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Abstract  

 Retrieval of temperature, moisture profiles and surface skin temperature from 

hyperspectral infrared (IR) radiances requires spectral information about the surface 

emissivity. Using constant or inaccurate surface emissivities typically results in large 

retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity 

spectrum is large both spectrally and spatially. In this study, a physically based algorithm 

has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously 

with the temperature and moisture profiles, as well as the surface skin temperature. To 

make the solution stable and efficient, the hyperspectral emissivity spectrum is 

represented by eigenvectors, derived from the laboratory measured hyperspectral 

emissivity database, in the retrieval process. Experience with AIRS (Atmospheric 

InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity 

spectrum and the sounding improves the surface skin temperature as well as temperature 

and moisture profiles, particularly in the near surface layer.   
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Accurate retrieval of atmospheric temperature and moisture profiles, as well as 

surface skin temperature from hyperspectral infrared (IR) radiance measurements, is 

needed for climate research, as well as medium range and short-range forecast 

applications.  Hyperspectral IR sounders onboard polar orbiting satellites, such as the 

Atmospheric InfraRed Sounder (AIRS) (Chahine et al. 2006) on EOS (Earth Observing 

System) Aqua, the Interferometer Atmospheric Sounding Instrument (IASI) 

(http://smsc.cnes.fr/IASI/index.htm) on European METOP-A, and the Cross-track 

Infrared Sounder (CrIS) (http://www.ipo.noaa.gov/Technology/cris_summary.html) on 

the next generation National Polar-orbiting Operational Environmental Satellite System 

(NPOESS), are developed for global temperature and moisture sounding observations 

with high vertical resolution and high accuracy. Although hyperspectral IR radiances 

have been successfully assimilated in a global forecast model (LeMarshall et al. 2006), 

challenges remain over land due to the uncertainty in emissivity.   

Since the top of atmosphere radiance (TOA) contains a surface IR emissivity (ε) 

contribution (see Figure 1), especially for a channel within the atmospheric window 

regions, knowledge of surface emissivity is critical for atmospheric temperature and 

moisture profile retrieval from radiance measurements.  The impact of IR emissivity on 

sounding or surface temperature retrievals has been studied using the GOES 

(Geostationary Operational Environmental Satellite) Sounder (Plokhenko and Menzel 

2000) and MODIS (Moderate Resolution Imaging Spectroradiometer) (Wan and Li 1997; 

Ma et al. 2002; Seemann et al. 2003; Wan et al. 2004).  Handling IR surface emissivities 
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in the retrieval process is essential for deriving accurate temperature and boundary layer 

moisture profiles, as well as surface skin temperature, especially over land.  This is 

equally true for IR radiance assimilation in Numerical Weather Prediction (NWP).  

Surface emissivity (ε) for a given channel is often fixed in the physical retrieval process, 

for example, using fixed emissivities from a regression approach (Li et al. 2000; Zhou et 

al. 2006; Zhou et al. 2007).   
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Some physical algorithms also retrieve emissivities together with the sounding, 

but only at selected channels and spectral bands.  For example, Hayden (1988) retrieved 

emissivities at two spectral bands (longwave and shortwave IR bands) in GOES sounding 

processing, Zhou et al. (2007) and Susskind et al. (2003) used approximately 40 channels 

for emissivity retrieval in AIRS retrieval processing.  It is difficult to retrieve emissivities 

of all channels directly in the sounding step, this is due to a large number of unknowns in 

the inverse equations and the instability of the solution.  Retrieving the whole emissivity 

spectrum is possible if emissivity eignevectors (EVs) are derived.  The hyperspectral 

emissivity spectrum can be represented in the retrieval process by its EVs derived from 

laboratory measured hyperspectral emissivity database. Using EVs to represent radiances 

or parameters to be retrieved has been suggested and attempted by numerous researchers 

(Smith and Woolf 1976; Huang 1998; Zhou et al. 2006; Liu et al. 2006).   

