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Introduction

A correction to the previously published article “New Form of Kane’s Equations of Motion for
Constrained Systems”1 is presented. Misuse of the transformation matrix between time rates of
change of the generalized coordinates and generalized speeds (sometimes called motion variables)
resulted in a false conclusion concerning the symmetry of the generalized inertia matrix. The
generalized inertia matrix (sometimes referred to as the mass matrix) is in fact symmetric and
usually positive definite when one forms nonminimal Kane’s equations for holonomic or simple
nonholonomic systems, systems subject to nonlinear nonholonomic constraints, and holonomic
or simple nonholonomic systems subject to impulsive constraints according to Refs. 1, 2, and
3, respectively. The mass matrix is of course symmetric when one forms minimal equations for
holonomic or simple nonholonomic systems using Kane’s method as set forth in Ref. 4.
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Symmetry of the Generalized Inertia Matrix

Let S be a simple nonholonomic dynamical system, and let R be an inertial frame of reference
in which the configuration of S is described by a set of n generalized coordinates q1, . . . , qn. The
velocity of a generic particle P of the system relative to R can be written as

RvP =
n∑

r=1

RvP
r (q, t)ur + RvP

t (q, t) (1)

where the generalized speeds u1, . . . , un are scalar variables satisfying some nonholonomic con-
straint relations linear in u1, . . . , un, and RvP

1 , . . . ,R vP
n are the corresponding holonomic partial

velocities of the system. The generalized speeds also satisfy the kinematical differential equations

q̇ = C(q, t)u + D(q, t) (2)

The system’s kinetic energy relative to R is given by1

K =
1

2
uT M(q, t)u + N(q, t)u + R(q, t) (3)

where M ∈ Rn×n is symmetric, N ∈ R1×n, and R ∈ R. In most cases M is positive definite;
it can be nonnegative definite (positive semidefinite) when, for example, one neglects a central
principal moment of inertia of a rigid body belonging to S, such as a slender rod, or when one uses
a particle with no mass to represent a point whose motion must be known. The rth nonholonomic

generalized inertia force F̃ ?
r can be written in terms of the holonomic generalized inertia forces F ?

r

and in terms of K according to Eqs. (4.11.4) and (5.6.6) respectively of Ref. 4,

F̃ ?
r = F ?

r +

n−p∑
s=1

F ?
p+sAsr

= −
n∑

s=1

[
d

dt

(
∂K

∂q̇s

)
− ∂K

∂qs

](
Wsr +

n−p∑
k=1

Ws,p+kAkr

)
(r = 1, . . . , p) (4)

where the elements of W have the same meanings as in Eqs. (2.14.5) of Ref. 4,

q̇ = Wu + X (5)

The matrix W is thus in fact identical to C(q, t); it is wrongly taken to be C−1(q, t) following Eq.
(27) in Ref. 1, leading to errors in Eqs. (31), (32), (35), and (36), and to the incorrect conclusion
that the generalized inertia matrix Q can be asymmetric. A rectification of the errors is provided
in what follows.
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The observation that generalized inertia forces are linear in u̇ is made in Ref. 1 and will be
revisited shortly. Consequently F ?, a column matrix whose elements are F ?

r , can be written in the
form

F ? = −Q(q, t)u̇− L(q, u, t) (6)

In Ref. 1 the nature of matrix Q is considered by using the kinetic energy of the system. Upon
appealing to Eqs. (3) and (5) it can be seen that

∂K

∂q̇
=

∂K

∂u

∂u

∂q̇
=
[
uT M + N

]
W−1 (7)

Therefore, defining the matrix A2 as in Eq. (16) of Ref. 1

A2 =
[
I AT

]
(8)

yields the following matrix representation of Eqs. (4)

A2F
? = −A2W

T

(
d

dt

[
W−T Mu + W−T NT

]
−Kq

T

)
= −A2W

T

(
W−T Mu̇ +

d

dt

[
W−T M

]
u +

d

dt

[
W−T NT

]
−Kq

T

)
(9)

where
Kq = bKq1 . . . Kqnc =

∂K

∂q
(10)

If Eq. (6) is multiplied by A2 and compared with Eq. (9), we obtain

Q
4
= W T W−T M = M (11)

L
4
= W T

(
d

dt

[
W−T M

]
u +

d

dt

[
W−T NT

]
−Kq

T

)
(12)

Equations (11) and (12) correct Eqs. (35) and (36) of Ref. 1. The foregoing analysis shows that
the generalized inertia matrix Q is symmetric and, as noted previously, usually positive definite.
In addition to its role in Ref. 1, Q plays a central part in forming nonminimal Kane’s equations for
systems subject to the constraints treated in Refs. 2 and 3.

