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NASA has initiated the development of methodologies, techniques and tools needed for
analysis and simulation of stage separation of next generation reusable launch vehicles. As a
part of this activity, ConSep simulation tool is being developed which is a MATLAB–based
front-and-back-end to the commercially available ADAMS‚ solver, an industry standard
package for solving multi-body dynamic problems. This paper discusses the application of
ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO)
Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The
proximity and isolated aerodynamic database were assembled using the data from wind
tunnel tests conducted at NASA Langley Research Center. The effects of parametric
variations in mass, inertia, flight path angle, altitude from their nominal values at staging
were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the
sensitivity to uncertainties in aerodynamic coefficients.

Nomenclature
a = angle of attack, deg
Da = relative difference in angle of attack, deg
CA = axial force coefficient

  

† 

CN = normal force coefficient

  

† 

Cm = pitching moment coefficient

  

† 

Cmq = damping in pitch derivative, per radian

de = elevon deflection, deg

    

† 

de,bias = feedforward elevon deflection, deg

g = flight path angle, deg

    

† 

Fx ,Fz = aerodynamic forces in axial and normal directions, lb
h = altitude, ft
Ixx, Iyy, Izz = moment of inertia about body x, y, z axis
k1 = interpolation constant
ka, kq = angle of attack and pitch rate feedback gains
lref = reference length, ft
L = body length, ft
M = Mach number or aerodynamic pitching moment, lb-ft
  

† 

q = pitch rate, rad/s

  

† 

q = dynamic pressure, lb/ft2

r = density, slugs/ft3
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Sref = reference area, ft2

V = velocity, ft/s
Dx, Dz = relative axial and normal distances during separation, ft
xcg = x-location of center of gravity, ft
zcg = z-location of center of gravity, ft

Suffixes
1 = vehicle 1 (booster)
2 = vehicle 2 (orbiter)
cmd      = commanded
f = isolated or free flight
p = proximity or with interference
t = transitional

Acronyms
ADAMS®  = Automatic Dynamic Analysis of Mechanical Systems
ISS = International Space Station
ISAT = Inter-Center Systems Analysis Team
LGBB = Langley Glide Back Booster
NASA = National Aeronautics and Space Administration
NGLT = Next Generation Launch Technology
PD = Proportional Derivative
SEE = Synergistic Engineering Environment
SLI = Space Launch Initiative
SSTO = Single-Stage-To-Orbit
SSME = Space Shuttle Main Engine
TSTO = Two-Stage-To-Orbit
UPWT = Unitary Plan Wind Tunnel

 I. Introduction
HE problem of dynamic separation of two bodies within the atmosphere is complex and challenging. One
problem that has received significant attention in the literature is that of store separation from the aircraft.1 The

aerodynamic characteristics of the relatively small sized store are influenced by the proximity of the aircraft but
those of the aircraft are virtually not affected. A similar example is the separation of the X-15 research vehicle from
the B-52 carrier aircraft.2 Here, the aerodynamic characteristics of the relatively smaller X-15 vehicle are influenced
by the proximity of the B-52 aircraft but not vice-versa. The other class of stage separation problem involves
separation of two vehicles of comparable sizes where the aerodynamic characteristics of one vehicle are influenced
by the proximity to the other vehicle. However, in some cases the integrity of only one vehicle may be of
importance, such as the staging of multi-stage expendable launch vehicles. The integrity of only the upper stages is
of primary concern post separation. The expended stages need only to move away safely from the upper stages
before their eventual disintegration. For multi-stage reusable launch vehicles, the integrity of each stage is important
post separation.

NASA studies3-7 on stage separation of multi-stage reusable launch vehicles date back to the early 1960s. These
studies were conducted by Decker et al and addressed the problem of separation of generic two-stage reusable
launch vehicles. Wind tunnel tests were conducted to evaluate the mutual aerodynamic interference between the two
stages for supersonic/hypersonic speeds. However, the test data were limited to very few longitudinal and normal
separation distances. Also, the simulation did not include the attachment between the stages and the release
mechanism. Recent NASA studies by Naftel et al 8-10 consider Mach 3 staging of two winged vehicles. They
modeled the attachment of stages, the release mechanism in their simulations and used active control during
separation but their aerodynamic data did not include the mutual interference effects. They used free-stream
aerodynamic data for each vehicle.

The interest in stage-separation research has come back when it was realized during early 2000 that the
technologies needed for the development of next generation reusable SSTO vehicle are not yet available and
NASA’s Next Generation Launch Technology (NGLT) Program identified stage separation as one of the critical
technologies needed for successful development and operation of NASA’s next generation multistage reusable
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launch vehicles. As a step towards developing this critically needed technology, NASA has initiated a
comprehensive stage separation tool development activity that includes wind tunnel testing, development and
validation of CFD and engineering level tools. The stage separation analysis and simulation tool called ConSep is
being developed as a part of this activity. The reusable booster, a product of the NASA in-house small launcher
vehicle concept study,11 is used in a bimese configuration as the baseline vehicle in this tool development activity.
This reusable booster concept is referred to as the Langley Glide-Back Booster11 (LGBB). Stage separation wind
tunnel tests were conducted on the LGBB Bimese models at supersonic (M = 2.3, 3.0 and 4.5) and hypersonic Mach
number (M = 6) to provide data for CFD code development and validation. An overview of NASA’s stage-
separation tool development activity is presented in Ref. 12.