 Knowledge of surface IR emissivity is also very important for creating a climate 

forecasts (Jin and Liang 2006).  Data from a satellite based IR imager such as MODIS 

provide global emissivity distribution at a few IR spectral bands (Wan et al. 2004). With 

hyperspectral IR data available, a global map of hyperspectral IR emissivity spectra is 

possible.  
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 Based on a physical iterative approach, this study demonstrates that a 

hyperspectral emissivity spectrum can be retrieved simultaneously along with 

temperature and moisture soundings, as well as surface skin temperature from a 

hyperspectral IR radiance spectrum by using EV representation.  This approach has been 

successfully tested using both simulated and measured AIRS radiances, and is expected 

to help improve the hyperspectral IR radiance assimilation in forecast models over land.  

For example, one can use a variational (1DVAR) approach to derive emissivity properties 

and other atmospheric parameters, and use a four dimensional variational (4DVAR) 

approach to directly assimilate those derived products in a forecast model (Weng et al. 

2007).  A further goal of this research is to study the sounding improvement in the 

physical method over the regression technique in handling surface IR emissivities. 
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2.  Methodology 

 

 With pre-determined surface IR emissivities, algorithms for retrieving the 

atmospheric temperature and moisture profiles, as well as surface skin temperature, have 

been developed to process single field-of-view radiance measurements (Li and Huang 

1999; Ma et al. 1998, Li et al. 2000, Zhou et al. 2003).  Since emissivity is wavenumber 

dependent, it is difficult to retrieve emissivities at all channels together with temperature 

and moisture profiles due to a large number of unknowns.  To take advantage of spectral 

correlations, the emissivity spectrum can be represented by its EVs (e.g., the first 6 EVs) 

in the retrieval process, leaving only a few unknowns (emissivity EV coefficients) to be 

added together with the temperature profile (T(p)), moisture profile (q(p)) and surface 
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skin temperature (Ts) in the 1DVAR process.  In addition to the regular unknowns (T(p), 

q(p), Ts), the emissivity spectrum 
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where iϕ  is the th EV and  is the associated EV coefficient, and  is the number of 

EVs used.  
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φ  and  are the corresponding EV matrix and EV coefficient vector, respectively. 

Figure 1 (lower panel) shows the first 6 EVs for the AIRS spectrum derived from 

laboratory measurements of hyperspectral emissivity spectra. Our study shows that the 

first 6 EVs (6 pieces of independent emissivity information) are representative of the 

emissivity spectrum information in a simultaneous retrieval process.  The Jacobian matrix 

of the radiance with respect to the eigenvector coefficient can be derived 
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where  is the Jacobian matrix of the radiance with respect to the emissivity EV 

coefficient, while  is the diagonal matrix with Jacobians corresponding to the 

emissivity spectrum, and the diagonal values can be calculated approximately by an 

analytical method (Li et al. 1994).  Figure 1 shows the AIRS brightness temperature (BT) 

spectrum calculated from the U.S. standard atmosphere (top panel) and associated 

emissivity Jacobian spectrum (middle panel).  A Jacobian value of 50 means that a 

change in emissivity of 0.01 results in a 0.5 K change in BT.  The longwave IR window 

region has a larger emissivity signal than the shortwave IR window region, which is 

important to note since a good signal-to-noise ratio is required to retrieve emissivity 
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spectrum according to the Jacobian analysis.  The convoluted Jacobian from Eq.(2) then 

can be used in the physical retrieval process. 
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3.  Experiment with simulated AIRS radiances 

 

 The algorithm has been tested with both simulated and measured AIRS radiances.  

In the simulation study, a global set of training profiles (Seemann et al. 2007) was used. 

Each profile contains a temperature profile, water vapor mixing ratio profile, ozone 

profile and surface skin temperature; emissivities at 10 spectral points have been assigned 

to each profile based on the combination of global MODIS emissivity measurements 

(Wan and Li, 1997; Wan et al., 2004) and laboratory emissivity measurements 

(http://www.icess.ucsb.edu/modis/EMIS/html/em.html; http://speclib.jpl.nasa.gov/). By 

using a similar approach and applying emissivity EVs derived from the laboratory, each 

profile of the training dataset is assigned a hyperspectral emissivity spectrum (e.g., at 

AIRS full spectral coverage).  Figure 2 shows the emissivities assigned to ocean (upper 

left), grassland (upper right), cropland (lower left) and desert (lower right) regions.  In the 

simulation study, an AIRS radiance spectrum is calculated using the fast and accurate 