Alternative Demonstration of Symmetry

It is noted in Ref. 4 that frequently it is inefficient to use K to construct F ?
r or F̃ ?

r ; likewise,
readers of Ref. 1 are made aware that the use of K to form Q or L is undesirable. The definition
of F ?

r given in Eqs. (4.11.2) and (4.11.3) of Ref. 4 provides alternative means for showing that Q
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is identical to M , and for constructing M and L. When S is made up of particles P1, . . . , Pν ,

F ?
r

4
= −

ν∑
i=1

mi
RvPi

r · R aPi (r = 1, . . . , n) (13)

where mi is the mass of Pi, and where the acceleration of Pi in R, denoted by R aPi , can be written
in terms of partial velocities by differentiating Eq. (1) with respect to t in R as shown in Refs. 5
and 2.

R aPi =
n∑

r=1

[
RvPi

r u̇r +

(
Rd

dt
RvPi

r

)
ur

]
+
Rd

dt
RvPi

t

=
n∑

r=1

RvPi
r u̇r + RaPi

t (i = 1, . . . , ν) (14)

where the remainder term of the acceleration is defined as

RaPi
t

4
=

n∑
r=1

(
Rd

dt
RvPi

r

)
ur +

Rd

dt
RvPi

t (i = 1, . . . , ν) (15)

Substitution from Eqs. (14) into (13) yields

F ?
r = −

ν∑
i=1

mi
RvPi

r ·
(

n∑
s=1

RvPi
s u̇s + RaPi

t

)

= −
n∑

s=1

(
ν∑

i=1

mi
RvPi

r · RvPi
s

)
u̇s −

ν∑
i=1

mi
RvPi

r · RaPi
t (r = 1, . . . , n) (16)

It is immediately clear that F ?
r is linear in u̇1, . . . , u̇n; each time derivative of a generalized

speed is multiplied by an inertia coefficient defined as

mrs
4
=

ν∑
i=1

mi
RvPi

r · RvPi
s = msr (r, s = 1, . . . , n) (17)

A matrix M whose elements are mrs is referred to as a generalized inertia matrix or mass matrix.
Taken together, Eqs. (16) and (17) show conclusively that M is symmetric by definition when
obtained with Kane’s method as set forth in Ref. 4. Although the present demonstration involves a
holonomic system, the result is readily shown to apply also to a simple nonholonomic system; the
interested reader is referred to Eqs. (5.5.3) and (5.5.4), and Problem 10.11 in Ref. 4. The form of
mrs is dependent on one’s choice of generalized speeds because the partial velocities are dependent
on this choice; however, M is symmetric for any valid choice whatsoever. The matrix M is in fact
identical to Q that appears in Eq. (6) and thus a symmetric mass matrix appears in the nonminimal
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Kane’s equations presented in Refs. 1, 2, and 3. The property of symmetry does not necessarily
extend to a mass matrix obtained with other variants of Kane’s method, such as the lower triangular
matrix obtained with the method presented in Ref. 6.

It is important to note that not all methods of deriving dynamical equations guarantee a sym-
metric mass matrix. For example, it is well known that Newton-Euler methods do not guarantee
symmetry. Although Lagrange’s equations always produce a symmetric mass matrix, the same
cannot be said in general for their cousins, the Boltzmann-Hamel equations.7

As indicated on p. 150 of Ref. 4, M is the matrix in Eq. (3) associated with the portion K2 of
kinetic energy that is quadratic in the generalized speeds

K2 =
1

2
uT Mu =

1

2

n∑
r=1

n∑
s=1

mrsurus (18)

A comparison of Eqs. (16) and (6) reveals that the elements of matrix L are given by Lr
4
=∑ν

i=1 mi
RvPi

r · RaPi
t (r = 1, . . . , n). As pointed out in Ref. 1, it is advisable to construct F ?

r

according to the procedure set forth in Sec. 4.11 of Ref. 4 rather than by forming the matrices M

and L.

References

1Bajodah, A. H., Hodges, D. H., and Chen, Y.-H., “A New Form of Kane’s Equations of Motion for Constrained
Systems,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 1, 2003, pp. 79–88.

2Bajodah, A. H., Hodges, D. H., and Chen, Y.-H., “Nonminimal Kane’s Equations of Motion for Multibody
Dynamical Systems Subject to Nonlinear Nonholonomic Constraints,” Multibody System Dynamics, Vol. 14, No. 2,
2005, pp. 155–187.

3Bajodah, A. H., Hodges, D. H., and Chen, Y.-H., “Nonminimal Generalized Kane’s Impulse-Momentum Rela-
tions,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 1088–1092.

4Kane, T. R. and Levinson, D. A., Dynamics: Theory and Applications, McGraw-Hill Book Company, New York,
1985, pp. 46, 124–129, 150, 151, 153, 319.

5Rosenthal, D. E., “Order n Formulation for Robotic Systems,” The Journal of the Astronautical Sciences, Vol. 38,
No. 4, 1990, pp. 511–529.

6Rosenthal, D. E., “Triangularization of Equations of Motion for Robotic Systems,” Journal of Guidance, Control,
and Dynamics, Vol. 11, No. 3, 1988, pp. 278–281.

7Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill Book Company, New York, 1970, pp. 162–163.

5 of 5