The objective of this paper is to demonstrate the application of ConSep for the stage separation of two-stage-to-
orbit (TSTO) LGBB-Bimese reusable launch vehicles. In this study, the staging of two vehicle concepts are
considered, one which stages at Mach 3 with booster glide back to launch site and the other stages at Mach 6 with a
booster that flies back to the launch site using air breathing jet engines. The two flight profiles are illustrated in Fig.
1. The simulation and analyses performed in this study are limited to the stage separation events. The ascent and
glideback/flyback trajectories are not addressed here. The initial conditions for the staging maneuvers used here are
based on the available ascent trajectories of similar vehicles staging at Mach 3 and Mach 6. For each vehicle, the
aerodynamic database was assembled from the wind tunnel test data generated as part of the stage separation tool
development activity. These two databases include the static longitudinal aerodynamic coefficients for proximity
conditions and interference-free or isolated conditions. The lateral/directional motion during stage separation is not
addressed in this study.

It was found that aerodynamic separation is feasible for Mach 3 staging LGBB-Bimese vehicle. The booster and
orbiter could be safely flown apart using a simple active (closed-loop feedback) control of aerodynamic surfaces
(elevons). However, for Mach 6 LGBB-Bimese vehicle, aerodynamic separation was not feasible and separation
motors were used to accomplish safe separation. This study also discusses the effect of variations in mass, inertia,
altitude, flight path angle at staging on the vehicle motion during stage separation. To evaluate the sensitivity of the
vehicle motion to uncertainties in aerodynamic coefficients, Monte Carlo studies were performed for the LGBB-
Bimese Mach 3 stage separation. Some early results of this study were presented at the a recent AIAA conference.13

 II. Vehicle Description
The TSTO vehicles used in this study are bimese concepts. A TSTO vehicle in which both the booster and the

orbiter have the same outer-mold-lines is called a bimese vehicle. In other words, external geometry of both the
booster and orbiter are identical. However, the “true” bimese vehicles are identical internally and externally to the
extent that the role of the booster and orbiter can be switched. For the bimese vehicles used in this study, the outer-
mold-lines of both the booster and orbiter are identical to that of LGBB of the small launcher11 shown in Fig. 2.
However, the LGBB-Bimese vehicles do not feature canards. Furthermore, both the LGBB-Bimese booster and
orbiter are approximately 4.16 times larger in size than LGBB of the small launcher. A schematic arrangement of
the belly-to-belly LGBB-Bimese configuration is presented in Fig. 3.

The sizing of the two LGBB-Bimese vehicles used in this study was based on Mach 3 Glideback and Mach 5
Flyback reference configurations developed during the NASA’s ISAT (Intercenter Systems Analysis Team) effort
which was part of the SLI (Space Launch Initiative) program.14 The LGBB-Bimese vehicles are sized for 35,000 lb
payload to the ISS (International Space Station). For the purpose of this study, the SSME (Space Shuttle Main
Engine) class engines were used for each stage. The ISAT Mach 3 configuration is very close to being considered a
true “bimese” in that: 1) The outer mold lines are exactly the same, and 2) the internal arrangement is as similar as is
practical, particularly in regards to tanks, primary structure and engines. Only the orbiter has a reentry thermal
protection system and payload provisions. The ISAT Mach 3 configuration uses fuel crossfeed from the booster to
orbiter to maintain orbiter tanks full at staging. The orbiter of the ISAT Mach 5 configuration was slightly smaller
than the booster and hence was not a true “bimese” configuration. The ISAT Mach 5 configuration booster uses 6
turbofan engines (20,000 lb thrust class) for flyback to the launch site, as the downrange was too great for glideback.
These ISAT reference vehicles assume the state–of-the-art technology in the design. Application of advanced
technology would reduce the vehicle size, but this was not attempted in the present study.

The Mach 3 LGBB-Bimese configuration of the present study is very similar in mass to the ISAT Mach 3
configuration. However, the Mach 6 LGBB-Bimese configuration is a scaled up version of the Mach 5 ISAT
configuration, and the orbiter is grown even further to match the size of the booster. In order for this Mach 6 LGBB-
Bimese configuration to meet the mission requirements, the orbiter had to use some of its internal fuel prior to
staging. Hence at separation, the orbiter’s tanks are assumed to be less than full. Such an approach can lead to a
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suboptimal vehicle configuration but was required to match up the sizes of the booster and the orbiter to arrive at a
true bimese TSTO configuration used in this study.

The schematic diagram of the attachment of the orbiter to the booster is shown in Fig. 4. The booster is attached
to the orbiter at two points. Prior to the release, the forward joint is assumed to be a fixed support and the aft joint is
assumed to permit rotation in pitch. These struts and the gap measurements are similar in geometry to the Shuttle
Orbiter and External Tank attachment system except that the rear strut has a pivot linkage that allows the rotation of
the booster relative to the orbiter upon release of the forward joint. This separation sequence is similar to that used in
Ref. 10. The estimated mass properties of the two vehicles at staging are presented in Tables I and II.

