ESCD Project

UAV Capability Assessment Needs

NASA Earth Science Mission Requirements

External Customer Requirements

Technology Demonstrations

Mission Demonstrations
Available Flight Assets

- **Ikhana (Predator-B)**
 - Delivery in June 2006

- **Altair**
 - First triple redundant Predator-B
 - Long term lease, 300 day/year
 - Manufacturer operated

- **APV-3**
 - Mini-UAV
 - Research flight control development & pilot vehicle interface/displays

- **G-III**
 - DFRC owned
 - UAV surrogate for sensor demonstration
Ikhana Procurement

- **Predator-B Hunter Killer**
 - 1st Digital Electronic Engine Control
 - Ku Satcom system
 - Contract Delivery June 20, 2006 *(on schedule)*
- **Aircraft recently moved to Gray Butte for ground and flight test**
Mobile Ground Control Station

- Standard General Atomics Pilot & Sensor Operator Ground Control Station
- C-130, C-17 Compatible
- Mobile C-band & 4.5m SatCom antenna
- Delivery late Summer 2006
• 6 custom engineering monitoring stations
• Able to monitor & command aircraft and experiments
• Networked to WWW
• Access to aircraft and ground video
• Range Safety/Flight Termination
Baseline Predator B Architecture
Research Command Modes
1. Autonomous Waypoint_cmds
2. Autopilot Hold Cmds
3. Pilot Stick/Rudder Cmds
UAV Capability Assessment

- In depth assessment of UAV capabilities required for Earth Science, Civil, and Homeland Security
 - Complement to DOD UAV Roadmap
 - Influence the management of the UAV technology portfolio based on user defined future needs
- 6 workshops completed
 - Sub-Orbital Science Missions of the Future
 - Global Climate Change (2): NASA/NOAA/DOE
 - Science Sensors and Power / Propulsion
 - Homeland Security
 - Land Management and Coastal Zone Dynamics
- Product is a living document that identifies and tracks relevant technology gaps
 - Updated annually
 - Vetted with participating agencies

Website: http://www.nasa.gov/centers/dryden/research/civuav/index.html
The Big Picture

Earth Science
- River Discharge
- Forecast Initialization
- Stratospheric Ozone Chemistry
- Magnetic Fields Measurements
- Glacier and Ice Sheet Dynamics
- Cloud and Aerosol Measurements
- Tropospheric Pollution and Air Quality
- Focused Observations – Extreme Weather
- Gravitational Acceleration Measurements
- Hurricane Genesis, Evolution, and Landfall
- Ice Sheet Thickness and Surface Deformation
- Repeat Pass Interferometry for Surface Deformation
- Topographic Mapping and Topographic Change with LIDAR

New Missions

Land Management
- Precision Agriculture
- Wildfire/Disaster Response
- Water Reservoir Management
- Wildlife Management Population Count
- Identification and Tracking of Maritime Species

Homeland Security
- Coastal Patrol
- Broad Area Surveillance
- Border Patrol Situational Awareness
- Marine Interdiction, Monitoring, Detection, Tracking

New Capabilities
- Access to National Airspace
- Remote Command and Control
- Long Range and Endurance
- Increased Platform Availability
- Quick Deployment
- Terrain Avoidance
- Formation Flight
- Precision Trajectory
- Multi-Ship Control
- Precision State Data
- High Altitude
- All Weather
- Vertical Profiling
- Deploy/Retrieve
- Covert Operation

New Technologies
- Autonomous Mission Management
- Intelligent System Management
- Collision Avoidance
- Reliable Flight Systems
- Sophisticated Contingency Management
- Intelligent Data Handling/Processing
- Over-the-Horizon Comm
- Power and Propulsion
- Enhanced Structures
- Open Architectures
- Precision Navigation

Source: Civil UAV Capability Assessment, ver 1 update 2
Mission Demonstrations
NASA/NOAA UAV Demo (5/05 to 9/05)

- **5 Missions using Altair**
 - Up to 18.6 hrs
- **Sensors**
 - Ocean Color Sensor/Passive Microwave Vertical Sounder
 - Gas Chromatograph/Ozone Instrument
 - Cirrus Digital Camera System
 - REVEAL
 - EO/IR Skyball
- **Objectives**
 - Atmospheric river sampling
 - Marine sanctuary surveillance/enforcement
 - Channel Island mapping
 - Ocean color profile
- **Objectives achieved**
• Multi-spectral camera to locate and map known and unknown fires in National Forest (August/September 2006)
• Thermo geo-rectified imagery provided to the National Interagency Fire Center in near real-time
• Sensors pod-mounted for quicker aircraft reconfiguration
• Aircraft will be tasked in similar fashion to other USFS assets
 – Can operate day and night
• Will be ready to respond from So. California to Montana
• Long duration (~20 hours) over-land operation in the NAS will provide challenges
Technology Development
Suborbital Telepresence

- Development of technologies and standards for low-cost airborne sensor webs
- System allows for on-board sensor
 - Processing and storage
 - Remote monitoring
 - Remote control
- Demonstrations completed on ER-2, Altair, DC-8
 - 12-channel Iridium for low-cost, global coverage
 - Data ported to internet in near real-time
 - Dynamically reconfigurable to multiple aircraft, satellite, ground source communication
- Airborne Sensor Web standards in-work