | $|d^2T/d\tau^2|$ |
|--------------|-----------------|
| CF2          | $|d^2U/d\tau^2|$ |
| CF3          | $|d^2V/d\tau^2|$ |
| CF4          | $(dU/d\tau)^2$  |
| CF5          | $(dU/d\tau)^2 + (dV/d\tau)^2$ |
| CF6          | $(duv/d\tau)^2$ |
| CF7          | $|d^2u/d\tau^2|$ |
| CF8          | $|d^2v/d\tau^2|$ |
| CF9          | $|d^2uv/d\tau^2|$ |

Time (sec)
FACTORS FOR DETERMINING WHICH CRITERION FUNCTION IS "BEST"

- SHARPNESS IN DEMARCATION BETWEEN TURBULENT AND NON-TURBULENT PORTIONS OF THE FLOW

- SMALL VARIATION OF THRESHOLD VALUE THROUGHOUT TRANSITION REGION

- LOW UNCERTAINTY IN DETERMINING THRESHOLD VALUE

- LOW SENSITIVITY OF RESULTED INTERMITTENCY TO UNCERTAINTY IN CHOOSING THRESHOLD
COMPARISON OF TWO CRITERION FUNCTIONS AND CORRESPONDING INTERMITTENCY FUNCTIONS FOR
\[
\Gamma = 0.5, \quad y/\delta^* = 1.1 \quad \text{(baseline case)}
\]

\begin{align*}
|d^2U/d\tau^2|_{CF2} \\
|d^2U/d\tau^2|_{CF6} (duv/d\tau)^2
\end{align*}

\begin{align*}
|d^2U/d\tau^2|_{CF2} \quad \text{(Expanded view)} \\
(duv/d\tau)^2 \quad \text{CF6 (Expanded)}
\end{align*}

\text{Time (sec)}
Figure 6.12 Intermittency distribution through boundary layer using $(duv/dt)^2$. 
Figure 6.13 Determination of $x_s$ and corresponding representative near-wall intermittency in $\Gamma$ versus $x$ coordinates using the value of $\Gamma$ at different $y/\delta$ locations as the representative intermittency.
DETERMINATION OF NEAR-WALL INTERMITTENCY

- THREE LOCATION CONSIDERED FOR REPRESENTATIVE NEAR-WALL INTERMITTENCY

  1. LOCATION OF INTERMITTENCY PEAK ($y/\delta \sim 0.3$)
  2. VALUE AT $y/\delta = 0.2$ (MOST COMMONLY USED)
  3. LOCAL MINIMUM VALUE NEAR THE WALL ($y/\delta \sim 0.1$)

- BOTH (1) AND (2) RESULT IN TOO LARGE A DEVIATION FROM UNIVERSAL DISTRIBUTION

- USING (3) MATCHES UNIVERSAL DISTRIBUTIONS AND IS CONSIDERED APPROPRIATE FOR NEAR-WALL INTERMITTENCY VALUE
Figure 7.1 Conditionally sampled skin friction coefficient.
Figure 3.25. Conditionally Sampled Result of Reynolds Normal Stress Distribution
(— = total part; □ = turbulent part; * = non-turbulent part)
PUBLICATIONS