A. Proximity Aerodynamic Characteristics and Development of Aerodynamic Database
The longitudinal stage-separation aerodynamic coefficients depend on the relative location of the two vehicles as

characterized by three variables Dx, Dz and Da. The dependence of stage-separation aerodynamic coefficients on Dx,
Dz and Da is in addition to their usual dependence on Mach and a. Sketches showing the relative locations of the
two vehicles in the wind tunnel tests and corresponding orientations in flight are presented in Fig. 5. The separation
distances Dx, Dz are measured with respect to the orbiter coordinate system. Note that Dx is negative when the
booster is aft of the orbiter.

The proximity aerodynamic database was developed using the data from the stage separation wind tunnel tests
conducted in the NASA Langley’s UPWT (Unitary Plan Wind Tunnel) at Mach 3 and the NASA Langley’s 20-Inch
Mach 6 Tunnel. Some Mach 3 stage separation tests were also conducted in the Aerodynamic Research Facility
(ARF) at NASA’s Marshall Space Flight Center (MSFC). The MSFC test data14 was used as a reference but not in the
development of the aerodynamic database discussed in this study. A brief description of the Langley’s stage
separation tests in UPWT and 20-Inch Mach 6 Tunnel is presented in this paper. Detailed descriptions of the test
facilities, support hardware, models, instrumentation and test procedure are available in Ref. 12. The incremental
aerodynamic coefficients for the elevon deflections in proximity conditions were not available for either of the stage
separation tests. In view of this, Mach 3 elevon deflection data obtained from isolated LGBB model tests in the
Langley UPWT (Mach range: 1.6 to 4.5) was used. Such isolated LGBB elevon data for Mach 6 was not available.
In the absence of a better alternative, the available Mach 4.5 UPWT elevon deflection data was used as applicable
for Mach 6 conditions. It is possible that isolated elevon incremental coefficients differ from those in proximity.
This issue was not addressed in this study.

The Mach 3 stage separation tests were conducted in NASA-Langley UPWT facility. The UPWT is a closed-
circuit, continuous flow, pressure tunnel with two test sections that are nominally 4 ft by 4 ft in cross section and
seven ft long. The Mach number range is 1.5 to 2.86 in Test Section I and 2.3 to 4.63 in Test Section II. Two LGBB
1.75% scale models were used. These correspond to 0.426% scale models of the LGBB-Bimese vehicles. One
LGBB model designated as the orbiter (bottom) model was always held at a fixed location and held fixed at a = 0.
The other test model designated as the booster (top) model was moved in x (aft) and in z (vertical) directions. All the
x and z traverses were done for two values of angles of attack, 0 and 5 deg. A schematic illustration of the LGBB-
bimese Mach 3 test matrix is presented in Fig.6.

The Mach 6 stage separation tests were conducted in the Langley 20-Inch Mach 6 Tunnel. Two 1.21% scale
LGBB models (0.2909% LGBB-Bimese) were used, one as booster model and the other as orbiter model. All x
movements were achieved by moving the booster (top) model aft of the orbiter (bottom) model and z movements by
lowering the orbiter model from the mated position. All x and z separations were run at Da = 0 and Da = 5 deg. At
each of the nominal x and z locations, both models were simultaneously swept through an angle of attack range

Table I. Mass Properties at Staging for the Mach 3
LGBB-Bimese Vehicle

Property Orbiter Booster

Weight, lb 2,909,000 300,000

Total thrust, lb 4,879,000 0

xcg, ft 197.6 130.0

Ixx, slugs-ft2 20,900,000 3,360,000

Iyy, slugs-ft2 245,000,000 39,400,000

Izz, slugs-ft2 245,000,000 39,400,000

Table II. Mass Properties at Staging for the Mach 6
LGBB-Bimese Vehicle

Property Orbiter Booster

Weight, lb 2,230,000 476,000

Total thrust, lb 4,899,000.0 0

xcg, ft 197.6 130.0

Ixx, slugs-ft2 16,000,000 5,330,000

Iyy, slugs-ft2 188,000,000 62,600,000

Izz, slugs-ft2 188,000,000 62,600,000
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using the tunnel strut angle of attack mechanism so that
a varied for each model whereas Da, Dx and Dz remain
fixed at their nominal values. However, for Da = 5
deg., the actual values Dx and Dz are slightly different
due to the rotation in pitch. The angle of attack range
was about –7 deg. to +7 deg. A schematic illustration
of the LGBB-bimese Mach 6 test matrix is presented in
Fig.7.

It is necessary to note that for stage separation wind
tunnel testing, the direction and magnitude of velocity
are identical for both orbiter and booster models. In
actual flight post separation, this is not always true.
The differences in velocity magnitudes amount to
differences in flight Mach numbers and the differences in directions amount to differences in flight path angles.
Therefore, some errors are likely to be introduced in the simulations based on these stage separation wind tunnel test
data, specially if the Mach numbers and flight path angles of the two separating vehicles differ considerably.

The test parameters for Mach 3 and Mach 6 stage separation tests are summarized in Table III. The separation
distances Dx are negative in Table III because the booster was always located aft of the orbiter.

