Overview of an Advanced Hypersonic Structural Concept Test Program

Craig A. Stephens, Larry D. Hudson, and Anthony Piazza
NASA Dryden Flight Research Center
Outline

• Hypersonics M&S Advanced Structural Concepts Development
 – C/SiC Ruddervator Subcomponent Test Article (RSTA)
 • Background
 • Task Objectives
 • Test Plan
 • Current Status

• Hypersonics M&S Experimental Methods
 – Extreme Environment Sensors
 • Instrumentation Needs
 • Sensors of Interest
 • Examples of ongoing efforts

• Conclusions
C/SiC Ruddervator Subcomponent Test Article
Background

• One of the key technology efforts during the X-37 program was the development and validation testing of hot-structure control surfaces
 – Part of the risk mitigation effort was the parallel development of X-37 control surfaces using both carbon-carbon (C/C) and carbon-silicon carbide (C/SiC)

• Two separate design and manufacturing teams developed subcomponent test articles
 – C/C Flaperon subcomponent (built and tested)
 – C/C Ruddervator subcomponent (built and tested)
 – C/SiC Flaperon subcomponent (built and tested)
 – C/SiC Ruddervator subcomponent (built but not tested)

• The X-37 program down selected to C/C and proceeded with the development and testing of both ruddervator and flaperon qualification units
 – Flaperon thermally / mechanically tested at NASA Dryden
 – Ruddervator mechanically tested at Wright-Patterson, AFB
C/SiC Ruddervator Subcomponent Test Article
Background (Continued)

• NASA proposed the C/SiC RSTA as a testbed to support ARMD research objectives and worked to formulate a multi-partner program
 – Lockheed Martin (LM) is evaluating C/C and C/SiC control surface technology for hypersonic programs and expressed interest in collaborating

• The X-37 C/SiC RSTA provides an opportunity to
 – Apply both re-entry and trans-atmospheric derived thermal / structural loads to a hot-structure
 – Evaluate the thermal / structural performance of a C/SiC hot-structure control surface
 – Compare the thermal / structural performance of a C/SiC and C/C hot-structure control surface
 – Provide a testbed to evaluate the performance of advanced high-temperature instrumentation
C/SiC Ruddervator Subcomponent Test Article
Team Roles and Responsibilities

- Overall task management and test requirements definition
- Thermal, structural, and ground-vibration testing
- Non-destructive evaluation
- High-temperature instrumentation

NASA Dryden
- Acoustic, vibration, and modal testing
- Thermal / acoustic testing

NASA Langley
- C/SiC RSTA designer
- Test requirements support (X-37 & LM loads)
- RSTA thermal / structural / dynamic analysis

Materials Research & Design
Wayne, PA

- C/SiC RSTA manufacturer
- RSTA modifications and assembly
- Non-destructive evaluation support

GE Aviation
Ceramic Composite Products
Newark, DE
- LM derived loads definition
- Oversight of LM related testing

Palmdale, CA
C/SiC Ruddervator Subcomponent Test Article
Test Objectives

- Evaluate the thermal, structural, and dynamic performance of the C/SiC RSTA through the application of relevant hypersonic thermal, structural, acoustic and vibration loads
 - Maintains and extends NASA’s core knowledge in testing hypersonic structures
 - Obtain unique data through the development of test techniques
 - Application and evaluation of unique high-temperature instrumentation
 - Multi-mission simulation
 - Perform NDE throughout RSTA testing to identify defects and track potential damage propagation

- Pre- and post-test structural analysis to support test operations and development of test database
 - Provides an extensive database for the evaluation of design and analysis methods for hypersonic structures
 - Provides data to validate advanced analysis techniques
 - High-temperature vibration analysis
 - Using test data, non-linear material properties, and contact elements at fasteners to determine force levels at interfaces and fastener stresses (linear versus non-linear analysis comparison)
• Evaluate RSTA performance under two different hypersonic flight conditions
 – X-37: Re-entry conditions
 • Higher heating rates (i.e. higher surface temperatures) over shorter time periods
 • Mechanical loads over short time periods
 • Vibration / acoustic loads maximum at lift-off (i.e. low temperature conditions)
 – LM: Trans-atmospheric conditions
 • Lower heating rates (i.e. lower surface temperatures) over longer time periods
 • Mechanical loads over repeated cycles
 • Combined thermal / acoustic loads of interest

• Developed a four-phase test program for the RSTA
 – Phase 1: Acoustic and vibration loads to X-37 load conditions
 – Phase 2: Thermal and thermal / structural loading to X-37 and LM load conditions
 – Phase 3: Room-temperature mechanical loading to X-37 and LM load conditions
 – Phase 4: Vibration and thermal / acoustic testing to LM load conditions
C/SiC Ruddervator Subcomponent Test Article
Phase 1 Tests (NASA Langley, Completed)

- **Objective:**
 - Evaluate RSTA dynamic performance under X-37 vibration and acoustic loads

- **Test Sequence:**
 - Modal survey
 - Free-free / fixed boundary condition
 - Pre-acoustic sine sweep
 - Acoustic testing
 - Vibration testing
 - Post-acoustic sine sweep
 - Random vibration testing
 - Post-random sine sweep

- **Data Acquired**
 - Accelerations
 - Strains

- **Database Elements**
 - Test requirements document and test plan
 - Instrumentation drawings and test data
 - Test correlation report

October 30 - November 1, 2007 FAP Annual Meeting - Hypersonics Project
C/SiC Ruddervator Subcomponent Test Article
Phase 2 Tests (NASA Dryden, In Progress)

• Objective:
 – Evaluate RSTA performance under X-37 re-entry and LM thermal / mechanical load conditions