Stand-Alone Radiative Transfer Algorithm (SARTA) developed by University of 

Maryland Baltimore County (UMBC) for each training profile.  The AIRS instrument 

noise plus 0.2 K forward model errors are added to the simulated radiances.  The 

temperature and moisture retrieval algorithm is a two-step approach: regression followed 

by a physical iterative approach (Li et al. 2000).  The regression technique provides a 

reasonable hyperspectral emissivity spectrum retrievals.  For example, Zhou et al. [2006] 
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have applied regression for NASTI emissivity retrievals, and Zhou et al. [2007] have 

used the regression for AIRS emissivity retrievals.  Physical retrieval of sounding and 

surface IR emissivities at the selected channels in a sequential way was performed in the 

operational AIRS product generation (Susskind et al. 2003).  In this study, the 

simultaneous retrieval of a sounding and the whole emissivity spectrum in a physical 

iterative approach is developed in an attempt to improve statistical results.  The following 

three configurations are examined: 
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(1) Use a constant emissivity of 0.98 in the physical retrieval, and the emissivity is 8 

not changed in each physical iteration; 

(2) Use a regression emissivity spectrum in the physical retrieval, and the emissivity 

is not changed in physical each iteration; 

(3) Use a regression emissivity spectrum as the initial guess in the physical retrieval, 

and the emissivity is updated in each physical iteration. 

In the simulation, 90% of the profiles are used as training for the regression coefficients, 

while the remaining 10% of the profiles are used as independent testing.  The temperature 

and water vapor relative humidity (RH, 0 – 100%) root mean square errors (RMSE) are 

calculated for the above configurations; the RMSE is based on the absolute difference 

between the truth and the retrieval. 

Figure 3 shows the retrieved RMSE for the above three configurations along with 

the first guess (from the regression).  The first guess provides a reasonable profile with an 

accuracy of approximately 10% for water vapor RH and 1 K above 500 hPa; the accuracy 

for temperature is limited in the boundary layer from the regression.  With a fixed 

constant emissivity, the physical retrieval significantly degrades the first guess for both 
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temperature and water vapor since the assumed emissivity of 0.98 is not accurate.  As 

expected, when the regression based emissivity spectrum is fixed in the physical 

iterations, the temperature and moisture are improved from the first guess, especially for 

water vapor, due to the nonlinear contribution of IR radiances to the temperature and 

water vapor.  With a simultaneous retrieval of the sounding and emissivity spectrum, the 

temperature and moisture retrievals are the best in all three configurations, especially in 

the boundary layer where emissivity has significant contributions. Configuration 3 

improves over configuration 2 significantly.  The retrieval simulation illustrates that 

estimating emissivity in the physical iteration is necessary and helpful for sounding 

retrievals, especially in desert regions where emissivity variation is large both spectrally 

and spatially.  In addition, the emissivity RMSE from both the regression and the 

physical retrieval are also shown in the upper panel (from configuration 3), which 

demonstrates that the physical approach improves the regression.  However, the 

shortwave physical retrieval still has a retrieval error of 0.02 due to the limited emissivity 

information (see Figure 1).  The surface skin temperature retrieval indicates similar 

results to the boundary layer temperature as shown in Table 1. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 

4.  Experiment with measured AIRS radiances 

 

 The algorithm has also been tested with AIRS radiance measurements using 

granule 011 for 08 September 2004.  The MODIS cloud mask is used to identify the 

AIRS clear footprints (Li et al. 2004).  The AIRS granule contains various surface types 

(cropland, desert, ocean etc.).  Figure 4 shows the emissivity spectrum retrieval from the 

 8



regression (upper left) and physical (upper right) approaches at 1227 cm-1 or 8.15 µm.  