To illustrate the physical nature of aerodynamic interference, sample schlieren photographs are presented in Fig.
8 and 9. In the mated condition (Dx = Dz = 0) for Da = 0, the mutual interference is characterized by a channel like
flow between the two bodies and the bow shock waves of each body impinge on the other resulting in multiple
reflections. As the two bodies move short distance apart in x and z directions, the channel like flow is not observed.
Instead, the mutual interference is mainly determined by bow shock impingements and their reflections. It is
interesting to note that the orbiter falls out of booster’s influence much earlier than the booster going out of orbiter’s
influence. For example, for Dx = 0.4, Dz = 0.25, the orbiter is nearly out of booster’s influence whereas the booster is
still under the orbiter’s influence. The shock intersections affect surface pressure distribution causing it to rise over
the downstream part of the body resulting in significant variations in normal force and pitching moment coefficients.
The flow pattern over the LGBB-Bimese models at Mach 6 has similar features but shock angles are much steeper
as shown in Fig. 9.

The isolated LGBB aerodynamic coefficients at Mach 3 and Mach 6 are presented in Fig. 10. To illustrate the
physical nature of variation of longitudinal aerodynamic coefficients in proximity, the wind tunnel test data for
a = 0 and Da = 0 are presented in this paper. In Figs. 11-16, the total coefficients are presented for Mach 3 case.
However, the test data for Mach 6 was in the form of incremental coefficients with respect to the corresponding
isolated condition and these incremental coefficients are presented in Fig. 17.

B. Simulation of Staging Maneuvers
The simulation of staging maneuvers was done using ADAMS® (Automatic Dynamic Analysis of Mechanical

Systems) solver, an industry standard package for solving multi-body dynamic problems15. The user does not have
to input the governing equations of motion to ADAMS® for vehicle motion during stage separation but needs to
provide mathematical models of the aerodynamic and other external forces/moments acting on each of the vehicles
during stage separation. ADAMS® assembles coupled/constrained equations of motion for each vehicle based on the
user supplied inputs and generates solution to those equations as per user requests. To simplify the process of using
ADAMS® for solving stage separation problems, NASA Langley has developed a MATLAB-based front and back
end, called ConSep to ADAMS® solver. ConSep derives its heritage from SepSim, a front-and-back-end to
ADAMS® for X-43A (Hyper-X) stage separation. An independent verification of the ADAMS® predictions of the
X-43A stage separation16 was conducted and the two results were found to be in close agreement. This exercise
confirms that ADAMS® sets up and solves the equations of motion for stage separation problems in an acceptable
manner.

ConSep allows the user to setup the stage separation problems in a simple manner. It converts the user inputs
into the model specifications used by ADAMS, initiates ADAMS® solver and post-processes the ADAMS® output
to express the simulation results in a convenient form. ConSep is designed to allow the user to link aerodynamic
mathematical models, aerodynamic data tables, interpolation routines, model attachment points/joints, separation
forces due to reaction jets or piston type devices, closed-loop proportional and derivative (PD) control, actuator
dynamics, atmospheric winds, engine gimbals etc. to ADAMS® solver. ConSep is also designed to permit the user to

Table III. Summary of Wind Tunnel Test Parameters

Parameter UPWT 20-Inch
Mach 6 Tunnel

Mach Number 3.0 6.0
Reynolds Number, 106/ft 1.0-4.0 0.5-0.9
Moment Reference Point 0.68 L 0.68 L

a (orbiter), deg 0.0 –7.0 to +7.0
a (booster), deg 0, 5.0 –7.0 to +7.0

Da, deg 0, 5.0 0, 5.0

Dx/lref 0 to –2.1 0 to –1.0
Dz/lref 0 to 1.0 0 to 0.5
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study the effect of variations in selected input parameters and also perform Monte Carlo studies. The main
advantage of ConSep is that user does not have to be trained in ADAMS® to use it for solving stage separation
problems. Additional information on ConSep is available in Ref. 17.

In this study, simple aerodynamic separation aided by active closed-loop control of elevons on both vehicles was
attempted for Mach 3 staging. Separation forces or thrusters were not used. For Mach 6 staging aerodynamic
separation was not feasible and separation thrusters were used. At staging, the orbiter was assumed to be thrusting
but the booster not. The staging event starts with the release of the forward joint permitting the booster to rotate

about the aft joint. The aft joint was released when a specified event, such as Da or time reaching a specified value,
occurred allowing the booster to separate.

The inputs to ConSep/ADAMS simulation of LGBB-Bimese stage separation were as follows: definition of
body-fixed coordinate system for each vehicle in relation to the ground-fixed system (North-East-Down) defined in
ADAMS via Euler angles, mass, inertia, center of gravity of each vehicle in its body-fixed coordinate system, initial
altitude, velocity, flight path angle, angle of attack of each vehicle, mathematical model of aerodynamic forces and
moments in proximity and free flight, location of the moment reference point for each vehicle, tables of proximity
aerodynamic forces and moment coefficients as functions of Dx, Dz, a and Da (for Mach 3 and 6), aerodynamic
coefficients for isolated or free flight conditions at Mach 3 and 6, incremental aerodynamic coefficients for elevon
deflections at Mach 3 and 6, atmospheric model, location of the separation motors, magnitude and direction of net
thrust, location of joints/attachment points and degrees of freedom for each joint, time/event for the partial/complete
release of front and aft joints, models of actuators for aerodynamic control surface (elevons) of each vehicle, gains
for closed-loop PD (Proportional Derivative) controller, time for starting and stopping the integration of equations of
motion, step size and accuracy of integration. The initial conditions and other parameters used for the stage
separation simulations are presented in Table IV.
Aerodynamic Forces and Moments