• Test Sequence:
 – Modal Survey (completed)
 • Free-free boundary condition
 – Room-temperature ground vibration test (GVT)
 – Elevated-temperature GVT
 – X-37 thermal loading (3 cycles)
 – X-37 thermal / mechanical loading (3 cycles)
 – LM thermal / mechanical loading (3 cycles)
 – Elevated-temperature GVT

• Status:
 – Pre-test predictions
 • LM thermal / mechanical test conditions (completed)
 • X-37 thermal / mechanical test conditions (in progress)
 – High-temperature sensor installations (in progress)
 – Thermal test hardware design (completed)
 – Thermal test hardware fabrication (in progress)
C/SiC Ruddervator Subcomponent Test Article
Phase 3 & 4 Tests

- **Phase 3 Objective:** (NASA Dryden)
 - Evaluate RSTA performance under X-37 derived 100% DLL loads

- **Test Sequence:**
 - Multi-cycle loading to 100% DLL condition
 - Reverse loading

- **Data To Be Acquired**
 - Deflections (control surface and freeplay)
 - Strains
 - Input and reaction loads

- **Phase 4 Objective:** (NASA Langley, TBD)
 - Evaluate RSTA performance under LM derived vibration and thermal / acoustic loads

- **Test Sequence:**
 - Modal survey (free-free boundary condition)
 - Pre-acoustic sine sweep
 - Thermal / Acoustic testing
 - Vibration testing
 - Post-acoustic sine sweep
 - Random vibration testing
 - Post-random sine sweep

- **Data To Be Acquired**
 - Temperatures
 - Accelerations
 - Strains
• **Issues**
 – Hypersonic structures are utilizing advanced materials that operate at temperatures that exceed current ability to measure structural performance
 – Robust structural sensors that operate accurately and reliably in hypersonic environments do not exist

• **Implications**
 – Hinders ability to validate analysis and modeling techniques
 – Hinders ability to optimize structural designs
Extreme Environment Structural Sensors
Instrumentation Attachment Needs

• Hypersonic structural test or flight articles are usually one-of-a-kind, expensive, and time consuming to manufacture
 – Metallics
 – Metal matrix composites
 – Superalloys
 – High-temperature composites (i.e. C/C, C/SiC, SiC/SiC)

• Issues
 – Integrating structural sensors that do not compromise structural integrity
 • Drilling holes, mechanical fastening, etc. are typically not allowed
 – Developing sensor attachment methods that provide valid measurements for all environmental loading conditions without adversely affecting the substrate
 • Thermal conditions
 • Mechanical loading
 • Vibration and acoustic loads
 • Exposure to chemically reacting flows
Extreme Environment Structural Sensors
High-Temperature Structural Measurements of Interest

- **Strain**
 - Sapphire fiber-optic sensors
 - High-temperature Bragg Gratings

- **Temperature**
- **Heat Flux**
 - Calibration methods

- **Acceleration**
- **Deformation**

Sensors and Sensory Materials

Bonding / attachment method development throughout structural component operating range

Current Efforts:
- SOA structural sensor assessment to coordinate NASA, NRA and SBIR opportunities
- Evaluate sensor / systems under laboratory, ground test, and flight test opportunities
Extreme Environment Structural Sensors
Example of Strain Sensing Technology Progression

1960-1970

Flame-Sprayed Resistive
Weldable Resistive
Weldable Capacitive

1980-1990

Improved temperature-compensation using flame-sprayed resistive gages

>2000

Fiber-Optic Strain Sensor
Improved measurement accuracy applying silica and sapphire fiber-optic technology

Large thermal outputs and measurement uncertainties

NASSP X-33
X-37
CEV
Extreme Environment Structural Sensors
Examples of Strain and Temperature Sensors

Fiber-Optic Strain Sensor Installation

- Gold-coated silica fiber (125 micron)
- Nextel overbraid
- Ceramic cement
- Max use = 1850°F
- 8.5mm
- Plasma spray (2 mils)
- Rokide flame spray

Challenge
- Advance strain sensing technology beyond 2000°F
- Develop durable high-temperature fiber-optic sensors
- Advance temperature sensing methods
- Develop sensor attachment techniques suitable for hypersonic environments (ground and flight testing)
Extreme Environmental Sensors
Examples of Acceleration, Heat Flux, Network Sensors

• **Accelerometers**
 – COTS sensors
 – NASA GRC

 ![NASA GRC High-Temperature SiC High-g sensor (1000°F)]
 ![COTS High-Temperature Accelerometer (900°F)]

 0.75 in.
 1.0 in.

• **Heat Flux Sensors**
 – Low profile
 – Rapid response

 ![Heat Flux Array]
 Heat Flux Array
 ARMD ExCap NRA Effort
 (Tao Systems and Virginia Tech)

• **Distributed Bragg Grating System**
 – Simultaneous measurements of strain, temperature, and deformation
 – Increase operating temperature

 ![Heat gun]
 ![Pressure Loading]
 ![Thermal Loading]
 Heat gun
 Fiber
• Goal: Provide valid sensor data to structural analysts
 – Validate sensor output through characterization testing
 • Compare sensor outputs to available standards
 – Validate and assess attachment techniques

Typical Systems for Sensor Validation Testing

Dilatometer (3000°F, inert / air)

Strain Sensor Validation System
- Loading mandrel
- LVDT
- Load bar
- Clamp

3000°F, inert / air

Thermal Cycling Furnace
- 3000°F, inert / air

Black-Body Furnace
Conclusions

• Hypersonics M&S is developing
 – Advanced structural concepts for hypersonic vehicle applications
 – Ground test techniques to obtain data that validates structural performance and analysis techniques for design optimization
 – Sensor technology to acquire structural data subjected to hypersonic conditions for analysis validation and design optimization
 – A knowledge base for the technical community