The difference between the physical and first guess (regression) can be seen, especially 

over the desert region.  The lower panel shows one example of an emissivity spectrum 

retrieval over the desert; the physical approach changes the regression in both longwave 

and shortwave window region.  Three emissivity spectrum references derived from the 

laboratory database, representing the surface types of desert, cropland, and ocean 

respectively, are also shown.  Accurate surface properties captured by hyperspectral 

measurements over land, especially in the vicinity of the Sahara Desert, are clearly 

evident.  Sounding in the boundary layer leads to greater improvement in physical 

retrievals over regression retrievals when compared with the ECMWF analysis (not 

shown).    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 

5. Summary 

 

 Handling surface IR emissivity is very important for sounding retrieval and 

radiance assimilation.  The emissivity uncertainty has a significant impact on the retrieval 

of boundary layer temperature and moisture, especially over desert regions where surface 

IR emissivity has large variations both spectrally and spatially.  This study shows that 

simultaneous retrieval of hyperspectral IR emissivity spectrum and sounding is helpful in 

the sounding retrieval process. The emissivity spectrum can be retrieved together with the 

profile through an EV representation of the spectrum; a representative laboratory 

hyperspectral IR emissivity measurement data set containing various ecosystem types are 

crucial for EVs.  With such a technique the global IR emissivity spectrum product can be 
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derived through composite clear hyperspectral IR radiance measurements.  The derived 

hyperspectral IR emissivity product is very useful for processing broad IR spectral band 

radiances such as from the Advanced Baseline Imager (ABI) (Schmit et al. 2005) 

onboard the next generation of Geostationary Operational Environmental Satellite 

(GOES-R) and beyond (e.g., using retrieved emissivity spectra from polar orbiting 

hyperspectral IR radiances for processing ABI IR radiances).  The global emissivity 

product is also very important for improving the global climate forecast.  The algorithm 

can similarly be applied to process IASI and CrIS.  
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Figure 1.  The AIRS brightness temperature (BT) spectrum calculated from the U.S. 

standard atmospheric profile (top panel) and associated emissivity Jacobian spectrum 

(middle panel). The lower panel shows the first 6 EVs of emissivity spectra derived from 

hyperspectral laboratory measurements. 

 

Figure 2.  The selected emissivity spectra assigned to ocean (upper left), grassland (upper 

right), cropland (lower left) and desert (lower right) regions from the training data set. 

The dark black lines are the means for each regional data set. 

 

Figure 3.  The root mean square errors (RMSE) of retrievals for three configurations 

described in the text along with the first guess (from regression) results.  The first guess 

provides a reasonable profile with an accuracy of approximately 10% for water vapor RH 

and 1 K above 500 hPa. 

 

Figure 4.  The emissivity retrieval from the regression (upper left) and physical (upper 

right) approaches at 1227 cm-1 or 8.15 µm.  The lower panel shows one example of an 

emissivity spectrum retrieval over the desert region along with three reference emissivity 

spectra from laboratory data corresponding to ocean, cropland and desert surface types, 

respectively. 
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Table captions 

Table 1. The retrieved surface skin temperature root mean square error for three 

configurations described in the text along with the regression results.
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Figure 1. The AIRS brightness temperature (BT) spectrum calculated from the U.S. 

standard atmospheric profile (top panel) and associated emissivity Jacobian spectrum 

(middle panel). The lower panel shows the first 6 EVs of emissivity spectra derived from 

hyperspectral laboratory measurements. 
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Figure 2. The selected emissivity spectra assigned to ocean (upper left), grassland (upper 

right), cropland (lower left) and desert (lower right) regions from the training data set. 

The dark black lines are the means for each regional data set. 
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Figure 3. The root mean square error (RMSE) of retrievals for three configurations 

described in the text along with the first guess (from regression) results.  The first guess 

provides a reasonable profile with an accuracy of approximately 10% for water vapor RH 

and 1 K above 500 hPa. 
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Figure 4. The emissivity retrieval from the regression (upper left) and physical (upper 

right) approaches at 1227 cm-1 or 8.15 µm.  The lower panel shows one example of an 

emissivity spectrum retrieval over the desert region along with three reference emissivity 

spectra from laboratory data corresponding to ocean, cropland and desert surface types, 

respectively. 
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Table 1. The retrieved surface skin temperature root mean square error for three 

configurations described in the text along with the regression results. 

1 

2 

3  

Method Cropland 

RMS (K) 

Desert 

RMS (K) 

Grassland 

RMS (K) 

Ocean 

RMS (K) 

Reg 0.485 0.624 0.461 0.703 

Rtv (configuration 3) 0.327 0.540 0.316 0.472 

Fixed emis (configuration 2) 0.360 0.822 0.421 0.563 

Emis=0.98 (configuration 1) 0.686 9.544 0.877 0.409 
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