The axial force, normal force and pitching moment are defined as follows:

    

† 

Fx = -
1
2

rV 2Sref CA (1)

    

† 

Fz = -
1
2

rV 2Sref CN (2)

    

† 

M =
1
2

rV 2Sref lref Cm (3)

where Sref = 7527.94 ft2, lref = 260.1 ft. Note that the body length (L) is used as reference length. The moment
reference point was located at 0.68 lref from the nose of each vehicle. The Mach number is assumed to be constant

Table IV. Initial Conditions for LGBB-Bimese Vehicles
Parameter Mach 3 Staging Mach 6 Staging
Altitude, ft 85000 150000.0

Velocity, ft/sec 2924.6 6586.6
Dynamic Pressure, lbs/ft2 287.0 75.0
Flight Path Angle 

† 

g , deg 53.0 30.0

† 

a  (booster), deg 0.0 0.0

† 

a  (orbiter), deg. 0.0 0.0
Atmospheric Model US Standard Atmosphere 1962 US Standard Atmosphere 1962

Separation thrust 0.0 750000.0
Simulation time, sec 6.0 6.0

Integration step size, sec 0.01 0.01
Front Joint Release, sec 0.1 0.1
Aft-Joint Rotation, sec 0.1 0.1
Aft-Joint Release, sec Da = 1.0 deg Da = 1.0 deg (Baseline)

t = 0.1 sec (Nominal and all other cases)
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during stage separation. With this assumption, the aerodynamic coefficients in proximity during stage separation are
functions of angle of attack, relative angle of attack and separation distances can be expressed as follows:

    

† 

CA1p = CA1p(a1, Da , Dx, Dz) + DCA1,de1 (4)

    

† 

CA2 p = CA2 p(a 2, Da , Dx, Dz) + DCA2,de1 (5)

    

† 

CN 1p = CN 1p(a1, Da , Dx, Dz) + DCN 1,de1 (6)

    

† 

CN 2 p = CN 2 p(a2, Da, Dx, Dz) + DCN 2,de2
 (7)

    

† 

Cm1p = Cm1p(a1, Da, Dx, Dz) + DCm1,de1
 (8)

    

† 

Cm2 p = Cm2 p(a2, Da, Dx, Dz) + DCm2,de2
 (9)

Here, the suffixes 1 and 2 correspond to booster and orbiter respectively. In this paper, the booster is sometimes
referred to as vehicle 1 and the orbiter as vehicle 2. The suffix p denotes proximity conditions. When the two
vehicles move out of the proximity range and are essentially in isolated or free flight (no interference) conditions,
the aerodynamic coefficients are assumed to be given by:

    

† 

CA1 f = CA1(a1) + DCA1,de1
 (10)

    

† 

CA2 f = CA2(a2) + DCA2,de2
 (11)

    

† 

CN 1 f = CN 1(a1) + DCN 1,de1
 (12)

    

† 

CN 2 f = CN 2(a2) + DCN 2,de1
 (13)

    

† 

Cm1 f = Cm1(a1) + DCm1,de1
 (14)

    

† 

Cm2 f = Cm2(a2) + DCm2,de2
 (15)

Here, the suffix f denotes isolated or free condition. Note that CA = CAp in proximity and CA = CAf for isolated or free
flight conditions and so on.

Owing to facility/resource limitations, the Langley Mach 3 and Mach 6 proximity test data do not cover
sufficiently large values of Dx and Dz so that the aerodynamic coefficients transition smoothly from stage separation
(proximity) coefficients to isolated (no interference or free flight) coefficients. In view of this, following assumption
was introduced to transition from the available stage-separation aerodynamic coefficients to the isolated
aerodynamic coefficients as the vehicles move apart.

    

† 

CA1t = k1CA1 f + (1 - k1)CA1p  (16)

    

† 

CA2t = k1CA2 f + (1 - k1)CA2 p  (17)

    

† 

CN 1t = k1CN 1 f + (1 - k1)CN 1p  (18)

    

† 

CN 2t = k1CN 2 f + (1 - k1)CN 2 p (19)
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† 

Cm1t = k1Cm1 f + (1 - k1)Cm1p  (20)

    

† 

Cm2t = k1Cm2 f + (1 - k1)Cm2 p  (21)

Here, the suffix t denotes the transition region. In the proximity region, k1 = 0 and for isolated or free flight
condition, k1 = 1. In the transition region, k1 varies linearly from 0 to 1. The transition region is assumed to consist
of two concentric ellipses, an inner ellipse and an outer ellipse defined empirically using the stage separation test
data as guide. Both the ellipses are centered at the moment reference point of each vehicle and move with the
vehicles. The parameter k1 is assumed to vary linearly from 0 at the inner ellipse to 1 at the outer ellipse. These
concepts are illustrated in Fig. 18. Note that the forward halves of the ellipses attached to the orbiter and aft halves
attached to the booster are not used in the present implementation of this concept.
Constraints: The available stage separation test data are limited in a and Da values as shown in Table III. The
extrapolation outside the database limits was not permitted. In view of this, a constraint was imposed on simulations
that each vehicle’s a and Da remain within the limits of the proximity databases, that is, 0 <a £ 5.0 deg and is
0 < Da £ 5.0 deg. However, it is quite possible that safe separations can occur at angles of attack outside the limits
of the current proximity database.
Criteria for Safe Separation: The criteria for a successful stage separation were as follows: (a) no vehicle recontact
and, (b) booster stays out of the orbiter’s engine plume. It was estimated that the orbiter’s plume is correctly
expanded for ambient pressure/altitude conditions for both Mach 3 and Mach 6 staging vehicles. Hence, the
combined diameter of the orbiter engines would be approximately equal to the vehicle base diameter which is 28.6
ft. However, to be on the conservative side, it is assumed that the minimum Dz separation to avoid booster contact
with orbiter plume be assumed equal to two diameters (59.2 ft) or Dz/lref ≥ 0.219. For the x-separation, the
acceptable separation distance was specified as Dx/lref ≥ 3.0.

It is possible that the impingement of the orbiter engine plume on the separating booster can be tolerated if the
resulting aerodynamic heating effects are not critical. In such cases, it is necessary to account for the incremental
aerodynamic forces on the booster due to orbiter plume impingement during stage separation. However, this issue
was not addressed in this study.
Animation of the Stage-Separation Event: The Synergistic Engineering Environment (SEE) environment was
used to create animations of the staging maneuvers. The SEE used the geometry models of the LGBB and the
ConSep output to generate these animations. The geometrical shape of the orbiter engine plume was assumed to be a
cylinder of constant diameter equal to base diameter because the exit plume was assumed to be expanded correctly
for both Mach 3 and Mach 6 staging conditions. This plume shape was included in the geometry model of the
orbiter. The animation of the staging event provides an effective means for visualization of engine plume
interactions or collisions if any. Additional information on SEE is available in Ref. 18.

 III. Results and Discussion

A. Baseline Separation
The Mach 3 and Mach 6 separation trajectories with zero elevon deflections and zero separation-thrust are

presented in Figs. 19 and 20. These two cases are termed baseline separations. The simulation time was selected as 6
sec with an integration step size of 0.01 sec. This duration and step size were considered satisfactory for the
simulation of the stage separations discussed in this study.

For both Mach 3 and Mach 6 staging, each booster experiences positive normal force coefficient and positive
pitching moment coefficients in the mated conditions (Figs. 11 and 14 for Dx =  Dz = 0). As a result, when the
forward joint was released at t=0.1 sec, the booster starts to rotate nose-up about the aft joint and its angle of attack
starts slowly increasing. When the relative angle of attack (

† 

Da ) reached 1.0 deg, the aft joint was released setting
the booster free to go. The two vehicles move away from each other and separation distances  

† 

Dx ,   

† 

Dz  and

† 

Da  keep
increasing. However, the vehicle angles of attack go out of the database limits. In view of this, the baseline cases for
both Mach 3 and 6 were not considered to result in successful separations.

C. Nominal Separation
For both Mach 3 and Mach 6 separations, active closed-loop, proportional-derivative (PD) control was used. The

separation thrusters were used for Mach 6 separation. No separation motors were used for Mach 3 separation. These
two cases are termed nominal Mach 3 and Mach 6 separations.
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 A schematic diagram of the PD controller implemented in ConSep/ADAMS is shown in Fig 21. The elevon
deflections are now controlled by commanded angle of attack acmd, instantaneous angle of attack, feed forward
 de,bias , pitch rate feedback gains ka and kq. In this study, the feed forward bias was not used. The full range of elevon
deflection for which isolated LGBB test data was obtained is –30 deg to +20 deg. However, for nominal separation,
the elevon deflections were limited to –20 to +15 deg deflection to leave some margin for handling off-nominal
conditions discussed later. The values of acmd gains ka and kq were determined by trial and error to keep the vehicles
within the database limits. The nominal values of the gains are presented in Table VI.

For Mach 3 staging, it can be observed from Fig. 22 that a and Da remain within the limits of the proximity
databases. The elevon deflections hit the specified limits initially but subsequently assume smaller values. The axial
acceleration of the orbiter is positive due to a net positive thrust but the booster experiences a negative acceleration
(deceleration) due to drag. The booster has negative normal acceleration (moving away) but the orbiter has a
positive normal acceleration indicating that it tends to move towards the booster. Since the orbiter is much heavier
than the booster at staging, the two vehicles continue to move apart. After 6 sec, Dx/lref = –4.0 and Dz/lref = 0.72, that
is the booster is about 1038 ft aft and 189 ft (6.6 diameters) below the orbiter and the two vehicles continue to move
further apart. Therefore, for the LGBB-Bimese vehicle, a successful Mach 3 staging is feasible using aerodynamic
forces and moments acting on the booster and orbiter.

For Mach 3 staging, both booster and the orbiter start with initial velocity of 2924.6 ft/sec and flight path angle
of 53.0 deg. At the end of 6 sec, the velocities are respectively about 2725 ft/sec and 3100 ft/sec corresponding to
Mach numbers of about 2.8 and 3.2. The flight path angles are 50 deg and 51 deg respectively for the booster and
the orbiter. As said before, the stage separation wind tunnel test data is based at Mach 3 and applies to cases where
the flight path angles of booster and orbiter are equal. The issue of possible errors due to variations in Mach number
and flight path angles is not addressed in this study.

For Mach 6 staging, simple aerodynamic staging was not feasible, apparently because the freestream dynamic
pressure at 150,000 ft altitude is about 1/4th of that at 85,000 ft altitude for Mach 3 staging (see Table IV). Therefore,
booster separation motors producing a combined thrust of 75,000 lb acting for a duration of 0.5 sec immediately
after the release of aft joint were used. This thrust was assumed to be applied in the negative z1-direction of the
booster body-fixed coordinate system (Fig. 5). A higher magnitude of separation thrust certainly helps stage
separation but increases the weight penalty due to the inclusion of separation motors, Using the performance and
mass property data of the separation motors used on the Solid Rocket Boosters of the Space Shuttle,19,20 the weight
penalty of carrying the suite of separation motors producing a combined thrust of 750,000 lb for a duration of 0.5
sec was estimated to be 5770 lb, which is about 1.92% booster weight at separation. The effect of separation motor
plume impingement was not addressed in this study.

The combined use of active elevon control and separation motors results in a successful Mach 6 stage separation
as shown in Fig 23. The nominal feedback control parameters for the Mach 6 separation are presented in Table VI.
After 6 sec, Dx/lref = –4.8 and Dz/lref = 0.57, that is the booster is about 1250 ft aft and 150 ft (5.2 diameters) below
the orbiter and the two vehicles continue to move further apart.

For both Mach 3 and Mach 6 separations, large values of pitch rate feedback gains were required, particularly for
the booster, This brought into question the role of dynamic derivative in pitch (Cmq) in the stage separation
simulations. The stage separation test data for C mq is not available. Using DATCOM methods,21 for the isolated
LGBB vehicle at Mach 3, Cmq were estimated to be about –0.32 per radian that is about 300 times smaller than the
artificial damping provided by the pitch rate feedback. Hence, no further efforts were made to include dynamic
terms in the simulations performed in this study. A similar observation was made by Decker et al.5

Table VI. Summary of LGBB-Bimese Simulations

Description LGBB-Mach 3 Staging Vehicle LGBB-Mach 6 Staging Vehicle
Baseline No active control, no separation motors No active control, no separation motors
Nominal Active PD control, No separation motors

Ka = –3, Kq = 8, acmd = 2.0 deg
Active control of elevons, separation of

750,000 lbs.
Ka = –5, Kq = 5, acmd = 2.0 deg

Parameter Variations Mass, inertia, flight path angle and altitude
at staging

Mass, inertia, flight path angle and
altitude at staging

Monte Carlo Runs Nominal separation parameters with
aerodynamic uncertainties

None



American Institute of Aeronautics and Astronautics
10

C. Effect of Parametric Variations
These studies were performed for both Mach 3 and Mach 6 staging LGBB-Bimese vehicles. However, the

results will be presented only for Mach 3 staging LGBB-Bimese vehicle because the results were similar for the
Mach 6 staging LGBB-Bimese vehicle. The values of the feedback gains were held fixed at their nominal values and
the full range of elevon deflections were used for vehicle control during separation.
Effect of variation of mass and inertia

The mass and inertia in pitch of both vehicles varied independently by ±10% from their nominal values resulting
in a combination of 9 cases for each parameter. The results are shown in Figs. 24 and 25. It may be noted that the
nominal Mach 3 feedback controller is capable of handling these variations in mass and inertia and keep the vehicle
a and Da within the database limits.
Effect of variations in flight path angle and altitude at staging

The nominal values of flight path angle and altitude at staging are 53 deg and 85000 ft respectively. These were
varied by ±10 deg and ±5000 ft respectively. The results are shown in Figs. 26 and 27. It is noted that these
variations can be handled by the nominal Mach 3 feedback controller satisfactorily and maintaining vehicle a and
Da within the database limits.

D. Monte Carlo Runs
These studies were performed to evaluate the robustness of the nominal controller to aerodynamic uncertainties

when all the other parameters assumed their nominal values. Following a recent study on aerodynamic uncertainties
of the X-33 vehicle22 the Space Shuttle heritage23-25, two types of aerodynamic uncertainties were assumed,
tolerances and variations. The tolerances are associated with measurement errors in wind tunnels. The estimated
tolerances for Mach 3 stage separation wind tunnel testing are: CN = ±0.0019, CA = ±0.0012, Cm = ±0.00022. The
data suitable for the estimation of variations in the stage separation environment are not available. In the absence of
a better alternative, the uncertainties associated with Space Shuttle reentry flight are used as variances in this study:
CN = ±0.015, CA = ±0.006, Cm = ±0.003. The total or net uncertainties were assumed to be sum of tolerances and
variances. It may be noted that these uncertainties are very conservative and are often as large as the proximity
aerodynamic coefficients themselves.

The results of 200 Monte Carlo runs are presented in Fig. 28. The number of cases which resulted in successful
separation (Dz/lref ≥ 0.2) were 184 and the failures (Dz/lref £ 0.2) were 16. The number of cases which went outside
the database limits (Da > 5.0 deg) were 51 with a maximum Da of 6.59 deg. However, for these 51 cases, the
vehicle-a were within the 5 deg limit. Considering that the estimated uncertainties were very much on the
conservative side, it is believed that the nominal controller for the Mach 3 staging satisfactorily handles the
aerodynamic uncertainties assumed in this study.

E. Animation of the Staging Event:
The ConSep output and the LGBB-Bimese vehicle geometry models were input to  SEE  to produce animation

of the staging event.  As said before, the engine plume was assumed to be correctly expanded for both Mach 3 and
Mach 6 operating altitudes and was modeled as a solid cylinder extending few diameters from the base of the
orbiter. Snap shots of the animation taken at selected time intervals are shown in Fig. 29.

 IV. Concluding Remarks
The analyses and simulation of the staging maneuvers of two TSTO vehicle concepts, one staging at Mach 3 and

the other staging at Mach 6 were performed to demonstrate the application of the ConSep tool which is being
developed as a part of NASA’s stage separation tool development activity. The proximity aerodynamic databases
were developed using the data from stage separation wind tunnel tests conducted at NASA Langley Research
Center. A passive release of the vehicles for Mach 3 and Mach 6 staging did not result in satisfactory stage
separation because the vehicle angles of attack and relative angles of attack went very much outside the database
limits. For Mach 3 LGBB-Bimese vehicle, aerodynamic separation was feasible using active closed-loop feedback
controller. However, for Mach 6 LGBB-Bimese vehicle, aerodynamic staging was not feasible and separation
motors were used. Parametric variations in mass, inertia, flight path angle and altitude at staging were investigated.
Monte Carlo simulations were performed to evaluate the robustness of nominal controller to aerodynamic
uncertainties. The results indicate that the nominal controller satisfactorily handles off-nominal conditions in mass,
inertia, flight path angle, altitude at staging and estimated uncertainties in aerodynamic coefficients.
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(a) (b)

Figure 1. Schematic illustration of Mach 3 and Mach 6 staging flight profiles.

Figure 2. Three-view diagram of the Langley glide-back booster (LGBB).
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Figure 3. Schematic diagram of the LGBB-Bimese vehicle.

Figure 4. Schematic illustration of the attachment of the booster and the orbiter (all dimensions in ft).
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                                      a) Wind Tunnel Tests                           b) Flight

Figure 5. Relative locations of booster and orbiter in proximity.
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Figure 6. Schematic illustration of LGBB-Bimese UPWT test matrix at Mach 3.

Figure 7. Schematic illustration of the LGBB-Bimese Mach 6 Tunnel test matrix.
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           (a) Dx/lref, Dz/lref = 0.0, Da = 0       (b) Dx/lref = –0.2, Dz/lref = 0.16, Da = 5

                (c) Dx/lref = –0.4, Dz/lref = 0.25, Da = 5      (d) Dx/lref = –0.8, Dz/lref = 0.36, Da = 5

Figure 8.  Mach 3 schlieren photographs of the LGBB bimese configuration
in MSFC Aerodynamic Research Facility.4
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Figure 9.  Schlieren Photographs of the LGBB-Bimese configuration in 20-Inch Mach 6 Tunnel.
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Figure 10. Isolated LGBB lift, drag and pitching
moment coefficients at Mach 3 and 6.

Figure 11. Variation of booster normal force
coefficient with Dx/Lref and Dz/Lref at Mach 3 for
a = 0, Da = 0 deg.

Figure 12. Variation of orbiter normal force
coefficient with Dx/Lref and Dz/Lref at Mach 3 for
a = 0, Da = 0 deg.
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Figure 13. Variation of booster axial force
coefficient with Dx/Lref and Dz/Lref at Mach 3 for
a = 0, Da = 0 deg.

Figure 15. Variation of orbiter axial force
coefficients with Dx/Lref and Dz/Lref at Mach 3 for
a = 0, Da = 0 deg.

Figure 14. Variation of booster pitching moment
coefficient with Dx/Lref and Dz/Lref at Mach 3 for
a = 0, Da = 0 deg.

Figure 16. Variation of orbiter pitching moment
coefficients with Dx/Lref and Dz/Lref at Mach 3 for
a = 0, Da = 0 deg.
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Booster at Da = 0 deg Orbiter at Da = 0 deg

Figure 17. Proximity aerodynamic coefficients for Mach 6 at a = 0, Da = 0 deg.
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Figure 18.   Concept of transition regions.

Figure 19. Mach 3 baseline separation. Figure 20. Mach 6 baseline separation.

Figure 21. Feedback control system implemented in ConSep.
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(a)    (b)

(c) (d)

Figure 22.  Trajectory variables in Mach 3 nominal separation.
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(a) (b)

(c) (d)

                              Figure 23. Trajectory variables in Mach 6 nominal separation.
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Figure 24. Effect of parametric variation in vehicle mass. Figure 25. Effect parametric variation in pitch inertia.

Figure 26. Effect of parametric variations in flight path angle.  Figure 27. Effect of parametric variation in altitude.
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(a) (b)

 (c) (d)

Figure 28.  Trajectory variables in 200 Monte Carlo runs for Mach 3 separation.
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                  (a) t = 0, Mated Configuration.                       (b) t = 0.5 s.

                      (c) t = 1.0 s.                       (d) t = 2.0 s.
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                       (e) t = 3.0 sec.                                    (f) t = 4.0 sec.

Figure 29.   Selected snap shots showing the relative locations of booster orbiter during
Mach 3 nominal separation.


